Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (21): 3903-3923.doi: 10.3864/j.issn.0578-1752.2019.21.018

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effect of Ultra-High Pressure and High Temperature Short-Time Sterilization on the Quality of NFC Apple Juice During Storage

DENG Hong1,2,3,LEI JiaLei1,YANG TianGe1,LIU MinHao1,MENG YongHong1,2,3(),GUO YuRong1,2,3,XUE Jia1,2,3()   

  1. 1 College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119;
    2 National Research & Development Center of Apple Processing Technology, Xi’an 710119;
    3 Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Xi’an 710119;
  • Received:2019-04-29 Accepted:2019-09-03 Online:2019-11-01 Published:2019-11-12
  • Contact: YongHong MENG,Jia XUE E-mail:mengyonghong@snnu.edu.cn;cathyxue0727@snnu.edu.cn

Abstract:

【Objective】 In order to provide an experimental basis for regulating the shelf life of not from concentrate (NFC) juice products in Chinese market and formulating standard of NFC juice products in China, the quality changes of NFC apple juice treated by different sterilization methods (e.g., high temperature short-time (HTST) and Ultra-high pressure (UHP)) during storage periods were compared. 【Method】 NFC apple juice was prepared by using Fuji apple as raw material and treated by HTST at 98℃ for 50 s and UHP at 400 MPa for 15 min, respectively, before refrigerated at 4℃. Then the changes of microbial, physical and chemical indicators, polyphenols, enzymes (polyphenol oxidase and peroxidase) activity, antioxidant activity and aroma components were studied using various methods (e.g., microbial and chemical methods, principal component analysis (PCA), instrumental analysis methods of HPLC, and GC-MS). 【Result】 The sterilization rates of total bacteria, Escherichia coli, mold and yeast in NFC apple juice were 100% through HTST and UHP treatment, however, the total number of colonies increased significantly (89.15%, 58.65%) at the 10 th and 5 th week of storage, respectively. No obvious proliferation of Escherichia coli, mold and yeast was observed. The microbial communities of NFC apple juice treated by HTST and UHP during storage were of no significant changes, but the increases of dominant bacteria were different. The TSS, pH, TA, and the sensory quality (storage for 4 and 8 weeks) of NFC apple juices treated by HTST and UHP did not change significantly, but not the total color significantly (P<0.05). During the storage period, the content of epicatechin in NFC apple juice treated by HTST and UHP decreased by 33% and 53%, respectively. The total antioxidant capacity of FRAP, scavenging rate of DPPH free radical were kept at 76%, 73%, and 77%, 76%, respectively. PPO and POD of NFC apple juice were completely inactivated after HTST treatment, but the enzymes activity (PPO and POD) in samples processed by UHP showed a trend of first increasing and then decreasing. The polyphenol content and antioxidant activity of HTST treated NFC apple juice were significantly higher than those of UHP treated samples. The total retention rate of 18 characteristic aroma substances in HTST treated NFC apple juice was 52%, but the aroma components remained stable during storage. In contrast, the aroma content of UHP treated NFC apple juice (57.75 mg/100 mL) was close to the control sample (57.17 mg/100 mL), but the aroma components significantly changed and reduced by 26.13% during storage. 【Conclusion】 NFC apple juice with HTST and UHP sterilization could maintain the commercial quality stored at 4℃ for 9 and 4 weeks, respectively, but the shelf life of HTST treated NFC apple juice was longer than that treated by UHP.

Key words: NFC apple juice, ultra-high-pressure treatment, high-temperature short-time sterilization, quality, storage period

Table 1

Changes on pH, TA, TSS of NFC apple juice after HTST and UHP treatment during storage period at 4℃"

不同处理
Different treatment
贮藏时间(周) Storage time (week)
1 2 3 4 5 7 10
pH Control 4.01±0.3a
UHP 4.01±0.2a 3.98±0.2abcd 3.99±0.1abc 4.00±0.1ab 3.95±0.2d
HTST 4.01±0.2a 3.99±0.1abc 3.98±0.1abcd 3.99±0.1abc 3.97±0.1bcd 3.95±0.1d 3.96±0.2cd
可滴定酸度
TA
Control 0.342±0.01abc
UHP 0.339±0.01bc 0.338±0.01c 0.340±0.01abc 0.339±0.02bc 0.342±0.02abc
HTST 0.341±0.02abc 0.340±0.01abc 0.341±0.01abc 0.342±0.01abc 0.343±0.01ab 0.342±0.01abc 0.344±0.01a
可溶性固形物TSS Control 11.9±0.2a
UHP 12.0±0.1a 11.9±0.1a 12.0±0.1a 11.8±0.1a 11.9±0.1a
HTST 11.9±0.1a 11.9±0.1a 11.8±0.2a 12.0±0.1a 11.9±0.1a 11.9±0.1a 12.0±0.1a

Table 2

Changes on color of NFC apple juice after HTST or UHP treatment during storage period at 4℃"

不同处理
Different treatment
贮藏时间(周)Storage time (week)
1 2 3 4 5 7 10
L* Control 33.26±0.05ab
UHP 33.48±0.04a 32.66±0.03ab 30.3±0.09c 30.77±0.06c 29.89±0.03c
HTST 31.69±0.04bc 31.55±0.05bc 31.70±0.15bc 30.35±0.14c 30.22±0.12c 30.19±0.06c 30.01±0.11c
a* Control -1.77±0.05a
UHP -2.49±0.02ef -2.53±0.01f -2.44±0.04ef -2.31±0.04cde -2.17±0.01bc
HTST -2.37±0.04cdef -2.35±0.06cdef -2.40±0.08def -2.32±0.08bcde -2.28±0.01bcde -2.19±0.03bcd -2.08±0.12b
b* Control 3.24±0.07a
UHP 2.59±0.02b 2.65±0.02b 2.60±0.12b 2.55±0.02b 2.50±0.04b
HTST 2.59±0.11b 2.50±0.06b 2.61±0.14b 2.54±0.09b 2.51±0.04b 2.48±0.08b 2.44±0.11b

Table 3

Changes on PPO and POD of NFC apple juice after HTST or UHP treatment during storage period at 4℃"

酶活
Enzymes activity
不同处理Different treatment 贮藏时间(周) Storage time (week)
1 2 3 4 5 7 10
PPO
(△OD420?min-1·g-1)
Control 0.023±0.0021bc
UHP 0.047±0.0017a 0.029±0.001b 0.022±0.0015bc 0.026±0.0021bc 0.019±0.0012c
HTST ND ND ND ND ND ND ND
POD
(△OD470?min-1·g-1)
Control 0.14±0.0136cd
UHP 0.19±0.0175a 0.15±0.0092bc 0.14±0.011cd 0.17±0.0121ab 0.12±0.0075d
HTST ND ND ND ND ND ND ND

Fig. 1

HPLC chromatogram of 9 monomeric phenolic contents in NFC apple juice treated with ultra-high pressure and high temperature short-time sterilization during storage at 4℃ A: HPLC chromatogram of NFC apple juice by high temperature short-time sterilized at the first week; B: HPLC chromatogram of NFC apple juice by ultra-high pressure treated at the first week; C: HPLC chromatogram of NFC apple juice by high temperature short-time sterilization during storage; D: HPLC chromatogram of NFC apple juice by ultra-high pressure treated during storage. Number 1-9 of spectrum peak on the figure A and B indicated gallic acid, 4-hydroxybenzoic acid, chlorogenic acid, caffeic acid, catechin, epicatechin, rutin, quercetin, phloridin"

Fig. 2

Changes of DPPH radical scavenging rate and FRAP total antioxidant capacity in NFC apple juices during storage time at 4℃ after UHP and HTST treatments"

Fig. 3

Changes in aroma components of NFC apple juice treated by ultra-high pressure and high temperature at 4℃ during storage A:主成分分析PCA评分图;B:PCA负荷变量图;C:两个处理的苹果汁在贮藏期间18种主要香气成分变化的热图。Control:未处理的NFC苹果汁;HHP1、2、3、4W:其超高压处理的NFC苹果汁贮藏1、2、3、4周;HTST1、2、3、4W:超高温瞬时杀菌处理的NFC苹果汁贮藏1、2、3、4周A: Principal component analysis PCA score map; B: PCA load variable map; C: Heat map of 18 major aroma components during storage of two treated apple juices. CK: Untreated NFC apple juice; HHP1, 2, 3, 4W: NFC apple juice treated with ultra-high pressure during storage 1, 2, 3 and 4 weeks; HTST1, 2, 3, 4W: NFC apple juice treated with ultra-high temperature instantaneous sterilization 1, 2, 3 and 4 weeks. (E)-2-己烯醛,Hexenal:己烯醛,Acetaldehyde:乙醛,1-hexanol:1-己醇,2-methyl-1-butanol:2-甲基-1-丁醇,1-butanol:1-丁醇,2-methyl butyrate:2-甲基-丁酯,Hexyl butyrate:丁酸己酯,Butyl 2-methyl butyrate:2-甲基丁酸丁酯,Hexyl acetate:乙酸己酯,Ethyl hexanoate:己酸乙酯,Butyl butyrate:丁酸丁酯,Butyl acetate:乙酸丁酯,Amyl acetate:乙酸戊酯,Isoamyl formate:甲酸异戊酯,Ethyl 2-methyl butyrate:2-甲基丁酸乙酯,Ethyl butyrate:丁酸乙酯,Propyl acetate:乙酸丙酯"

Table 4

Changes of aroma content in NFC apple juice after HTST or UHP treatment during storage period at 4℃"

不同处理
Different treatment
不同贮藏时间(周)的质量浓度(mg/100 mL)
Mass concentration of aroma at different storage time (week)
1 2 3 4
酯类Ester
乙酸乙酯
Ethyl acetate
Control 0.36
UHP 0.08 0.08 0.20 0.09
HTST 0 0.05 0.04 0.04
乙酸丙酯
Propyl acetate
Control 0.28
UHP 0.45 0.43 0.31 0.37
HTST 0.13 0.14 0.16 0.14
丁酸乙酯
Ethyl butyrate
Control 0.28
UHP 0.62 0.65 0.63 0.69
HTST 0.10 0.16 0.2 0.21
丙酸丙酯
Propyl propionate
Control 0.13
UHP 0.17 0.17 0.18 0.20
HTST 0 0 0 0.08
乙酸丁酯
Butyl acetate
Control 3.68
HHP 4.22 4.11 3.56 4.00
TP 2.59 3.38 2.50 2.66
2-甲基丁酸乙酯
Ethyl 2-methylbutyrate
Control 0.15
UHP 0.28 0.30 0.30 0.33
HTST 0.03 0.05 0.03 0.04
甲酸异戊酯
Isoamyl formate
Control 7.42
UHP 8.43 7.71 6.49 6.37
HTST 4.73 6.68 4.62 4.67
丁酸丙酯
Propyl butyrate
Control 0.83
UHP 1.44 1.51 1.43 1.74
HTST 0.47 0.74 0.50 0.50
丙酸丁酯
Butyl propionate
Control 0.43
UHP 0.35 0.35 0.33 0.35
HTST 0.16 0.24 0.16 0.17
乙酸戊酯
Amyl acetate
Control 0.56
UHP 0.89 0.72 0.60 0.48
HTST 0.39 0.61 0.39 0.39
己酸甲酯
Methyl caproate
Control 0.04
UHP 0.04 0.03 0.02 0
HTST 0 0.01 0.01 0.01
2-甲基丁酸丙酯
Propyl 2-methylbutyrate
Control 0.62
UHP 0.79 0.87 4.59 0.92
HTST 0.12 0.19 0.13 0.13
不同处理
Different treatment
不同贮藏时间(周)的质量浓度(mg/100 mL)
Mass concentration of aroma at different storage time (week)
1 2 3 4
2-戊醇丙酸酯
Pentylester; sec-amyl propionate
Control 0.16
UHP 0.15 0.14 0 0
HTST 0 0 0 0
丁酸丁酯
Butyl butyrate
Control 1.14
UHP 1.47 1.54 1.42 1.53
HTST 0.51 0.73 0.49 0.49
己酸乙酯
Ethyl hexanoate
Control 0.49
UHP 0.51 0.39 0.45 0.27
HTST 0 0.14 0.17 0.15
2-甲基丁酸丁酯
Butyl 2-methylbutyrate
Control 0.87
UHP 1.04 0.99 1.01 1.07
HTST 0.10 0.18 0.11 0.10
苯甲酸甲酯
Methyl benzoate
Control 0.26
UHP 0.04 0 0 0
HTST 0 0 0 0
己酸丙酯
Caproic acid propyl
ester grade I
Control 0.19
UHP 0.51 0.41 0.36 0.33
HTST 0.08 0.11 0.07 0.06
丙酸己酯
Hexyl propionate
Control 0.12
UHP 0.16 0.08 0.06 0
HTST 0.04 0.06 0.03 0
2-甲基丁酸-2-甲基丁酯
2-Methylbutyl -2-methylbutyrate
Control 0.01
UHP 0.14 0.13 0.13 0.16
HTST 0.01 0.01 0.2 0
2-甲酸丁酸戊酯
2-Methanoic acid
amyl butyrate
Control 0.04
UHP 0.06 0.05 0.05 0.04
HTST 0 0 0 0
2-甲基丙酸己酯
Hexyl 2-methylpropionate
Control 0.06
UHP 0.05 0.26 0.05 0
HTST 0 0.34 0 0
丁酸己酯
Hexyl butyrate
Control 0.94
UHP 1.04 0.53 0.23 0
HTST 0.31 0.37 0.21 0.18
2-甲基丁酸己酯
Hexyl 2-methyl butyrate
Control 1.61
UHP 1.69 1.33 1.33 0
HTST 0.28 0.34 0 0.19
葵酸甲酯
Methyl decanoate
Control 0.11
UHP 0.04 0 0 0
HTST 0 0 0 0
不同处理
Different treatment
不同贮藏时间(周)的质量浓度(mg/100 mL)
Mass concentration of aroma at different storage time (week)
1 2 3 4
己酸己酯
Hexyl hexanoate
Control 0.15
UHP 0.14 0.06 0.07 0.04
HTST 0.09 0.09 0.07 0.07
十二烷酸甲酯
Methyl laurate
Control 0.28
UHP 0 0.04 0 0
HTST 0 0 0 0
癸酸癸酯
n-Capricacidn-decylester
Control 1.31
UHP 0 0 0 0
HTST 0 0 0 0
肉豆蔻酸甲酯
Methyl myristate
Control 0.68
UHP 0.05 0.02 0.03 0
HTST 0 0.08 0 0
二十烷酸甲酯
Methyl eicosanoate
Control 0.28
UHP 0 0 0 0
HTST 0 0 0 0
(Z)-9-十六碳烯酸甲酯
Methyl-(z)-9-hexadecenoate
Control 0.79
UHP 0 0 0 0
HTST 0.13 0.08 0.02 0
(Z)-9-十八碳烯酸甲酯
Methyl-(z):9-Octadecenoic acid,
Control 0
UHP 0.25 0.12 0.03 0
HTST 0 0 0 0
(Z)-十六烷-11-烯酸乙酯
(Z)-Hexadecane-11-ethyl oleate
Control 1.26
UHP 0.65 0.28 0.05 0.04
HTST 0.32 0.14 0.03 0.03
十六烷酸甲酯
Methyl-hexadecanoate
Control 0.24
UHP 0.08 0.04 0 0
HTST 0.04 0.03 0 0
(Z,Z)-9-十六碳烯酸-9-十六烯己酯
(Z,Z)-9-Hexadecanoic acid-9-hexadecanohexyl este
Control 0
UHP 0.06 0 0 0
HTST 0 0 0 0
戊酸乙酯
Ethyl valerate
Control 0
UHP 0..03 0.02 0 0
HTST 0 0 0 0
2-甲基丙酸丁酯
2-Methyl butyl propionate
Control 0
UHP 0.02 0.02 0 0
HTST 0 0 0 0
乙酸庚酯
Hepty lacetat
Control 0
UHP 0.02 0 0 0
HTST 0 0 0 0
不同处理
Different treatment
不同贮藏时间(周)的质量浓度(mg/100 mL)
Mass concentration of aroma at different storage time (week)
1 2 3 4
二十二酸壬酯
Nonyl Do decanoate
Control 0
UHP 0 0 0 0
HTST 0.02 0 0 0
3-甲基-1-丁醇丙酸酯
3-Methyl-1-butanol propionate
Control 0
UHP 0 0 0 0.16
HTST 0.05 0 0.06 0
2,6,10,14-四甲基-十五烷酸甲酯
2,6,10,14-Tetramethyl-pentadecanoic acid methyl ester
Control 0
UHP 0 0 0 0
HTST 0.12 0 0 0
丁酸甲酯
Methyl butyrate
Control 0
UHP 0 0.03 0 0.03
HTST 0 0.01 0.01 0.01
2-甲基丁酸甲酯
Methyl 2-methyl butyrate
Control 0
UHP 0 0.03 0.03 0.03
HTST 0 0 0 0
正丁酯
n-Butyl ester
Control 0
UHP 0 0.05 0 0.05
HTST 0 0 0 0
醇类Alcohols
乙醇
Ethanol
Control 0.06
UHP 0.02 0.02 0.04 0.02
HTST 0.02 0 0 0
1-丁醇
1-Butanol
Control 0.44
UHP 0.69 0.71 0.71 0.89
HTST 0.57 0.56 0.64 0.63
2-甲基-1-丁醇
2-Methyl-1-butanol
Control 0.66
UHP 0.91 0.99 0.96 1.23
HTST 0.71 0.75 0.74 0.74
(E)-2-己烯-1-醇
(E) -2-hexene-1-ol
Control 0.28
UHP 0 0 0.22 1.18
HTST 0 0 0.08 0
1-己醇
1-Hexanol
Control 3.94
UHP 13.08 3.99 4.88 4.75
HTST 1.47 1.68 1.76 1.44
2-乙基-1-己醇
2-Ethyl-1-hexanol
Control 0.28
UHP 0 0 0.10 0
HTST 0 0 0 0
(S)-2-戊醇
(S) -2-Pentanol
Control 0
UHP 0.03 0.04 0.04 0.05
HTST 0 0.02 0.02 0.02
不同处理
Different treatment
不同贮藏时间(周)的质量浓度(mg/100 mL)
Mass concentration of aroma at different storage time (week)
1 2 3 4
(S)-2-庚醇
(S) -2-Heptanol
Control 0
UHP 0.07 0.07 0.06 0.10
HTST 0.04 0.06 0.04 0.04
2-甲基-1,3-戊二醇
2-Methyl-1,3-pentanediol
Control 0
UHP 0 0 0.04 0
HTST 0.02 0.02 0 0.02
1-戊醇
1-Pentanol
Control 0
UHP 0 0.03 0.12 0.05
HTST 0.03 0.03 0.05 0.04
1-丙醇
1-Propanol
Control 0
UHP 0 0.04 0 0
HTST 0 0 0 0
1-辛醇
1-Octanol
Control 0
UHP 0 0 0.02 0
HTST 0 0 0 0
2-甲基-1-丙醇
2-Methyl-1-propanol
Control 0
UHP 0 0 0 0.03
HTST 0 0 0 0
二环丙基甲醇
Dicyclopropyl methanol
Control 0
UHP 0 0 0 0.05
HTST 0 0 0 0
醛类Aldehyde
乙醛
Acetaldehyde
Control 0.05
UHP 0 0.02 0.02 0.02
HTST 0 0 0 0
戊醛
Pentanal
Control 0.08
UHP 0 0 0.04 0
HTST 0.02 0.02 0.02 0.02
己醛
Hexanal
Control 6.71
UHP 9.32 8.00 5.57 7.04
HTST 3.36 3.98 1.53 2.97
(E)-2-己烯醛
(E) -2-Hexenal
Control 3.52
UHP 4.79 4.62 2.38 3.59
HTST 1.05 1.50 0.21 0.69
(E)-2-辛烯醛
(E) -2-Octene aldehyde
Control 0.17
UHP 0.04 0.05 0.07 0.05
HTST 0 0 0 0
壬醛
Nonyl aldehyde
Control 0.40
UHP 0.06 0.03 0.15 0.03
HTST 0.09 0 0.06 0.06
不同处理
Different treatment
不同贮藏时间(周)的质量浓度(mg/100 mL)
Mass concentration of aroma at different storage time (week)
1 2 3 4
癸醛
Decyl aldehyde
Control 1.31
UHP 0.22 0.08 0.11 0
HTST 0.09 0.06 0.02 0.02
丁醛
Butyraldehyde
Control 0
UHP 0.02 0.02 0.02 0.02
HTST 0.01 0.01 0 0.01
庚醛
Heptanal
Control 0
UHP 0.02 0 0.05 0
HTST 0 0.02 0.03 0.04
酮类Ketones
丙酮
Acetone
Control 0.06
UHP 0 0.02 0.06 0
HTST 0 0 0 0
2-辛酮
2-Octanone
Control 0.07
UHP 0.06 0.06 0.09 0.09
HTST 0.06 0.06 0.06 0.06
6-甲基-5-庚烯-2-酮
6-Methyl-5-heptene-2-one
Control 0.11
UHP 0.05 0.06 0.08 0.13
HTST 0.04 0.05 0.03 0.04
顺式-5-甲基-2-(1-甲基乙基)-
环己酮
Cis-5-methyl-2-(1-methylethyl)-
cyclohexanone
Control 0.07
UHP 0 0 0 0
HTST 0 0 0 0
(Z)-6,10-二甲基-5,
9-十一碳二烯-2-酮
(Z)-6,10-Dimethyl-5,9-
undecadien-2-one
Control 0.05
UHP 0 0 0.02 0
HTST 0 0 0 0
2-庚酮
2-Heptanone
Control 0.05
UHP 0 0 0.03 0
HTST 0 0 0 0
2-(1,5-二甲基-己基)-环丁酮
2-hexyl-1,5-dimethyl-
Cyclobutanone
Control 0.05
UHP 0 0 0.02 0
HTST 0 0 0 0
萜烯类Terpene
D-柠檬烯
d-Limonene
Control 0.58
UHP 0 0 0.11 0.07
HTST 0 0 0.06 0
长叶烯
d-Longifolene
Control 0.08
UHP 0 0 0 0
HTST 0 0 0 0
不同处理
Different treatment
不同贮藏时间(周)的质量浓度(mg/100 mL)
Mass concentration of aroma at different storage time (week)
1 2 3 4
反式-α-香柠檬烯
Trans-alpha-citrine
Control 0.05
UHP 0 0.04 0.04 0
HTST 0.04 0.04 0.03 0
α-法尼烯
αFarnesene
Control 1.70
UHP 1.73 1.42 1.34 1.10
HTST 1.41 1.65 1.27 1.46
2,5,5-三甲基-1,6-庚二烯2,5,5-Trimethyl-1,6-heptadien Control 0
UHP 0 0 0 0
HTST 0.04 0.05 0.04 0.04
酸类Acid
正癸酸
n-Decanoic acid
Control 0.07
UHP 0 0 0 0
HTST 0 0 0 0
醚类Ethers
草蒿脑
Estragole
Control 0.11
UHP 0.07 0.06 0.05 0.05
HTST 0.02 0.03 0.01 0.01
茴香脑
Anethole
Control 0.24
UHP 0 0 0.03 0
HTST 0 0 0 0
反式芳樟醇氧化物(呋喃型)
Trans linalool oxide (furan type)
Control 0
UHP 0 0 0 0.03
HTST 0.02 0 0 0

Fig. 4

The relative abundance of the top 10 species of OTU based on the 16S rRNA gene pyrosequencing analysis of DNA"

Table 5

Microbial counts in NFC apple juice after HTST or UHP treatment during storage period at 4℃ (log CFU/mL)"

不同处理
Different treatment
贮藏时间 (周) Storage time (week)
1 2 3 4 5 7 10
菌落总数
Total number
of colonies
Control 3.41±0.16a
UHP ND ND ND ND 2.00±0.18b
HTST ND ND ND ND ND ND 3.04±0.31b
霉菌酵母
Mold and
yeast
Control 4.78±0.11a
UHP ND ND ND ND ND
HTST ND ND ND ND ND ND ND
大肠杆菌
Escherichia coli
Control 3.08±0.07a
UHP ND ND ND ND ND
HTST ND ND ND ND ND ND ND
[1] 孙平平, 王文辉 . 2017/2018年世界苹果、梨、葡萄、桃及樱桃产量、市场与贸易情况. 中国果树, 2018(2):99-108.
SUN P P, WANG W H., , Production, market and trade of apples, pears, grapes, peaches and cherries in the world during 2017/2018. China Fruits, 2018(2):99-108. (in Chinese)
[2] 闫旭宇, 李玲 . 李娟, 王延峰 . 基于文献计量分析的陕西苹果研究现状. 延安大学学报(自然科学版), 2019,38(1):82-87.
YAN X Y, LI L, LI J, WANG Y F . Research status of Shaanxi apple based on bibliometric analysis. Journal of Yanan University (Natural Science Edition), 2019,38(1):82-87. (in Chinese)
[3] 孙学义, 孙振国 . NFC果汁:产地初加工的果蔬既营养又健康.农产品加工, 2014(5):14-15.
SUN X Y, SUN Z G . NFC juice: The fruits and vegetables which was produced at original place were both nutritious and healthy.Farm Products Processing, 2014(5):14-15. (in Chinese)
[4] SELLAMI I, MALL V, SCHIEBERLE P . Changes in the key odorants and aroma profiles of hamlin and valencia orange juices not from concentrate (NFC) during chilled storage. Journal of Agricultural and Food Chemistry, 2018,66(28):7428-7440.
[5] 康孟利, 崔燕, 尚海涛, 凌建刚 . 非热杀菌在NFC果汁上的应用前景. 北方园艺, 2016,40(18):190-193.
KANG M L, CUI Y, SHANG H T, LING J G . Application prospect of non-thermal sterilization on NFC juice. Northern Horticulture, 2016,40(18):190-193. (in Chinese)
[6] YI J J, KEBEDE B, KRISTIANI K, GRAUWET T, VAN-LOEY A, HENDRICKX M . Minimizing quality changes of cloudy apple juice: The use of kiwifruit puree and high-pressure homogenization. Food Chemistry, 2018,249:202-212.
[7] 周林燕, 关云静, 毕金峰, 刘璇, 李淑荣 . 超高压均质技术在鲜榨果蔬汁加工中应用的研究进展. 高压物理学报, 2016,30(1):78-85.
ZHOU L Y, GUAN Y J, BI J F, LIU X, LI S R . Progress in application of ultra high-pressure homogenization in not-from- concentrate juice processing. Chinese Journal of High Pressure Physics, 2016,30(1):78-85. (in Chinese)
[8] MARSZALEK K, WOZNIAK Ł, KRUSZEWSKI B, SKAPSKA S . The effect of high-pressure techniques on the stability of anthocyanins in fruit and vegetables. International Journal of Molecular Sciences, 2017,18(2):277.
[9] 苟小菊, 田由, 郭玉蓉, 杨曦, 侯燕杰, 平嘉欣, 李婷 . 不同成熟期苹果品种非浓缩还原汁品质评价与分析. 中国农业科学, 2018,51(19):3778-3790.
GOU X J, TIAN Y, GUO Y R, YANG X, HOU Y J, PING J X, LI T . Analysis and evaluation on quality of NFC apple juices in different maturation period. Scientia Agricultura Sinica, 2018,51(19):3778-3790. (in Chinese)
[10] 钟其顶, 王道兵, 熊正河 . 稳定氢氧同位素鉴别非还原(NFC)橙汁真实性应用初探. 饮料工业, 2011,14(12):6-9.
ZHONG Q D, WANG D B, XIONG Z H . Application of stable hydrogen and oxygen isotope in authenticity assessment of NFC orange juice. The Beverage Industry, 2011,14(12):6-9. (in Chinese)
[11] 牛丽影, 胡小松, 赵镭, 高敏, 廖小军, 吴继红 . 稳定同位素比率质谱法在NFC与FC果汁鉴别上的应用初探. 中国食品学报, 2009,9(4):192-197.
NIU LY, HU X S, ZHAO L, GAO M, LIAO X J, WU J H . The primary research of stable isotope ratio mass spectrometry method in application of NFC and FC juice authentic identification. Journal of Chinese Institute of Food Science and Technology, 2009,9(4):192-197. (in Chinese)
[12] 关云静 . 高压均质对NFC芒果汁微生物和品质的影响[D]. 北京: 中国农业科学院, 2016.
GUAN Y J . Effect of high-pressure homogenization on microbial and quality attributes of not-from-concentrate mango juice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. ( in Chinese)
[13] 苟小菊, 田由, 郭玉蓉, 杨曦, 侯燕杰 . 16个苹果品种非浓缩还原汁的理化特征分析. 中国农业科学, 2018,51(4):800-810.
GOU X J, TIAN Y, GUO Y R, YANG X, HOU Y J . Analyses of physicochemical properties of NFC apple juices from sixteen cultivars. Scientia Agricultura Sinica, 2018,51(4):800-810. (in Chinese)
[14] CAO X M, BI X F, HUANG W S, WU J H, HU X S, LIAO X J . Changes of quality of high hydrostatic pressure processed cloudy and clear strawberry juices during storage. Innovative Food Science & Emerging Technologies, 2012,16(39):181-190.
[15] KRYSTIAN M, ŁUKASZ W, FRANCIACO J B, SYLWIA S, JOSE M L, ALESSANDRO Z, SARA S . Enzymatic, physicochemical, nutritional and phytochemical profile changes of apple (Golden delicious L.) juice under supercritical carbon dioxide and long-term cold storage. Food Chemistry, 2018,268:279-286.
[16] 姜斌, 胡小松, 廖小军, 张燕, 吴继红, 孙志健 . 超高压对鲜榨果蔬汁的杀菌效果. 农业工程学报, 2009,25(5):234-238.
JIANG B, HU X S, LIAO X J, ZHANG Y, WU J H, SUN Z J . Effects of high hydrostatic pressure processing on microbial inactivation in fresh fruit and vegetable juice. Transactions of the Chinese Society of Agricultrual Engineering, 2009,25(5):234-238. (in Chinese)
[17] 邓红, 马婧, 李涵, 孟永宏, 郭玉蓉 . 超高压杀菌处理冷破碎猕猴桃果浆贮藏期的品质变化. 食品与发酵工业, 2019,45(8):123-129.
DENG H, MA J, LI H, MENG Y H, GUO Y R . Quality change of kiwifruit fruit pulp by cold crushed method and ultra-high pressure sterilization during its storage. Food and Fermentation Industries, 2019,45(8):123-129. (in Chinese)
[18] DENG H, YOU Y N, XIA Q M, MENG Y H, QIU N X, GUO Y R, ,GE G T. A crushing separation machine (CSM) for producing apple juice with low enzymatic browning. Fruit Processing, 2015,Sep/Oct:182-188.
[19] TONON R V, BRABET C, MIRIAM D H . Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 2010,43(3):907-914.
[20] 邓红, 赵茜茜, 夏秋敏, 高丹, 孟永宏, 郭玉蓉 . 榨前分离苹果清汁中多酚的提取与分析. 食品工业科技, 2015,36(3):214-218.
DENG H, ZHAO X X, XIA Q M, GAO D, MENG Y H, GUO Y R . Analysis and extraction for polyphenols in apple juice of pre-pressing fruit. Science and Technology of Food Industry, 2015,36(3):214-218. (in Chinese)
[21] 郭静, 岳田利, 袁亚宏, 彭帮柱 . 基于HSSPME和模糊评判的苹果汁香气萃取条件优化. 农业机械学报, 2013,44(5):175-181.
GUO J, YUE T L, YUAN Y H, PENG B Z . Optimization of volatile compounds in apple juice based on HSSPME and fuzzy comprehensive evaluation. Transactions of the Chinese Society for Agricultural Machinery, 2013,44(5):175-181. (in Chinese)
[22] 杨天歌, 邓红, 李涵, 孟永宏, 雷佳蕾, 马婧, 郭玉蓉 . 破碎猕猴桃果浆的条件优化及其贮藏期杀菌效果. 中国农业科学, 2018,51(7):1368-1377.
YANG T G, DENG H, LI H, MENG Y H, LEI J L, MA J, GUO Y R . Optimization of ultra-high pressure sterilization conditions on the kiwi fruit pulp produced by cold crushing method and its sterilization effect during storage period. Scientia Agricultura Sinica, 2018,51(7):1368-1377. (in Chinese)
[23] LIU X J, ZHOU M, JIA X C, LUO Y, YE F Z, JIAO S, HU X Z, ZHANG J C, LV X . Bacterial diversity in traditional sourdough from different regions in China. LWT-Food Science and Technology, 2018,96:251-259.
[24] 王永红, 赵敏, 潘广乐, 李小斌, 刘帅东, 冯兵孝, 王宏岩, 付瑜, 王健强, 吴成春 . 仓储方式对复烤烟叶醇化品质及表面细菌多样性的影响. 烟草科技, 2018,51(11):36-42.
WANG Y H, ZHAO M, PAN G L, LI X B, LIU S D, FENG B X, WANG H Y, FU Y, WANG J Q, WU C C . Effects of storage methods on aging and bacterial diversity of redried tobacco. Tobacco Science & Technology, 2018,51(11):36-42. (in Chinese)
[25] KLIMCZAK I, MALECKA M, SZLACHTA M, GLISZCZYNSKASWIGLO A . Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. Journal of Food Composition and Analysis, 2007,20(3/4):313-322.
[26] REDDY N R, TETZLOFF R C, SOLOMON H M, LARKIN J W . Inactivation of Clostridium botulinum nonproteolytic type B spores by high pressure processing at moderate to elevated high temperatures. Innovative Food Science and Emerging Technologies, 2006,7(3):169-175.
[27] PULIDO R P, BURGOS M G, GALVEZ A, LUCAS R . Changes in bacterial diversity of refrigerated mango pulp before and after treatment by high hydrostatic pressure. LWT-Food Science and Technology, 2017,78:289-295.
[28] CHEN D, PAN S X, CHEN J, PANG X L, GUO X F, GAO L, LIAO X J, WU J H . Comparing the effects of high hydrostatic pressure and ultrahigh temperature on quality and shelf life of cloudy ginger juice. Food & Bioprocess Technology, 2016,9(10):1779-1793.
[29] 胡盼盼, 李军, 王莉, 高平, 宋微 . 不同杀菌技术对鲜榨苹果汁贮藏品质的影响. 江苏农业科学, 2017(21):204-207.
HU P P, LI J, WANG L, GAO P, SONG W . Effects of different sterilization techniques on storage quality of fresh apple juice.Jiangsu Agricultural Sciences, 2017(21):204-207. (in Chinese)
[30] CHEN D, PANG X L, ZHAO J, GAO L, LIAO X J, WU J H, LI Q H . Comparing the effects of high hydrostatic pressure and high temperature short time on papaya beverage. Innovative Food Science & Emerging Technologies, 2015,32:16-28.
[31] ZHOU H, LIN T T, BI X F, ZHAO L, WANG Y T . Comparison of high hydrostatic pressure, high-pressure carbon dioxide and high- temperature short-time processing on quality of mulberry juice. Food & Bioprocess Technology, 2016,9(2):217-231.
[32] WANG Y T, LIU F X, CAO X M, CHEN F, HU X S, LIAO X J . Comparison of high hydrostatic pressure and high temperature short time processing on quality of purple sweet potato nectar. Innovative Food Science & Emerging Technologies, 2012,16:326-334.
[33] LIU F X, ZHANG X X, ZHAO L, WANG Y T, LIAO X J . Potential of high-pressure processing and high- temperature /short-time thermal processing on microbial, physicochemical and sensory assurance of clear cucumber juice. Innovative Food Science & Emerging Technologies, 2016,34:51-58.
[34] HUANG W S, BI X F, ZHANG X, LIAO X J, HU X S, WU J H . Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time. Innovative Food Science & Emerging Technologies, 2013,18(2):74-82.
[35] XU Z Z, LIN T T, WANG Y T, LIAO X J . Quality assurance in pepper and orange juice blend treated by high pressure processing and high temperature short time treatment. Innovative Food Science & Emerging Technologies, 2015,31:28-36.
[36] PATRAS A, BRUNTON N, PIEVE S D, BUTLER F, DOWNEY G . Effect of thermal and high-pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innovative Food Science & Emerging Technologies, 2009,10(1):16-22.
[37] 赵光远, 纵伟, 杨公明 . 超高压处理对鲜榨苹果汁中多酚氧化酶活力的影响. 湖北农业科学, 2007,46(6):1003-1005.
ZHAO G Y, ZONG W, YANG G M . Studies on effect of ultrahigh pressure treatment on PPO activity in fresh apple juice. Hubei Agricultural Sciences, 2007,46(6):1003-1005. (in Chinese)
[38] VARELA-SANTOS E, OCHOA-MARTINEZ A, TABIL-MUNIZAGA G, REYES J E, PEREZWON M, BRIO-NESLABARCA V , & MORALESCASTRO J. Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innovative Food Science & Emerging Technologies, 2012,13(1):13-22.
[39] GLISZYNSKA-SWIGLO A, TYRAKOWSKA B . Quality of commercial apple juices evaluated on the basis of the polyphenol content and the TEAC antioxidant activity. Journal of Food Science, 2003,68(5):1844-1849.
[40] YI J J, KEBEDE B T ,DANG D N H,BUVE C,GRAUWET T,LOEY A V,HU X S,HENDRICKX M.Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT-Food Science and Technology, 2017,75:85-92.
[41] KOMMTHONG P, KATOH T, IGURA N, SHIMODA M . Changes in the odours of apple juice during enzymatic browning. Food Quality and Preference, 2006,17(6):497-504.
doi: 10.1016/j.foodqual.2005.06.003
[42] KAKIUCHI N, MORIGUCHI S, ICHIMURA N, KATO Y, BANBA Y . Changes in the composition and amounts of volatile compounds of apple juice associated with thermal processing. Nippon Shokuhin Kogyo Gakkaishi, 1987,34(2):115-122.
[43] ZHAO L, WANG Y T, QIU D D, LIAO X J . Effect of ultrafiltration combined with high-pressure processing on safety and quality features of fresh apple juice. Food and Bioprocess Technology, 2014,7(11):3246-3258.
doi: 10.1007/s11947-014-1307-9
[44] LANDL A, ABADIAS M, SARRAGA C, VINAS I, PICOUET P A . Effect of high-pressure processing on the quality of acidified Granny Smith apple purée products. Innovative Food Science & Emerging Technologies, 2010,11(4):557-564.
[45] PATTERSON M F, MCKAY A M, CONNOLLY M, LINTON M . The effect of high hydrostatic pressure on the microbiological quality and safety of carrot juice during refrigerated storage. Food Microbiology, 2012,30(1):205-212.
doi: 10.1016/j.fm.2011.09.013
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[3] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[4] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[5] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[6] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[7] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[8] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[9] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[10] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[11] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[12] JIA XiaoHui,ZHANG XinNan,LIU BaiLin,MA FengLi,DU YanMin,WANG WenHui. Effects of Low Oxygen/High Carbon Dioxide Controlled Atmosphere Combined with 1-Methylcyclopropene on Quality of Yuluxiang Pear During Cold Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4717-4727.
[13] YU WeiBao,LI Nan,KOU YiHong,CAO XinYou,SI JiSheng,HAN ShouWei,LI HaoSheng,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei. Study on the Quality Parameters of Strong Gluten Wheat and Analysis of Its Relationship with Meteorological Factors in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(22): 4383-4397.
[14] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[15] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!