Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (21): 4304-4314.doi: 10.3864/j.issn.0578-1752.2022.21.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep

SONG ShuZhen1(),GAO LiangShuang2,LI Hong3,GONG XuYin1,LIU LiShan1,WEI YuBing4   

  1. 1Institute of Animal and Pasture Science and Green Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    2College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070
    3Agricultural and Rural Bureau of Hutubi, Hutubi 831200, Xinjiang
    4Animal Husbandry and Veterinary Station of Pingshanhu, Zhangye 734000, Gansu
  • Received:2021-09-03 Accepted:2021-12-20 Online:2022-11-01 Published:2022-11-09
  • Contact: ShuZhen SONG E-mail:songshuzhen@gsagr.ac.cn

Abstract:

【Objective】Improving meat quality is one of the main goals of the modern mutton sheep production. The objective of this study was to compare the muscle tissue structure and the genes expression related muscle development of longissimus dorsi muscle in Altay sheep, so as to provide the reference for regulating meat quality and improving production efficiency of meat-fat type sheep by feeding level. 【Method】 Thirty Altay female lambs with a similar month ((3.0±0.5) months), similar body weight ((19. 16±0.54) kg), uniform tail size were randomly divided into 3 groups with 10 lambs per group. After 60 days of ad libitum feeding, three test sheep groups were fed with 50% (0.25 MJ/W0.75 ×d-1, NL group), 100% (0.5 MJ/W0.75 ×d-1, NM group), and 150% (0.75 MJ/W0.75 ×d-1, NH group) maintenance metabolizable for 30 days, respectively, and then slaughtered. The longissimus dorsi muscle was stained with Hematoxylin Eosin (HE staining) and 2% uranyl acetate-lead citrate double staining, respectively, and then the expression of myosin heavy chain I (MyHC I) and peroxisome receptor activator-activated gamma (PPARγ) was determined by immunohistochemistry. 【Result】(1) When Altay sheep were fed 50%, 100% and 150% metabolizable energy, respectively, the difference of average daily gain was significant (P<0.05), and the difference of three groups were -90.67 kg, 13.33 kg and 203.00 kg, respectively. The diameter of longissimus dorsi muscle fibers from NL group and NH group was significantly larger than that from NL group (P<0.05), while the thickness of muscular intima from NH group was significantly smaller than that in NL group (P<0.05), but there were no significant differences in the amount of muscle fiber, the area of muscle fiber, the thickness of muscle fascicle, the area of muscle fiber and the density of muscle fiber (P>0.05). (2) The feeding levels affected the area of terminal cisterna, lipid droplets and the area ratio of terminal cisterna, myofibril and sarcoplasm. The area and area ratio of terminal cisterna from NH were significantly larger than those from NM group and NL group (P<0.05), while the area of lipid droplets from NH group was significantly larger than that from NL group (P<0.05). The area ratio of sarcoplasm from NM group was significantly larger than that from NH and NL Group (P<0.05), and mitochondria and glycogen had no significant difference among the three groups (P<0.05). (3) The feeding levels affected the expression of gene related muscle fiber, PPARγ expression intensity, positive area and positive rate from NL, and NM groups were significantly lower than those from NH group (P<0.05). The expression intensity of MyHC Ⅰ protein increased with the increase of feeding level, but there was no significant difference among three groups (P>0.05).【Conclusion】The feeding level had a significant effect on the muscle tissue structure and the expression of gene protein related to muscle fiber type of the Longissimus dorsi muscle in Altay sheep, and it could be used to control the muscle tissue structure and muscle fiber type composition during fattening period, in order to regulate the quality of meat according to production needs.

Key words: feeding level, meat quality, muscle tissue structure, muscle fiber, PPARγ, MyHC I, Altay sheep

Table 1

Composition and nutrient levels of experimental diets (DM basis, %)"

成分Ingredient 含量Content 营养水平Nutrient level 2) 含量Content
苜蓿干草Alfalfa hay 25.40 消化能DE(MJ·kg-1 10.66
玉米秆Corn straw 19.40 代谢能ME(MJ·kg-1 8.67
小麦秆Wheat straw 5.00 粗蛋白质CP 12.51
玉米Corn 30.00 粗脂肪EE 2.13
大豆粕Soybean meal 10.00 钙Ca 0.65
麸皮Wheat bran 5.00 总磷TP 0.45
菜籽粕Rapeseed meal 4.00 中性洗涤纤维NDF 55.30
磷酸氢钙Calcium hydrogen phosphate 0.20 酸性洗涤纤维ADF 32.22
碳酸钙Calcium carbonate 0.35
氯化钠NaCI 0.50
预混料Premixture1) 0.15
合计Total 100.00

Table 2

The effects of feeding level on growth performance in Altay sheep"

组别
Treatment
初重
Initial weight (kg)
末重
Final weight (kg)
平均日增重
Average daily gain (g)
代谢体重平均日采食量
Average daily intake of metabolic weight (g/W0.75)
NL组 NL group 30.17±1.17 27.45±2.36c -90.67±0.04c 0.04±0.00c
NM组 NM group 30.75±1.72 31.15±1.49b 13.33±0.07b 0.08±0.00b
NH组 NH group 30.83±1.16 36.93±2.73a 203.00±0.05a 0.12±0.00a

Table 3

The effects of feeding levels on the muscle fiber microstructure of longissimus dorsi muscle in Altay sheep"

组别
Treatment
肌束纤维数量
Muscular bundle number
(number/bundle)
肌束纤维面积
Muscular bundle area
(μm²)
肌纤维面积
Muscle fiber
area
(μm²)
肌纤维密度
Muscle fiber density
(number/mm²)
肌纤维最长直径
Muscle fiber
maximum density
(μm)
肌纤维最短直径
Muscle fiber
minimum density
(μm)
肌纤维平均直径
Muscle fiber
diameter
(μm)
肌内膜厚度
Endomysium
thickness
(μm)
肌束膜厚度
Perimysium thickness
(μm)
NL组 NL group 114.17±10.16 105509.52±2132.25 942.28±105.95 1134.44±132.01 36.27±1.90b 20.07±1.56b 28.17±.46b 4.98±0.45a 13.00±1.49
NM组 NM group 113.83±7.25 89244.27±7337.58 795.90±83.48 1319.73±123.19 42.65±3.28ab 27.48±3.97ab 35.07±.45a 3.94±0.52ab 12.39±2.54
NH组 NH group 105.83±6.80 98028.30±9200.17 959.81±135.47 1143.12±146.89 44.48±2.76a 33.80±3.60a 39.14±.49a 3.69±0.19b 13.63±1.71

Fig. 1

The microstructure of longissimus dorsi fiber in Altay sheep (×400)"

Fig. 2

The ultramicrostructure of longissimus dorsi fiber in Altay sheep (×10000)"

Table 4

The effects of feeding levels on the muscle fiber ultramicrostructure of longissimus dorsi muscle in Altay sheep"

组别
Treatment
肌质网终池 Terminal cisternae 肌原纤维 Myofibril 肌质 Sarcoplasm 线粒体 Chondriosome 肌糖原 Glucogen 脂滴 Lipid
面积
Area (μm²)
面积比
Area ratio
面积
Area (μm²)
面积比
Area ratio
面积
Area (μm²)
面积比
Area ratio
面积
Area (μm²)
面积比
Area ratio
面积
Area (μm²)
面积比
Area ratio
面积
Area (μm²)
面积比
Area ratio
NL组 NL group 0.069±0.006b 0.033±0.003b 1.020±0.004 0.480±0.015a 1.045±0.096 0.487±0.016b 0.414±0.056 0.647±0.038 0.173±0.027 0.293±0.040 0.037±0.008b 0.061±0.012
NM组 NM group 0.084±0.006b 0.042±0.004b 0.870±0.080 0.040±0.019b 1.239±0.119 0.557±0.020a 0.488±0.062 0.606±0.045 0.309±0.073 0.308±0.047 0.051±0.005ab 0.067±0.009
NH组 NH group 0.136±0.018a 0.066±0.008a 0.993±0.090 0.468±0.021a 1.008±0.106 0.467±0.022b 0.591±0.086 0.711±0.042 0.227±0.066 0.225±0.046 0.056±0.003a 0.078±0.012

Fig. 3

MyHCⅠimmunohistochemistry of longissimus dorsi fiber in Altay sheep (×200)"

Fig. 4

PPARγ immunohistochemistry of longissimus dorsi fiber in Altay sheep (×200)"

Table 5

The effects of feeding levels on PPARγ, MyHCⅠexpression of longissimus dorsi muscle in Altay sheep"

组别
Treatment
MyHCⅠ PPARγ
积分光密度值
Integral optical density (IOD)
阳性面积
Positive area
(μm2)
蛋白表达强度
Protein expression intensity (%)
阳性率
Positive rate
(%)
积分光密度值
Integral optical density (IOD)
阳性面积
Positive area
(μm2)
蛋白表达强度
Protein expression intensity (%)
阳性率
Positive rate
(%)
NL组 NL group 58987.44±9756.69 12141.92±987.74 0.0047±0.0008 0.17±0.01 66415.77±19885.47 24112.09±7846.90b 0.005±0.0016 b 0.33±0.11b
NM组 NM group 75598.94±15209.87 14334.56±1587.26 0.0060±0.0012 0.20±0.02 93424.27±32592.84 25226.34±4038.18b 0.007±0.0026 b 0.34±0.05b
NH组 NH group 86479.87±9013.80 15042.09±2166.93 0.0069±0.0007 0.20±0.00 125531.67±28874.92 49822.16±9579.31a 0.010±0.0023 a 0.68±0.13a
[1] 薛宝玲, 曹志军, 蔡永敏, 格日勒图. 不同月龄乌珠穆沁羊肌纤维类型与肉品质的变化分析. 食品研究与开发, 2019, 40(18): 193-197.
XUE B L, CAO Z J, CAI Y M, GERILRTU. Relationship between muscle fibers type and meat quality changes during the growth of ujumqin sheep. Food Research and Development, 2019, 40(18): 193-197. (in Chinese)
[2] 束婧婷, 宋迟, 徐文娟, 章明, 单艳菊, 陈文峰, 宋卫涛, 陶志云, 李慧芳. IGF-I-CaN-NFATc3信号通路相关基因在鸭发育早期骨骼肌中的同步表达及其与肌纤维性状相关性. 中国农业科学, 2015, 48(6): 1195-1204.
SHU J T, SONG C, XU W J, ZHANG M, SHAN Y J, CHEN W F, SONG W T, TAO Z Y, LI H F. Expression profile of IGF-I- calcineurin-NFATc3-dependent pathway genes in skeletal muscles and their associations with myofiber traits during embryonic and early post-hatching development in ducks. Scientia Agricultura Sinica, 2015, 48(6): 1195-1204. (in Chinese)
[3] CHOI Y M, RYU Y C, KIM B C. Influence of myosin heavy- and light chain isoforms on early postmortem glycolytic rate and pork quality. Meat Science, 2007, 76(2): 281-288. doi:10.1016/j.meatsci.2006.11.009.
[4] LEE S H, JOO S T, RYU Y C. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Science, 2010, 86(1): 166-170. doi:10.1016/j.meatsci.2010.04.040.
[5] ESSÉN-GUSTAVSSON B, KARLSSON A, LUNDSTRÖM K, ENFÄLT A C. Intramuscular fat and muscle fibre lipid contents in halothane-gene-free pigs fed high or low protein diets and its relation to meat quality. Meat Science, 1994, 38(2): 269-277. doi:10.1016/0309-1740(94)90116-3.
[6] STEFANO S, CARLO R. Fiber types in mammalia skeletal museles. Physiological Reviews, 2011, 91 (4): 1447-1531.
[7] LEE S H, CHOE J H, CHOI Y M, JUNG K C, RHEE M S, HONG K C, LEE S K, RYU Y C, KIM B C. The influence of pork quality traits and muscle fiber characteristics on the eating quality of pork from various breeds. Meat Science, 2012, 90(2): 284-291. doi:10.1016/j.meatsci.2011.07.012.
[8] KIM G D, JEONG J Y, HUR S J, YANG H S, JEON J T, JOO S T. The relationship between meat color (CIE L* and a*), myoglobin content, and their influence on muscle fiber characteristics and pork quality. Korean Journal for Food Science of Animal Resources, 2010, 30(4): 626-633.
[9] MASHIMA D, OKA Y, GOTOH T, TOMONAGA S, SAWANO S, NAKAMURA M, TATSUMI R, MIZUNOYA W. Correlation between skeletal muscle fiber type and free amino acid levels in Japanese Black steers. Animal Science Journal, 2019, 90(4): 604-609. doi:10.1111/asj.13185.
[10] 李银, 孙红梅, 张春晖, 白跃宇, 王振宇. 牛肉解冻过程中蛋白质氧化效应分析. 中国农业科学, 2013, 46(7): 1426-1433.
LI Y, SUN H M, ZHANG C H, BAI Y Y, WANG Z Y. Analysis of frozen beef protein oxidation effect during thawing. Scientia Agricultura Sinica, 2013, 46(7): 1426-1433. (in Chinese)
[11] BEE G, CALDERINI M, BIOLLEY C, GUEX G, HERZOG W, LINDEMANN M D. Changes in the histochemical properties and meat quality traits of porcine muscles during the growing-finishing period as affected by feed restriction, slaughter age, or slaughter weight. Journal of Animal Science, 2007, 85(4): 1030-1045. doi:10.2527/jas.2006-496.
[12] SOLOMON M B, CAMPBELL R G, STEELE N C, CAPERNA T J, MCMURTRY J P. Effect of feed intake and exogenous porcine somatotropin on longissimus muscle fiber characteristics of pigs weighing 55 kilograms live weight. Journal of Animal Science, 1988, 66(12): 3279-3284. doi:10.2527/jas1988.66123279x.
[13] JEONG J Y, KIM G D, HA D M, PARK M J, PARK B C, JOO S T, LEE C Y. Relationships of muscle fiber characteristics to dietary energy density, slaughter weight, and muscle quality traits in finishing pigs. Journal of Animal Science and Technology, 2012, 54(3) 175-183.
[14] PARK S K, GUNAWAN A M, SCHEFFLER T L, GRANT A L, GERRARD D E. Myosin heavy chain isoform content and energy metabolism can be uncoupled in pig skeletal muscle. Journal of Animal Science, 2009, 87(2): 522-531. doi:10.2527/jas.2008-1269.
[15] FERNANDES M H M R, RESENDE K T, TEDESCHI L O, FERNANDES J S, SILVA H M, CARSTENS G E, BERCHIELLI T T, TEIXEIRA I A M A, AKINAGA L. Energy and protein requirements for maintenance and growth of Boer crossbred kids. Journal of Animal Science, 2007, 85(4): 1014-1023. doi:10.2527/jas.2006-110.
[16] 高良霜, 吴建平, 宋淑珍, 李宏, 郎侠, 魏玉斌, 宫旭胤, 刘立山. 不同能量水平对阿勒泰羊血清脂质指标及脂肪沉积的影响. 饲料工业, 2020, 41(9): 14-23. doi:10.13302/j.cnki.fi.2020.09.003.
GAO L S, WU J P, SONG S Z, LI H, LANG X, WEI Y B, GONG X Y, LIU L S. Effect of different energy levels on serum lipid index and lipid deposition of Altay sheep. Feed Industry, 2020, 41(9): 14-23. doi:10.13302/j.cnki.fi.2020.09.003. (in Chinese)
[17] 庞之洪, 罗清尧, 熊本海. 中国饲料成分及营养价值表(2007年第18版)制订说明. 中国饲料, 2007(21): 33.
PANG Z H, LUO Q Y, XIONG B H. Introduction of tables of feed composition and nutritive values in China (2007 eighteenth edition). China Feed, 2007(21): 33. (in Chinese)
[18] 陈圆, 胡惠军, 廖淑芬, 林培平, 钟淡龙, 李红伟. 惠阳胡须鸡肌纤维直径、密度生长发育规律的研究. 惠州学院学报, 2017, 37(3): 65-68, 75. doi:10.16778/j.cnki.1671-5934.2017.03.012.
CHEN Y, HU H J, LIAO S F, LIN P P, ZHONG D L, LI H W. Study on muscle fiber density and diameter in Huiyang bearded chicken at different age. Journal of Huizhou University, 2017, 37(3): 65-68, 75. doi:10.16778/j.cnki.1671-5934.2017.03.012. (in Chinese)
[19] 殷亚杰, 聂春雨, 刘伟石, 邹琦, 李和平. 马鹿肌肉组织学特征与肉质关系的研究. 中国农学通报, 2012, 28(35): 51-54.
YIN Y J, NIE C Y, LIU W S, ZOU Q, LI H P. The study on relationship of muscle histological characteristics to meat quality of red deer. Chinese Agricultural Science Bulletin, 2012, 28(35): 51-54. (in Chinese)
[20] 谢恺舟, 徐东, 李洋静, 李拥军, 谢星, 周卫东, 姚宜林, 陈书琴, 吴力力. 海门山羊肌肉组织学特性的研究. 安徽农业科学, 2010, 38(23): 12341-12343. doi:10.13989/j.cnki.0517-6611.2010.23.242.
XIE K Z, XU D, LI Y J, LI Y J, XIE X, ZHOU W D, YAO Y L, CHEN S Q, WU L L. Study on the muscle histological characteristics of Haimen goats. Journal of Anhui Agricultural Sciences, 2010, 38(23): 12341-12343. doi:10.13989/j.cnki.0517-6611.2010.23.242. (in Chinese)
[21] 尹靖东. 动物肌肉生物学与肉品科学. 北京: 中国农业大学出版社, 2011.
YIN J D. Animal Muscle Biology and Meat Quality. Beijing: China Agricultural University Press, 2011. (in Chinese)
[22] ASHMORE C R, DOERR L. Comparative aspects of muscle fiber types in different species. Experimental Neurology, 1971, 31(3): 408-418. doi:10.1016/0014-4886(71)90243-3.
[23] BOWKER B C, GRANT A L, SWARTZ D R, GERRARD D E. Myosin heavy chain isoforms influence myofibrillar ATPase activity under simulated postmortem pH, calcium, and temperature conditions. Meat Science, 2004, 67(1): 139-147. doi:10.1016/j.meatsci.2003.09.016.
[24] LISTRAT A, LEBRET B, LOUVEAU I, ASTRUC T, BONNET M, LEFAUCHEUR L, PICARD B, BUGEON J. How muscle structure and composition influence meat and flesh quality. The Scientific World Journal, 2016, 2016: 3182746. doi:10.1155/2016/3182746.
[25] ASGHAR A, YEATES M F. Muscle Characteristics and meat quality of lambs, grown on different nutritional planes. III. Effect on muscle ultrastructure. Agricultural and Biological Chemistry, 1979, 43(3): 445-453.
[26] 王震, 马铁伟, 邓凯平, 冯旭, 李奉哲, 王锋, 陶晓强, 樊懿萱. 能量限饲和补偿对湖羊生长性能及相关激素和肉品质的影响. 南京农业大学学报, 2018, 41(4): 722-729.
WANG Z, MA T W, DENG K P, FENG X, LI F Z, WANG F, TAO X Q, FAN Y X. Effects of energy restriction and compensation on growth performance, and related hormones and meat quality of Hu sheep. Journal of Nanjing Agricultural University, 2018, 41(4): 722-729. (in Chinese)
[27] 张崇志, 高爱武, 侯先志, 考桂兰, 刘小刚, 张园. 不同营养水平对羔羊肌肉组织学性状的影响. 动物营养学报, 2011, 23(2): 336-342.
ZHANG C Z, GAO A W, HOU X Z, KAO G L, LIU X G, ZHANG Y. Effects of different nutritional levels on muscle histological characteristics of lambs. Chinese Journal of Animal Nutrition, 2011, 23(2): 336-342. (in Chinese)
[28] MUCKTA K. Investigations on the effect of nicotinic acid supplementation on muscle fiber distribution and muscle metabolic phenotype in pig and sheep[D]. Giessen: Justus Liebig University Giessen, 2014.
[29] 万磊, 周明芳, 熊婷, 刘秋红, 席苏望, 胡晓龙, 刘三凤. 宁都黄鸡胸肌不同部位肌纤维组织学特性分析. 黑龙江畜牧兽医, 2021(19): 60-63, 147. doi:10.13881/j.cnki.hljxmsy.2021.01.0342.
WAN L, ZHOU M F, XIONG T, LIU Q H, XI S W, HU X L, LIU S F. Histological characteristics analysis of muscle fiber in different parts of breast muscle of Ningdu yellow chicken. Heilongjiang Animal Science and Veterinary Medicine, 2021(19): 60-63, 147. doi:10.13881/j.cnki.hljxmsy.2021.01.0342. (in Chinese)
[30] OLZMANN J A, CARVALHO P. Dynamics and functions of lipid droplets. Nature Reviews Molecular Cell Biology, 2019, 20(3): 137-155. doi:10.1038/s41580-018-0085-z.
[31] 王丽莎, 王航, 李侠, 张春晖, 梁红, 李敏. 不同部位猪肉肌纤维类型组成与品质特性比较研究. 肉类研究, 2020, 34(6): 1-7.
WANG L S, WANG H, LI X, ZHANG C H, LIANG H, LI M. Comparison of muscle fiber traits and meat quality of different porcine skeletal muscles. Meat Research, 2020, 34(6): 1-7. (in Chinese)
[32] HENCKEL P, OKSBJERG N, ERLANDSEN E, BARTON-GADE P, BEJERHOLM C. Histo- and biochemical characteristics of the Longissimus dorsi muscle in pigs and their relationships to performance and meat quality. Meat Science, 1997, 47(3/4): 311-321. doi:10.1016/S0309-1740(97)00063-6.
[33] WANG Q Y, WANG Y C, HUSSAIN T, DAI C P, LI J Z, HUANG P F, LI Y L, DING X Q, HUANG J, JI F J, ZHOU H L, YANG H S. Effects of dietary energy level on growth performance, blood parameters and meat quality in fattening male Hu lambs. Journal of Animal Physiology and Animal Nutrition, 2020, 104(2): 418-430. doi:10.1111/jpn.13278.
[34] ALMURSHED K, GRUNEWALD K. The effects of dietary energy restriction on overloaded skeletal muscle in rats. The British Journal of Nutrition, 2000, 84(5): 697-704.
[35] MACIEJEWSKA-SKRENDO A, PAWLIK A, SAWCZUK M, RAC M, DZIEDZIEJKO V. PPAR alpha, PPAR delta and PPAR gamma gene polymorphisms in patients with unstable angina. Gene, 2019(1): 143947.
[36] FU M G, ZHANG J F, ZHU X J, MYLES D E, WILLSON T M, LIU X D, CHEN Y E. Peroxisome proliferator-activated receptor γ inhibits transforming growth factor β-induced connective tissue growth factor expression in human aortic smooth muscle cells by interfering with Smad3. Journal of Biological Chemistry, 2001, 276(49): 45888-45894. doi:10.1074/jbc.m105490200.
[37] GU H, ZHOU Y, YANG J Z, LI J N, PENG Y X, ZHANG X, MIAO Y L, JIANG W, BU G W, HOU L M, LI T, ZHANG L, XIA X L, MA Z Y, XIONG Y Z, ZUO B. Targeted over-expression of PPARγ in pig skeletal muscle improves oxidative fiber formation and intramuscular fat deposition[EB/OL]. 10.1101/2020.06.24.168641, 2020.
[38] CHEN W, XUE N N, CUI L K, XU C, ZHENG Z B, LI S, WANG L L. Novel dual PPARα/δ agonist F3SM increased oxidative muscle fiber and ameliorated metabolic disorders in non-trained mice. The FASEB Journal, 2019, 33(S1): 670.7. doi:10.1096/fasebj.2019.33.1_supplement.
[39] LUQUET S, LOPEZ-SORIANO J, HOLST D, FREDENRICH A, GRIMALDI P A. Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 2003, 17(15): 2299-2301.
[40] 王小芳, 曾洁, 田崇奇, 王小龙, 杨雨鑫, 陈玉林, 张恩平. 日粮能量和蛋白水平对滩羊脂肪组织PPARγ和FABP4mRNA表达的影响. 畜牧兽医学报, 2016, 47(11): 2266-2273.
WANG X F, ZENG J, TIAN C Q, WANG X L, YANG Y X, CHEN Y L, ZHANG E P. Effects of diet energy and protein levels on the mRNA expression of PPARγ and FABP4 in adipose tissues of Tan sheep. Chinese Journal of Animal and Veterinary Sciences, 2016, 47(11): 2266-2273. (in Chinese)
[41] 宋洪新, 任战军, 杨雪娇, 贺国瑞, 韩营, 常万波, 颉宏兵. 日粮能量水平对幼龄獭兔血液生化指标及肝脏PPARγ、INSIG-2基因表达的影响. 西北农林科技大学学报(自然科学版), 2014, 42(5): 11-16, 21. doi:10.13207/j.cnki.jnwafu.2014.05.029.
SONG H X, REN Z J, YANG X J, HE G R, HAN Y, CHANG W B, XIE H B. Effect of diet energy level on blood parameters and expression of PPARγand INSIG-2 genes in liver of juvenile rabbits. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(5): 11-16, 21. doi:10.13207/j.cnki.jnwafu.2014.05.029. (in Chinese)
[1] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[2] ZHANG Lan,WANG LiangZhi,HUANG YanLing,LIAO XiuDong,ZHANG LiYang,LÜ Lin,LUO XuGang. Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers [J]. Scientia Agricultura Sinica, 2021, 54(22): 4906-4916.
[3] ZHANG MeiQi,LI Yan,LI ShuJing,GAO YanXia,LI JianGuo,CAO YuFeng,LI QiuFeng. Effects of Dietary Energy Levels on Production Performance, Blood Index, Slaughter Performance and Meat Quality of Holstein Steers [J]. Scientia Agricultura Sinica, 2021, 54(1): 203-212.
[4] ZHU XingHao,CHEN Qing,SHAO BingHao,GUO YuJun,ZHANG XiangLi,DU PengFei,ZHU Yao,HUANG YanQun,CHEN Wen. Effect of the Heterozygous Sex-Linked Dwarf Gene on Fat Deposition in Normal Type Chickens [J]. Scientia Agricultura Sinica, 2021, 54(1): 213-223.
[5] LI XueRu,SHI XiXiong,WANG JianZhong,ZHANG PanGao,TIAN Zhu,HAN Ling. Effect of Nitric Oxide Synthetase Inhibitor on Yak Meat Quality During Post-Mortem Aging [J]. Scientia Agricultura Sinica, 2020, 53(8): 1617-1626.
[6] CHEN LiJing,CHEN Zhuo,LI Na,SUN YaWei,LI HongBo,SONG WenWen,ZHANG Yang,YAO Gang. Comparison of the Carcass and Beef Quality Traits with the Expression of the Lipid Metabolism Related Genes Between Xinjiang Brown Cattle and Angus Beef Cattle [J]. Scientia Agricultura Sinica, 2020, 53(22): 4700-4709.
[7] ZHAO YangYang,LI Yan,HAN YongSheng,WANG XiaoLing,LI JianGuo,GAO YanXia,CAO YuFeng,LI QiuFeng. The Slaughter Characteristics and Meat Quality of Holstein Bulls Grain-Fed Under Different Dietary Crude Protein Levels [J]. Scientia Agricultura Sinica, 2020, 53(2): 431-439.
[8] ZHU Hong-long, YANG Jie, XU Xiao-bo, PAN Xiao-qing,QIN Feng, LI Jian, XU Ye-fei, ZHOU Xiao-yun, GU Hong-ru. Effects of Rearing Environment on Physiological and Behavioural Responses of Pigs to Pre-Slaughter Handing, Carcass Straits, and Meat Quality [J]. Scientia Agricultura Sinica, 2016, 49(22): 4441-4450.
[9] ZHOU Qin-fei, HE Zhi-fei, LI Hong-jun. Effect of Cage Type on Slaughter Performance and Meat Quality Change During Postmortem Aging of Meat Rabbit [J]. Scientia Agricultura Sinica, 2016, 49(12): 2430-2436.
[10] XING Huan, LUAN Su-jun, SUN Yong-bo, SA Ren-na, ZHANG Hong-fu. Effect of Ammonia in Broiler Houses on the Antioxidant Activity and Meat Quality of Broiler [J]. Scientia Agricultura Sinica, 2015, 48(21): 4347-4357.
[11] HUANG Jin-yu, JIAO Jin-zhen, RAN Tao, TANG Shao-xun, KANG Jin-he, TAN Zhi-liang. Study on the Developmental Changes of Meat and Antioxidant Capacity of Grazing and House-Feeding Goats [J]. Scientia Agricultura Sinica, 2015, 48(14): 2827-2838.
[12] GUO Xin, HUANG Feng, ZHANG Chun-jiang, HU Hong-hai, CHEN Wen-bo, ZHANG Hong. Effects of Pressure Varied Static Brining on Pork Quality [J]. Scientia Agricultura Sinica, 2015, 48(11): 2229-2240.
[13] LI Bo-Jiang, LI Ping-Hua, WU Wang-Jun, LI Qi-Fa, HUANG Rui-Hua, LIU Hong-Lin. Progresses in Research of the Mechanisms of Skeletal Muscle Fiber Formation [J]. Scientia Agricultura Sinica, 2014, 47(6): 1200-1207.
[14] XUE Shan, HE Zhi-Fei, LI Hong-Jun. Variation of Muscle Glycogen of IRA Rabbit After Slaughter and Its Correlation with Changes of Rabbit Meat Quality [J]. Scientia Agricultura Sinica, 2014, 47(4): 814-822.
[15] ZHOU Li-Sheng, YANG Jie, LIU Xian-Xian, ZHANG Zhi-Yan, YANG Bin, MA Jun-Wu. Genome-Wide Association Analyses for Musle pH 72 h Value and Meat Color Traits in Sutai Pigs [J]. Scientia Agricultura Sinica, 2014, 47(3): 564-573.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!