Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (20): 3970-3982.doi: 10.3864/j.issn.0578-1752.2022.20.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea

CHEN ChunYu(),CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao(),ZHANG YunLong   

  1. College of Land and Environment, Shenyang Agricultural University/Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Affairs/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866
  • Received:2021-08-24 Accepted:2021-11-09 Online:2022-10-16 Published:2022-10-24
  • Contact: HongTao ZOU E-mail:13504929762@163.com;zouhongtao2001@163.com

Abstract:

【Objective】The water-based polymer material is widely used in slow-release fertilizers due to its degradability, non-toxicity and good film-forming properties, but due to its poor water resistance, resulting in poor slow-release effect of the prepared coated fertilizer. In order to improve its water resistance ability, according to the principle of bionics, the nano silica and 1H,1H,2H,2H-perfluorodecyltrimethoxysilane were used for hydrophobic modification, the optimal modification ratio and mechanism were determined, and then the environmentally friendly coated urea with better slow-release effect was prepared. 【Method】 This experiment used a three-factor three-level L9 (33) orthogonal design to explore the content of chitosan (0.5%, 1.0%, and 1.5%), starch content (0.5%, 1.0%, and 1.5%) and polyvinyl alcohol (PVA) content ( 2%, 3%, and 4%) on the performance of water-based polymer films, the optimal ratio with better hydrophobic effect was screened through water absorption and range analysis. Furthermore, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, and 3.0% of nano silica was add to the preferred coating materials for hydrophobic modification, respectively. The optimal amount of nano silica was confirmed by measuring the water absorption and permeability of the nano-modified water-based polymer films. Subsequently, the preferred nano-modified water-based polymer film was placed in the nhexane solution containing 0.5%, 1.0%, 1.5%, and 2.0% 1H,1H,2H,2H-perfluorodecyltrimethoxysilane for self-assembly modification, and then the effect of assembly concentration on the properties of films was explored. The modification effect was clarified by the changes of the film's hydrophobicity and permeability, and the hydrophobic modification mechanism was explored through the infrared spectrum characteristics and surface microstructure changes of the films before and after modification. The nutrient release experiments in soil were conducted to explore the nutrient release characters of the biomimetic modified water-based copolymer coated urea. The results of the nutrient release experiments in soil were used to investigate the sustained nutrient release period of nano-modified and biomimetic modified water-based copolymer-coated urea.【Result】 When the content of chitosan was 0.5%, the content of starch was 1.5%, and the content of PVA was 4.0%, the water absorption of the prepared water-based polymer film was the lowest, which was 42.50%. Compared with water-based polymers, the water absorption rates of nano-silica modified water-based copolymer, nano-silica and FAS dual-modified water-based copolymer membrane materials were reduced by 38.54% and 55.98%, respectively, the water permeability were reduced by 36.14% and 60.98%, respectively, and the NH4+ permeability were reduced by 24.14% and 44.58%, respectively. Infrared spectroscopy results showed that the amount of -OH in the nano-silica modified water-based copolymer membrane material was reduced, and Si-O-Si swing vibration and anti-symmetric stretching vibration were observed. The water after the double modification of nano-silica and FAS C-F bonds were observed on the surface of the base copolymer material. The scanning electron microscopy and energy spectrum analysis results showed that Si element appeared on the surface of nano-silica modified water-based copolymer membrane material, and F element appeared on the surface of nano-silica and FAS dual-modified water-based copolymer membrane material and observed a rough surface structure, the water contact angles were increased from 62.5º to 118.6º, and then the coating material could slow down the release effect. In addition, the results of soil culture experiments showed that the control release period of nutrients for nano-silica modified water-based copolymer-coated urea (NWCU), nano-silica and FAS dual-modified water-based copolymer-coated urea (SNWCU) was significantly prolonged. The control release period of nano-silica and FAS dual-modified water-based copolymer-coated urea was increased to about 28 days compared with those of WCU about 10 days. 【Conclusion】 According to the principle of biomimetics, the combined modification with nano-silica and FAS could significantly improve the water resistance and permeability of water-based polymer films, which the prepared biomimetic modified water-based copolymer coated nitrogen fertilizer had a good slow-release effect.

Key words: water-based copolymer, hydrophobic modification, microstructure characteristics, infrared spectroscopy characteristics, nutrient release characteristics

Table 1

The ratio of water based polymer coatings"

编号
Number
壳聚糖
Chitosan (g)
淀粉
Starch (g)
聚乙烯醇
PVA (g)
醋酸
Acetic acid (g)

Water (g)
戊二醛
Glutaral (g)
W1 0.5 0.5 2.0 1.0 95.9 0.1
W2 0.5 1.0 3.0 1.0 94.4 0.1
W3 0.5 1.5 4.0 1.0 92.9 0.1
W4 1.0 0.5 3.0 1.0 94.4 0.1
W5 1.0 10 4.0 1.0 92.9 0.1
W6 1.0 1.5 2.0 1.0 94.4 0.1
W7 1.5 0.5 4.0 1.0 92.9 0.1
W8 1.5 1.0 2.0 1.0 94.4 0.1
W9 1.5 1.5 3.0 1.0 92.9 0.1

Table 2

The water adsorption capacity of water-based copolymer films"

编号
Number
壳聚糖Chitosan
(%)
淀粉
Starch
(%)
PVA
(%)
吸水率
Water absorbency
(%)
W1 0.5 0.5 2.0 70.47c
W2 0.5 1.0 3.0 56.80c
W3 0.5 1.5 4.0 42.50d
W4 1.0 0.5 3.0 92.70ab
W5 1.0 1.0 4.0 68.06c
W6 1.0 1.5 2.0 60.25c
W7 1.5 0.5 4.0 93.92ab
W8 1.5 1.0 2.0 86.58b
W9 1.5 1.5 3.0 105.72a

Table 3

The range analysis for the water absorbency of water- based polymer films"

项目Item A B C
k1 56.59 85.70 72.43
k2 73.67 70.48 85.07
k3 95.40 69.49 68.16
R 38.81 15.21 12.64

Fig. 1

Water absorption rate of nano-modified water-based polymer films Different small letters above the bars indicate significant difference among treatments at 0.05 level. The same as below"

Fig. 2

The water permeability of nano-modified water-based polymer films"

Fig. 3

Water absorption rate of biomimetic modified water- based polymer films"

Fig. 4

Permeability and water absorption of biomimetic modified water- based polymer films"

Fig. 5

FTIR spectra of biomimetic modified water-based polymer films"

Fig. 6

Microstructure features and water contact angles of biomimetic modified water-based polymer films A1, A2 and A3 showed the surface of W3, NW6 and SNW3 (1 000×), respectively;B1, B2 and B3 showed the surface of W3, NW6 and SNW3 (50 000×)"

Fig. 7

EDX spectra and scanning site distribution of biomimetic modified water-based polymer surface A, B, C showed the EDX spectra of W3, NW6 and SNW3"

Fig. 8

Nutrient release characteristics of different types of modified water-based polymer coated urea in soil"

Fig. 9

Nutrient release characteristics of biomimetic modified water-based polymer coated urea under different soil water content (soil field water holding capacity 40%, 60%, and 80%)"

[1] 李书田, 刘晓永, 何萍. 当前我国农业生产中的养分需求分析. 植物营养与肥料学报, 2017, 23(6): 1416-1432.
LI S T, LIU X Y, HE P. Analyses on nutrient requirements in current agriculture production in China. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1416-1432. (in Chinese)
[2] WANG Q, DONG F P, DAI J, ZHANG Q P, JIANG M, XIONG Y Z. Recycled-oil-based polyurethane modified with organic silicone for controllable release of coated fertilizer. Polymers, 2019, 11(3): 454. doi: 10.3390/polym11030454.
doi: 10.3390/polym11030454
[3] 王聪. 液体肥施肥器变量调节系统研究[D]. 广州: 华南农业大学, 2018.
WANG C. Study on variable regulation system of liquid fertilizer[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese)
[4] 郭培俊. 控释肥料包膜材料的研究进展. 广东化工, 2015, 42(6): 118-119. doi: 10.3969/j.issn.1007-1865.2015.06.058.
doi: 10.3969/j.issn.1007-1865.2015.06.058
GUO P J. A review of coating materials of controlled release fertilizer. Guangdong Chemical Industry, 2015, 42(6): 118-119. doi: 10.3969/j.issn.1007-1865.2015.06.058. (in Chinese)
doi: 10.3969/j.issn.1007-1865.2015.06.058
[5] FERTAHI S, BERTRAND I, ILSOUK M, OUKARROUM A, AMJOUD M, ZEROUAL Y, BARAKAT A. New generation of controlled release phosphorus fertilizers based on biological macromolecules: effect of formulation properties on phosphorus release. International Journal of Biological Macromolecules, 2020, 143: 153-162. doi: 10.1016/j.ijbiomac.2019.12.005.
doi: S0141-8130(19)38114-0 pmid: 31812750
[6] 刘敏, 宋付朋, 卢艳艳. 硫膜和树脂膜控释尿素对土壤硝态氮含量及氮素平衡和氮素利用率的影响. 植物营养与肥料学报, 2015, 21(2): 541-548. doi: 10.11674/zwyf.2015.0231.
doi: 10.11674/zwyf.2015.0231
LIU M, SONG F P, LU Y Y. Effects of sulfur-and polymer-coated controlled release urea fertilizers on spatial-temporal variations of soil NO3--N and nitrogen balance and nitrogen use efficiency. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 541-548. doi: 10.11674/zwyf.2015.0231. (in Chinese)
doi: 10.11674/zwyf.2015.0231
[7] QIAO D L, LIU H S, YU L, BAO X Y, SIMON G P, PETINAKIS E, CHEN L. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydrate Polymers, 2016, 147: 146-154. doi: 10.1016/j.carbpol.2016.04.010.
doi: S0144-8617(16)30371-X pmid: 27178919
[8] 杜昌文, 周健民, 王火焰. 聚合物包膜肥料研究进展. 长江流域资源与环境, 2005, 14(6): 725-730. doi: 10.3969/j.issn.1004-8227.2005.06.011.
doi: 10.3969/j.issn.1004-8227.2005. 06.011
DU C W, ZHOU J M, WANG H Y. Advance in polymer-coated controlled release fertilizers. Resources and Environment in the Yangtze Basin, 2005, 14(6): 725-730. doi: 10.3969/j.issn.1004-8227.2005.06.011. (in Chinese)
doi: 10.3969/j.issn.1004-8227.2005. 06.011
[9] JAITURONG P, SIRITHUNYALUG B, EITSAYEAM S, ASAWAHAME C, TIPDUANGTA P, SIRITHUNYALUG J. Preparation of glutinous rice starch/polyvinyl alcohol copolymer electrospun fibers for using as a drug delivery carrier. Asian Journal of Pharmaceutical Sciences, 2018, 13(3): 239-247. doi: 10.1016/j.ajps.2017.08.008.
doi: 10.1016/j.ajps.2017.08.008 pmid: 32104397
[10] 张振宇. 耐水性淀粉基/PVA生物降解塑料薄膜研究[D]. 北京: 北京化工大学, 2010.
ZHANG Z Y. Study on water-resistant of biodegradable PVA films[D]. Beijing: Beijing University of Chemical Technology, 2010. (in Chinese)
[11] 申景博, 韩永生. 壳聚糖-淀粉-聚乙烯醇共混改善壳聚糖膜性能的研究. 包装工程, 2007, 28(12): 52-53, 56.
SHEN J B, HAN Y S. Study on improving properties of chitosan film by blending chitosan, starch and PVA. Packaging Engineering, 2007, 28(12): 52-53, 56. (in Chinese)
[12] HAN X Z, CHEN S S, HU X G. Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination, 2009, 240(1/2/3): 21-26. doi: 10.1016/j.desal.2008.01.047.
doi: 10.1016/j.desal.2008.01.047
[13] WANG Q B, YAO X, LIU H, QUÉRÉ D, JIANG L. Self-removal of condensed water on the legs of water striders. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): 9247-9252. doi: 10.1073/pnas.1506874112.
doi: 10.1073/pnas.1506874112 pmid: 26170300
[14] PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance. Nature Materials, 2018, 17(4): 355-360. doi: 10.1038/s41563-018-0044-2.
doi: 10.1038/s41563-018-0044-2 pmid: 29581573
[15] 侯成敏, 李娜, 董海涛, 张效林, 曹从军, 夏卫民, 王梅, 寇艳萍, 张伟. 水溶性含氟聚合物杂化纳米SiO2制备超疏水材料及性能. 功能材料, 2019, 50(8): 8091-8096. doi: 10.3969/j.issn.1001-9731.2019.08.012.
doi: 10.3969/j.issn.1001-9731. 2019.08.012
HOU C M, LI N, DONG H T, ZHANG X L, CAO C J, XIA W M, WANG M, KOU Y P, ZHANG W. Preparation of superhydrophobic materials by water-soluble fluoropolymer hybrid nano-SiO2. Journal of Functional Materials, 2019, 50(8): 8091-8096. doi: 10.3969/j.issn.1001-9731.2019.08.012. (in Chinese)
doi: 10.3969/j.issn.1001-9731. 2019.08.012
[16] WANG R, ZHU J, MENG K X, WANG H, DENG T, GAO X F, JIANG L. Bio-inspired superhydrophobic closely packed aligned nanoneedle architectures for enhancing condensation heat transfer. Advanced Functional Materials, 2018, 28(49): 1800634. doi: 10.1002/adfm.201800634.
doi: 10.1002/ adfm.201800634
[17] LI Y F, JIA C, ZHANG X, JIANG Y H, ZHANG M, LU P F, CHEN H K. Synthesis and performance of bio-based epoxy coated urea as controlled release fertilizer. Progress in Organic Coatings, 2018, 119: 50-56. doi: 10.1016/j.porgcoat.2018.02.013.
doi: 10.1016/j.porgcoat.2018.02.013
[18] BAIDYA A, DAS S K, RAS R H A, PRADEEP T. Fabrication of a waterborne durable superhydrophobic material functioning in air and under oil. Advanced Materials Interfaces, 2018, 5(11): 1701523. doi: 10.1002/admi.201701523.
doi: 10.1002/admi.201701523
[19] MATES J E, SCHUTZIUS T M, BAYER I S, QIN J, WALDROUP D E, MEGARIDIS C M. Water-based superhydrophobic coatings for nonwoven and cellulosic substrates. Industrial & Engineering Chemistry Research, 2014, 53(1): 222-227. doi: 10.1021/ie402836x.
doi: 10.1021/ie402836x
[20] CHEN S L, HAN Y Y, YANG M, ZHU X Q, LIU C T, LIU H D, ZOU H T. Hydrophobically modified water-based polymer for slow-release urea formulation. Progress in Organic Coatings, 2020, 149: 105964. doi: 10.1016/j.porgcoat.2020.105964.
doi: 10.1016/j.porgcoat.2020.105964
[21] 何孙胃, 梁树章, 罗红辉. 全自动凯式定氮仪快速测定复混肥料总氮含量. 广东化工, 2013, 40(19): 142-143. doi: 10.3969/j.issn.1007-1865.2013.19.073.
doi: 10.3969/j.issn.1007-1865.2013.19.073
HE S W, LIANG S Z, LUO H H. Automatic Kjeldahl analyzer rapidly determines fertilizer of total nitrogen. Guangdong Chemical Industry, 2013, 40(19): 142-143. doi: 10.3969/j.issn.1007-1865.2013.19.073. (in Chinese)
doi: 10.3969/j.issn.1007-1865.2013.19.073
[22] 刘诗璇, 陈松岭, 蒋一飞, 巴闯, 邹洪涛, 张玉龙. 控释氮肥与普通氮肥配施对东北春玉米氮素利用及土壤养分有效性的影响. 生态环境学报, 2019, 28(5): 939-947. doi: 10.16258/j.cnki.1674-5906.2019.05.010.
doi: 10.16258/j.cnki.1674-5906. 2019.05.010
LIU S X, CHEN S L, JIANG Y F, BA C, ZOU H T, ZHANG Y L. Effect of controlled-release combined application with common nitrogen fertilizers for spring-maize on nitrogen fertilizer use efficiency and soil available nutrient in northeast China. Ecology and Environmental Sciences, 2019, 28(5): 939-947. doi: 10.16258/j.cnki.1674-5906.2019.05.010. (in Chinese)
doi: 10.16258/j.cnki.1674-5906. 2019.05.010
[23] HAN Y Y, CHEN S L, YANG M, ZOU H T, ZHANG Y L. Inorganic matter modified water-based copolymer prepared by chitosan-starch- CMC-Na-PVAL as an environment-friendly coating material. Carbohydrate Polymers, 2020, 234: 115925. doi: 10.1016/j.carbpol.2020.115925.
doi: 10.1016/j.carbpol. 2020.115925
[24] CHEN S L, YANG M, BA C, YU S S, JIANG Y F, ZOU H T, ZHANG Y L. Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. Science of the Total Environment, 2018, 615: 431-437. doi: 10.1016/j.scitotenv.2017.09.209.
doi: 10.1016/j. scitotenv.2017.09.209
[25] 陈松岭, 蒋一飞, 巴闯, 凌尧, 张玉龙, 邹洪涛. 生物改性聚乙烯醇可降解包膜材料的特征及其光谱特性. 中国土壤与肥料, 2017(4): 154-160. doi: 10.11838/sfsc.20170424.
doi: 10.11838/sfsc.20170424
CHEN S L, JIANG Y F, BA C, LING Y, ZHANG Y L, ZOU H T. Characteristics and spectral properties of biodegradable modified polyvinyl alcohol coated materials. Soils and Fertilizers Sciences in China, 2017(4): 154-160. doi: 10.11838/sfsc.20170424. (in Chinese)
doi: 10.11838/sfsc.20170424
[26] 白杨, 陈松岭, 范丽娟, 杨明, 邹洪涛, 张玉龙. 纳米SiO2-聚乙烯醇-γ聚谷氨酸复合膜材料制备及其性能研究. 植物营养与肥料学报, 2019, 25(12): 2044-2052. doi: 10.11674/zwyf.19121.
doi: 10.11674/zwyf.19121
BAI Y, CHEN S L, FAN L J, YANG M, ZOU H T, ZHANG Y L. Preparation and properties of nano-SiO2-polyvinyl alcohol-γ-polyglutamic acid composite film materials. Plant Nutrition and Fertilizer Science, 2019, 25(12): 2044-2052. doi: 10.11674/zwyf.19121. (in Chinese)
doi: 10.11674/zwyf.19121
[27] CHABBI J, JENNAH O, KATIR N, LAHCINI M, BOUSMINA M, EL KADIB A. Aldehyde-functionalized chitosan-montmorillonite films as dynamically-assembled, switchable-chemical release bioplastics. Carbohydrate Polymers, 2018, 183: 287-293. doi: 10.1016/j.carbpol.2017.12.036.
doi: S0144-8617(17)31443-1 pmid: 29352886
[28] GURUNATHAN T, CHUNG J S. Physicochemical properties of amino-silane-terminated vegetable oil-based waterborne polyurethane nanocomposites. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4645-4653. doi: 10.1021/acssuschemeng.6b00768.
doi: 10.1021/acssuschemeng.6b00768
[29] XIE J Z, YANG Y C, GAO B, WAN Y S, LI Y C, CHENG D D, XIAO T Q, LI K, FU Y N, XU J, ZHAO Q H, ZHANG Y F, TANG Y F, YAO Y Y, WANG Z H, LIU L. Magnetic-sensitive nanoparticle self-assembled superhydrophobic biopolymer-coated slow-release fertilizer: fabrication, enhanced performance, and mechanism. ACS Nano, 2019, 13(3): 3320-3333. doi: 10.1021/acsnano.8b09197.
doi: 10.1021/acsnano.8b09197 pmid: 30817124
[30] 周子军, 杜昌文, 申亚珍, 周健民. 生物炭改性聚丙烯酸酯包膜控释肥料的研制. 功能材料, 2013, 44(9): 1305-1308, 1314. doi: 10.3969/j.issn.1001-9731.2013.09.022.
doi: 10. 3969/j.issn.1001-9731.2013.09.022
ZHOU Z J, DU C W, SHEN Y Z, ZHOU J M. Development of biochar modified polyacrylate emulsions coated controlled release fertilizers. Journal of Functional Materials, 2013, 44(9): 1305-1308, 1314. doi: 10.3969/j.issn.1001-9731.2013.09.022. (in Chinese)
doi: 10. 3969/j.issn.1001-9731.2013.09.022
[31] 陈松岭, 蒋一飞, 巴闯, 杨明, 邹洪涛, 张玉龙. 水基共聚物-生物炭复合材料包膜尿素制备及其性能. 植物营养与肥料学报, 2018, 24(5): 1245-1254.
CHEN S L, JIANG Y F, BA C, YANG M, ZOU H T, ZHANG Y L. Preparation and characteristics of urea coated with water-based copolymer-biochar composite film material. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1245-1254. (in Chinese)
[32] 张云波, 张珍竹, 罗耀发, 张丽. 气相二氧化硅改性水性聚氨酯涂层剂的制备及性能研究. 纺织导报, 2013(8): 66-70. doi: 10.3969/j.issn.1003-3025.2013.08.019.
doi: 10.3969/ j.issn.1003-3025.2013.08.019
ZHANG Y B, ZHANG Z Z, LUO Y F, ZHANG L. Preparation and property study of fumed silica-containing aqueous polyurethane coating agent. China Textile Leader, 2013(8): 66-70. doi: 10.3969/j.issn.1003-3025.2013.08.019. (in Chinese)
doi: 10.3969/ j.issn.1003-3025.2013.08.019
[33] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能. 纺织学报, 2021, 42(3): 130-135. doi: 10.13475/j.fzxb.20200407206.
doi: 10.13475/ j.fzxb
DING Z H, QIU H. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture- permeable coated fabrics. Journal of Textile Research, 2021, 42(3): 130-135. doi: 10.13475/j.fzxb.20200407206. (in Chinese)
doi: 10.13475/ j.fzxb
[34] 苏瑞彩, 李文芳, 彭继华. 纳米SiO2的表面改性研究及其在涂料中的应用. 广州化工, 2009, 37(1): 7-9, 29. doi: 10.3969/j.issn.1001-9677.2009.01.005.
doi: 10.3969/j.issn.1001-9677.2009.01.005
SU R C, LI W F, PENG J H. Nano-SiO2 surface modification and research progress of its application in coating. Guangzhou Chemical Industry, 2009, 37(1): 7-9, 29. doi: 10.3969/j.issn.1001-9677.2009.01.005. (in Chinese)
doi: 10.3969/j.issn.1001-9677.2009.01.005
[35] 盖广清, 林岳芃, 徐博涵. 纳米二氧化硅改性聚乙烯醇胶粘剂的研究. 广州化工, 2012, 40(7): 116-117. doi: 10.3969/j.issn.1001-9677.2012.07.041.
doi: 10.3969/j.issn.1001-9677. 2012.07.041
GAI G Q, LIN Y P, XU B H. The study of nano-silica modified polyvinyl alcohol adhesive. Guangzhou Chemical Industry and Technology, 2012, 40(7): 116-117. doi: 10.3969/j.issn.1001-9677.2012.07.041. (in Chinese)
doi: 10.3969/j.issn.1001-9677. 2012.07.041
[36] 宋媛媛, 曹明, 樊小林. 植物油包膜控释尿素在香蕉各生育时期土壤中的释放特性. 中国农业科学, 2013, 46(1): 80-88.
SONG Y Y, CAO M, FAN X L. Nutrient release characteristics of controlled release urea coated by vegetable oil in the soil at four stages of banana growing. Scientia Agricultura Sinica, 2013, 46(1): 80-88. (in Chinese)
[37] 施卫省, 唐辉, 王亚明. 松香甘油酯包膜材料对尿素缓释性的影响. 农业工程学报, 2009, 25(4): 74-77.
SHI W S, TANG H, WANG Y M. Effect of rosin glysin ester as coating material on the slow release property of coated urea. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(4): 74-77. (in Chinese)
[38] 谢银旦, 杨相东, 曹一平, 江荣风, 张福锁. 包膜控释肥料在土壤中养分释放特性的测试方法与评价. 植物营养与肥料学报, 2007, 13(3): 491-497. doi: 10.3321/j.issn:1008-505X.2007.03.022.
doi: 10.3321/j.issn: 1008-505X.2007.03.022
XIE Y D, YANG X D, CAO Y P, JIANG R F, ZHANG F S. Evaluation of determination methods for nutrient release characteristics of coated controlled-release fertilizer under soil and water incubation conditions. Plant Nutrition and Fertilizer Science, 2007, 13(3): 491-497. doi: 10.3321/j.issn:1008-505X.2007.03.022. (in Chinese)
doi: 10.3321/j.issn: 1008-505X.2007.03.022
[39] 吕静, 李丹, 孙建兵, 倪吾钟. 低分子量聚乳酸包膜尿素的缓释特性及其减少氨挥发的作用. 中国农业科学, 2012, 45(2): 283-291. doi: 10.3864/j.issn.0578-1752.2012.02.010.
doi: 10.3864/j.issn.0578-1752.2012.02.010
LÜ J, LI D, SUN J B, NI W Z. Slow release characteristics of the low molecular weight polylactic acid-coated urea and its reduction effects on soil ammonia volatilization. Scientia Agricultura Sinica, 2012, 45(2): 283-291. doi: 10.3864/j.issn.0578-1752.2012.02.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.02.010
[40] FERTAHI S, BERTRAND I, AMJOUD M, OUKARROUM A, ARJI M, BARAKAT A. Properties of coated slow-release triple superphosphate (TSP) fertilizers based on lignin and carrageenan formulations. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10371-10382. doi: 10.1021/acssuschemeng.9b00433.
doi: 10.1021/acssuschemeng.9b00433
[41] MAJEED Z, RAMLI N K, MANSOR N, MAN Z. A comprehensive review on biodegradable polymers and their blends used in controlled- release fertilizer processes. Reviews in Chemical Engineering, 2015, 31(1): 69-95. doi: 10.1515/revce-2014-0021.
doi: 10.1515/revce-2014-0021
[42] MA X X, CHEN J Q, YANG Y C, SU X R, ZHANG S G, GAO B, LI Y C. Siloxane and polyether dual modification improves hydrophobicity and interpenetrating polymer network of bio-polymer for coated fertilizers with enhanced slow release characteristics. Chemical Engineering Journal, 2018, 350: 1125-1134. doi: 10.1016/j.cej.2018.06.061.
doi: 10.1016/j.cej.2018. 06.061
[43] CHEN S L, YANG M, HAN Y Y, LIU H D, ZOU H T. Hydrophobically modified sustainable bio-based polyurethane for controllable release of coated urea. European Polymer Journal, 2021, 142: 110114. doi: 10.1016/j.eurpolymj.2020.110114.
doi: 10.1016/j.eurpolymj.2020.110114
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!