Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (13): 2328-2340.doi: 10.3864/j.issn.0578-1752.2019.13.011

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Difference Analysis of Pectin Content and Structure from Various Apple Cultivars

CAO Feng1,2,LIU Xuan1,BI JinFeng1(),WU XinYe1,ZHANG Biao1,LIU JiaNing1   

  1. 1 Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193
    2 School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning
  • Received:2019-01-09 Accepted:2019-05-13 Online:2019-07-01 Published:2019-07-11
  • Contact: JinFeng BI E-mail:bjfcaas@126.com

Abstract:

【Objective】 The differences in pectin structure of different apple raw materials were compared and analyzed to give assistance for variety identification, so as to provide theoretical data basis for the processing of apple-related products and the utilization of apple by-products. 【Method】 Twenty apple samples of fourteen cultivars from seven producing areas in China were researched. Three types of pectin were extracted from the alcohol-insoluble residue (AIR) of each apple, including water-soluble pectin (WSP), CDTA-soluble pectin (CSP) and Na2CO3-soluble pectin (NSP). The galacturonic acid (GalA) content, esterification degree, weight-average molar mass (Mw), neutral sugar content, and structural functional groups of pectin were analyzed, then the principal component analysis (PCA) and heat map analysis were performed. 【Result】 The results showed that the content and structure of pectin were different in varying degrees. Among the three types of pectin, the content of NSP was the highest (determined with GalA as standard), followed by WSP and CSP. The most pectin-rich apple variety was the Granny Smith (215.75 mg GalA·g -1 AIR). Fuji (Qixia, Xinjiang, Yan6-Qingdao and Hebei) from different regions had great differences in the contents of galacturonic acid. The DM of Qiujin was the highest among the WSP of various varieties of apples. CSP had relatively higher DM and the most of them were high DM pectin. The degree of acetylation of WSPs were all below 3.5%. The Mw of WSP was the most significant one among all apple varieties. The Mw of Huayue’s WSP showed the highest value. The Mw/Mn of Hongjiangjun’s WSP was the highest, but the Mw/Mn of Hongjiangjun’s CSP was the lowest one. Mw/Mn had a small difference between the three types of pectin. Through the heatmap analysis, Rhamnose (Rha), arabinose (Ara) and galactose (Gal) were three main neutral sugars, and fucose (Fuc), xylose (Xyl) and mannose (Man) were in trace amount. The reason for plenty of glucose might be due to the presence of soluble starch, dextrin or oligosaccharides during the extraction of pectin. The pectin structure mainly consisted of homogalacturonan and rhamnogalacturonan-II. The PCA showed that the main differential indexes of different apple cultivars were WSP-Gal, WSP-Ara, CSP-Gal, CSP-Rha, WSP-Fuc and CSP-Rha/GalA. 【Conclusion】 There were certain differences among the content and structure of three types of pectin from various apple cultivars. Which were related to the pectin structural characteristics of apple varieties with parental and maternal crosses. The study could provide a theoretical support for the structural adjustment of apple breeding and planting.

Key words: apple cultivar, pectin, structure, difference

Table 1

Cultivars and geographical origins of apple"

序号
No.
品种
Cultivar
产地
Geographical origin
序号
No.
品种
Cultivar
产地
Geographical origin
1 富士Fuji 山东栖霞Qixia, Shandong 11 华金Huajin 辽宁葫芦岛Huludao, Liaoning
2 烟富6号Yanfu6 山东青岛Qingdao, Shandong 12 华月Huayue 辽宁葫芦岛Huludao, Liaoning
3 富士Fuji 新疆 Xinjiang 13 秋锦Qiujin 辽宁葫芦岛Huludao, Liaoning
4 三优富士Sanyou Fuji 河北Hebei 14 乔纳金Jonagold 辽宁葫芦岛Huludao, Liaoning
5 半坡秦冠Banpo Qinguan 山西运城Yuncheng, Shanxi 15 红将军Hongjiangjun 山东淄博Zibo, Shandong
6 秦冠Qinguan 甘肃平凉Pingliang, Gansu 16 国光Ralls 山东淄博Zibo, Shandong
7 金冠Golden Delicious 甘肃平凉Pingliang, Gansu 17 花牛Huaniu 甘肃平凉Pingliang, Gansu
8 金冠Golden Delicious 山东泰安Taian, Shandong 18 秦红Qinhong 陕西咸阳Xianyang, Shaanxi
9 新红星Starkrimson 山东泰安Taian, Shandong 19 长蜜欧Changmiou 陕西咸阳Xianyang, Shaanxi
10 新红星Starkrimson 辽宁葫芦岛Huludao, Liaoning 20 澳洲青苹Granny Smith 陕西咸阳Xianyang, Shaanxi

Table 2

Pectin indicators and their numbers"

指标
Index
编号
Number
指标
Index
编号
Number
指标
Index
编号
Number
水溶性果胶Water-soluble pectin 半乳糖醛酸含量Galacturonic acid content W1 螯合性果胶CDTA-soluble
pectin
半乳糖醛酸含量
Galacturonic acid content
C1 碱溶性果胶Na2CO3-
soluble pectin
半乳糖醛酸含量Galacturonic acid content N1
甲酯化度
Degree of methoxylation
W2 甲酯化度
Degree of methoxylation
C2
乙酰化度
Degree of acetylation
W3
重均分子量
Weight-average molar mass
W4 重均分子量
Weight-average molar mass
C4 重均分子量
Weight-average molar mass
N4
多分散系数
Polydispersity coefficient
W5 多分散系数
Polydispersity coefficient
C5 多分散系数
Polydispersity coefficient
N5
岩藻糖Fucose W6 岩藻糖Fucose C6 岩藻糖Fucose N6
鼠李糖Rhamnose W7 鼠李糖Rhamnose C7 鼠李糖Rhamnose N10
阿拉伯糖Arabinose W8 阿拉伯糖Arabinose C8 阿拉伯糖Arabinose N11
半乳糖Galactose W9 半乳糖Galactose C9 半乳糖Galactose N12
葡萄糖Glucose W10 葡萄糖glucose C10 葡萄糖glucose N13
木糖Xylose W11 木糖Xylose C11 木糖Xylose N14
甘露糖Mannose W12 甘露糖Mannose C12 甘露糖Mannose N15
W13 C13
W14 C14
W15 C15

Table 3

Analysis of the mean value of pectin indexes in different varieties of apple materials"

序号
No.
W1
(mg GalA?g-1 AIR)
C1
(mg GalA?g-1 AIR)
N1
(mg GalA?g-1 AIR)
W2
(%)
C2
(%)
W3
(%)
W4
(×105 Da)
C4
(×105 Da)
N4
(×105 Da)
W5 C5 N5
1, 2, 3, 4 54.64 45.38 92.76 56.04 65.31 1.87 4.98 2.56 1.40 2.12 1.52 2.15
5, 6 108.77 43.96 153.05 43.22 81.49 1.63 6.04 4.22 1.60 1.82 1.70 1.91
7, 8 51.39 28.55 94.18 63.50 64.07 2.75 6.81 5.06 1.71 1.98 1.94 2.16
9, 10 77.25 60.87 91.62 46.74 53.25 1.98 5.20 3.70 1.22 1.74 1.87 2.04
11 45.36 32.42 65.25 55.38 61.09 1.06 12.68 2.26 3.58 1.64 1.88 2.53
12 66.68 38.22 139.23 40.61 36.09 0.67 31.63 3.20 1.57 1.36 1.68 2.47
13 48.81 31.50 102.14 80.34 85.06 2.94 3.35 4.12 1.01 2.61 1.68 1.88
14 47.32 36.00 98.62 57.40 82.83 2.35 6.14 6.04 5.34 1.74 1.70 1.96
15 40.81 29.50 91.55 47.58 90.70 1.77 7.49 3.53 1.75 2.67 1.44 2.18
16 38.14 43.65 107.80 62.18 86.30 2.47 11.73 3.60 1.52 2.08 1.62 2.18
17 80.36 43.40 105.55 54.20 85.04 1.81 4.30 3.81 1.40 1.56 1.47 2.14
18 30.73 20.04 77.49 66.81 71.37 2.71 6.37 4.34 2.28 2.24 1.64 2.28
19 55.84 37.60 118.61 55.51 75.94 2.19 13.30 7.18 1.36 2.28 2.21 2.64
20 68.43 53.60 215.75 46.89 81.66 2.04 1.66 3.05 5.00 2.49 1.59 2.50

Fig. 1

FTIR spectra of WSP, CSP and NSP from Qixia Fuji"

Fig. 2

Ion chromatograms of WSP neutral sugar compositions from Huayue apple in Liaoning Province"

Fig. 3

Heatmap of neutral sugar compositions of pectin from different apple varieties"

Table 4

Neutral sugar ratios of WSP, CSP, and NSP of different apple varieties"

序号
No.
水溶性果胶Water-soluble pectin 螯合性果胶 CDTA-soluble pectin 碱溶性果胶Na2CO3-soluble pectin
I II III I II III I II III
1 5.47±0.44fghi 0.02±0.00bc 8.39±0.76bcde 0.02±0.00de 5.07±0.15def
2 9.84±0.80cd 0.01±0.00d 7.00±0.36def 0.00±0.00e 8.24±0.00cde 0.03±0.00cde 5.36±0.87def
3 9.13±0.78cde 0.01±0.00d 10.89±2.97ab 0.00±0.00e 11.78±0.59bcd 0.02±0.00de 6.17±0.18bcdef
4 10.2±0.86c 0.01±0.00d 6.16±0.85def 0.00±0.00e 8.36±1.35cde 0.07±0.01a 5.76±1.53cdef
5 0.01±0.00d 8.64±1.22bcde 0.00±0.00e 10.97±1.00cd 13.27±1.23a 0.01±0.00e 5.34±0.64def
6 10.5±0.42c 0.01±0.00d 7.00±0.26def 0.03±0.00a 8.05±0.70cde 0.03±0.00cde 7.54±0.06abc
7 2.51±0.20i 0.04±0.00a 9.09±1.19bcd 0.02±0.00b 8.23±1.04cde 0.03±0.00de 8.60±1.35a
8 7.22±0.45cdefgh 0.02±0.00bc 4.63±0.85f 0.01±0.00c 6.11±1.02cde
9 6.63±0.09defgh 0.01±0.00cd 8.20±1.05bcde 0.00±0.00e 9.91±1.36cde 0.02±0.00de 5.38±0.86def
10 5.91±0.42efgh 0.01±0.00d 13.39±2.79a 7.18±0.22 0.00±0.00e 29.28±3.24a 0.02±0.00e 4.70±0.86f
11 5.38±0.05ghi 0.02±0.00b 5.98±0.67ef 0.01±0.00c 8.36±0.24cde 0.05±0.00bc 4.92±0.35def
12 14.95±1.65b 0.01±0.00d 10.06±0.76bc 0.01±0.00e 5.93±0.77cdef
13 9.09±0.68cde 0.01±0.00d 10.85±0.57ab 0.01±0.00c 18.33±3.20b 0.03±0.00cde 7.92±1.51ab
14 6.41±0.01defgh 0.01±0.00d 10.49±1.22b 0.03±0.00cde 4.90±0.08ef
15 8.90±0.41cdef 0.01±0.00d 7.31±0.84cdef 0.00±0.00e 7.41±0.63cde 0.04±0.00bcd 5.42±0.24def
16 6.12±0.79efgh 0.02±0.00bc 6.15±0.62def 0.00±0.00e 9.85±0.57cde 0.05±0.01ab 6.44±0.37bcdef
17 8.70±0.13cdefg 0.01±0.00d 6.53±0.73def 0.00±0.00e 12.66±2.60bc 0.02±0.00de 7.98±0.45ab
18 6.69±0.54defgh 0.02±0.00bc 5.16±0.20f 0.01±0.00c 10.73±0.02cd 0.02±0.00e 6.89±0.18abcde
19 4.59±0.16hi 0.02±0.00bc 8.24±1.43bcde 0.02±0.00b 11.77±1.21bcd 0.02±0.00de 8.39±0.72a
20 20.13±2.04a 0.01±0.00d 8.3±1.01bcde 6.18±0.70ab 0.02±0.00de 6.91±0.04abcd

Fig. 4

Score map of different apple varieties"

Fig. 5

Load diagram of different apple varieties"

[1] 王盼 . 苹果新品种的推广与保护建议. 果农之友, 2016(S1):34-35.
WANG P . Suggestions on the promotion and protection of new apple varieties.Fruit Growers' Friend, 2016(S1):34-35. (in Chinese)
[2] 程存刚, 赵德英, 宣景宏 . 对我国苹果品种发展的几点建议. 北方果树, 2015(3):52-53.
CHENG C G, ZHAO D Y, XUAN J H . Suggestions on the development of apple varieties in China.Northern Fruits, 2015(3):52-53. (in Chinese)
[3] VAN BUREN J P . The chemistry of texture in fruits and vegetables. Journal of Texture Studies, 2010,10(1):1-23.
[4] 肖敏 . 不同糖渗透处理和干燥方式对苹果脆片质构品质形成影响的研究[D]. 北京: 中国农业科学院, 2017.
XIAO M . Study on effects of osmotic dehydration with different saccharides arid drying methods on texture of dried apple chips[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[5] ZHANG F S, DONG P, FENG L, CHEN F, WU J H, LIAO X J, HU X S . Textural changes of yellow peach in pouches processed by high hydrostatic pressure and thermal processing during storage. Food & Bioprocess Technology, 2012,5(8):3170-3180.
[6] 于铭章 . 果胶对山楂加工的影响. 河北林果研究, 2009,24(3):309-310.
YU M Z . The effects of pectin on hawthorn processing. Hebei Journal of Forestry & Orchard Research, 2009,24(3):309-310. (in Chinese)
[7] SHOMER I, YEFREMOV T, MERIN U . Involvement of proteins in cloud instability of shamouti orange [Citrus sinensis(L.) Osbeck] juice. Journal of Agricultural and Food Chemistry, 1999,47(7):2623-2631.
[8] YEMENICIOGLOU A . Claud stabilization of naturally cloudy apple juices by heat treatments. Fruit Processing: Journal for the Fruit Processing and Juice Producing European and Overseas Industry, 2000,10(7):278-282.
[9] 孟陆丽, 程谦伟, 易弋, 熊炬 . 果胶酶对百香果醋澄清作用的研究. 中国酿造, 2009,28(12):78-80.
doi: 10.3969/j.issn.0254-5071.2009.12.028
MENG L L, CHENG Q W, YI G, XIONG J . Effect of pectinase on clarification of passion fruit vinegar. China Brewing, 2009,28(12):78-80. (in Chinese)
doi: 10.3969/j.issn.0254-5071.2009.12.028
[10] WANG X, CHEN Q R, LÜ X . Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocolloids, 2014,38(3):129-137.
doi: 10.1016/j.foodhyd.2013.12.003
[11] ZHANG W B, XU P, ZHANG H . Pectin in cancer therapy: A review. Trends in Food Science & Technology, 2015,44(2):258-271.
[12] OTLES S, OZGOZ S . Health effects of dietary fiber. Acta Scientiarum Polonorum Technologia Alimentaria, 2014,13(2):191-202.
doi: 10.17306/J.AFS
[13] PELLOUX J, RUSTÉRUCCI C, MELLEROWICZ E J . New insights into pectin methylesterase structure and function. Trends in Plant Science, 2007,12(6):267-277.
doi: 10.1016/j.tplants.2007.04.001
[14] 谢明勇, 李精, 聂少平 . 果胶研究与应用进展. 中国食品学报, 2013,13(8):1-14.
XIE M Y, LI J, NIE S P . A review about the research and applications of pectin. Journal of Chinese Institute of Food Science & Technology, 2013,13(8):1-14. (in Chinese)
[15] 赵光远, 刁华娟, 荆利强 . 不同分子量和不同酯化度苹果果胶的研究. 食品与机械, 2011,27(6):47-50.
ZHAO G Y, DIAO H J, JING L Q . Studies on apple pectins of different molecular weight and different degree of esterification. Food & Machinery, 2011,27(6):47-50. (in Chinese)
[16] 刘凤霞, 王永涛, 廖小军 . 高压和热处理对芒果浆粒度及水溶性果胶的影响. 食品科学, 2017,38(5):152-157.
LIU F X, WANG Y T, LIAO X J . Effect of high pressure processing and high-temperature short-time treatment on particle size and water soluble pectin of mango pulp. Food Science, 2017,38(5):152-157. (in Chinese)
[17] 王蓉蓉, 李高阳, 单杨, 丁胜华 . 不同品种枣果中果胶含量、中性单糖组成及分子质量分布. 中国食品学报, 2018,18(6):297-306.
WANG R R, LI G Y, SHAN Y, DING S H . Effect of various varieties jujube on the content, neutral monosaccharide composition and molecular weight distribution of pectin. Journal of Chinese Institute of Food Science & Technology, 2018,18(6):297-306. (in Chinese)
[18] NJOROGE D M, KINYANJUI P K, MAKOKHA A O, CHRISTIAENS S, SHPIGELMAN A, SILA D N, HENDRICKX M E . Extraction and characterization of pectic polysaccharides from easy- and hard-to-cook common beans (Phaseolus vulgaris). Food Research International, 2014,64:314-322.
[19] KUMAR A, CHAUHAN G S . Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydrate Polymers, 2010,82(2):454-459.
doi: 10.1016/j.carbpol.2010.05.001
[20] 罗亚楠, 于丽颖, 于晓洋 . 苹果渣中果胶的提取及分析检测. 化学世界, 2015,56(8):450-452.
LUO Y N, YU L Y, YU X Y . Extraction and analysis of pectin in apple pomace. Chemical World, 2015,56(8):450-452. (in Chinese)
[21] CHO Y J, HWANG J K . Modeling the yield and intrinsic viscosity of pectin in acidic solubilization of apple pomace. Journal of Food Engineering, 2000,44(2):85-89.
doi: 10.1016/S0260-8774(99)00169-7
[22] HWANG J K, KIM C J, KIM C T . Extrusion of apple pomace facilitates pectin extraction. Journal of Food Science, 1998,63(5):841-844.
doi: 10.1111/jfds.1998.63.issue-5
[23] 田玉霞, 仇农学 . 基于不同分子量级苹果果胶理化性质的研究. 农产品加工(学刊), 2009(3):153-156.
TIAN Y X, QIU N X . Study on physico-chemical properties of apple pectin based on different molecular weights.Academic Periodical of Farm Products Processing, 2009(3):153-156. (in Chinese)
[24] SILA D N, SMOUT C, ELLIOT F, LOEY A V, HENDRICKX M . Non-enzymatic depolymerization of carrot pectin: Toward a better understanding of carrot texture during thermal processing. Journal of Food Science, 2006,71(1):E1-E9.
doi: 10.1111/j.1365-2621.2006.tb12391.x
[25] STOLLE-SMITS T, BEEKHUIZEN J G, RECOURT K, VORAGEN A G J, VAN DIJK C V . Changes in pectic and pemicellulosic polymers of green beans (Phaseolus vulgaris L.) during industrial processing. Journal of Agricultural & Food Chemistry, 1998,45(12):4790-4799.
[26] BLUMENKRANTZ N, ASBOEHANSEN G . New method for quantitative determination of uronic acids. Analytical Biochemistry, 1973,54(2):484-489.
doi: 10.1016/0003-2697(73)90377-1
[27] LIU X, LIU J N, BI J F, YI J Y, PENG J, NING C Y, WELLALA C K D, ZHANG B Q . Effects of high pressure homogenization on pectin structural characteristics and carotenoid bioaccessibility of carrot juice. Carbohydrate Polymers, 2018,203:176-184.
[28] ŠIMKOVIC I, NUNEZ A, STRAHAN G D, YADAV M P, MENDICHI R, HICKS K B . Fractionation of sugar beet pulp by introducing ion-exchange groups. Carbohydrate Polymers, 2009, 78(4):806-812.
[29] PARK J K, KHAN T, JUNG J Y . Structural studies of the glucuronic acid oligomers produced by Gluconacetobacter hansenii, strain. Carbohydrate Polymers, 2006,63(4):482-486.
[30] PINHEIRO E R , SILVA I M D A, GONZAGA L V, AMANTE E R, TEÓFILO R F, FERREIRA M M C, AMBONI R D M C . Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology. Bioresource Technology, 2008,99(13):5561-5566.
[31] 杨振英 . 黄色苹果新品种“华月”. 园艺学报, 2010,37(11):54.
YANG Z Y . A new yellow apple variety “Hua Yue”. Acta Horticulturae Sinica, 2010,37(11):54. (in Chinese)
[32] 张守江, 吴永锋 . 几个适合在甘肃天水发展的元帅系品种介绍. 果农之友, 2007(10):7.
ZHANG S J, WU Y F . Introduction of several Marshal varieties suitable for development in Tianshui, Gansu.Fruit Growers' Friend, 2007(10):7. (in Chinese)
[33] 鲍敏达, 王娟 . 红将军苹果在陇东的引种表现及栽培要点. 中国果树, 2008(5):72.
BAO M D, WANG J . Introduction performance and cultivation points of Red General apple in Longdong.China Fruits, 2008(5):72. (in Chinese)
[34] GNANASAMBANDAM R, PROCTOR A . Determination of pectin degree of esterification by diffuse reflectance fourier transform infrared spectroscopy. Food Chemistry, 2000,68(3):327-332.
doi: 10.1016/S0308-8146(99)00191-0
[35] NI W H, ZHANG X, BI H T, BEKOMO J I, JI L, SUN C X, FANG J B, TAI G H, ZHOU Y F, ZHAO J M . Preparation of a glucan from the roots of Rubus crataegifolius Bge. and its immunological activity. Carbohydrate Research, 2009,344(18):2512-2518.
[36] CAO W, LI X Q, LIU L, WANG M C, FAN H T, LI C, LV Z G, WANG X J, MEI Q B . Structural analysis of water-soluble glucans from the root of Angelica sinensis(Oliv.) Diels. Carbohydrate Research, 2006,341(11):1870-1877.
[37] DING X, FENG S, CAO M, LI M T, TANG J, GUO C X, ZHANG J, SUN Q, YANG Z R, ZHAO J . Structure characterization of polysaccharide isolated from the fruiting bodies of Tricholoma matsutake. Carbohydrate Polymers, 2010,81(4):942-947.
[38] 巴巧瑞, 赵政阳, 高华, 王艳丽, 孙彪 . 基于SSR和SRAP标记的苹果品种亲缘关系分析. 西北农林科技大学学报(自然科学版), 2011,39(9):123-128.
BA Q R, ZHAO Z Y, GAO H, WANG Y L, SUN B . Analysis of genetic relationship of apple varieties based on SSR and SRAP markers. Journal of Northwest A&F University (Natural Science Edition), 2011,39(9):123-128. (in Chinese)
[39] HOUBEN K, JOLIE R P, FRAEYE I, VAN LOEY A M, HENDRICKX M E . Comparative study of the cell wall composition of broccoli, carrot, and tomato: Structural characterization of the extractable pectins and hemicelluloses. Carbohydrate Research, 2011,346(9):1105-1111.
doi: 10.1016/j.carres.2011.04.014
[40] SCHOLS H A, VORAGEN A G J . Complex pectins: Structure elucidation using enzymes. Pectins and Pectinases Progress in Biotechnology, 1996,14:3-19.
doi: 10.1016/S0921-0423(96)80242-5
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[3] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[4] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[5] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[6] CHEN ChunYu,CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao,ZHANG YunLong. Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea [J]. Scientia Agricultura Sinica, 2022, 55(20): 3970-3982.
[7] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[8] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[9] CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
[10] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[11] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[12] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[13] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
[14] LI Hao,WEI BenHui,HUANG JinLing,LI ZhiGang,WANG LingQiang,LIANG XiaoYing,LI SuLi. Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane [J]. Scientia Agricultura Sinica, 2021, 54(3): 522-532.
[15] NIU HongZhuang,LIU Yang,LI XiaoPing,HAN YuXuan,WANG KeKe,YANG Yan,YANG QianHui,MIN DongHong. Effects of Physicochemical Properties of Wheat (Triticum aestivum L.) Starch with Different HMW-GSs Combinations on Dough Stability [J]. Scientia Agricultura Sinica, 2021, 54(23): 4943-4953.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!