Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (18): 3497-3507.doi: 10.3864/j.issn.0578-1752.2018.18.006

• PLANT PROTECTION • Previous Articles     Next Articles

Collation of Scientific Names of Six Maize Disease Pathogens

XiaoMing WANG()   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2018-04-11 Accepted:2018-07-13 Online:2018-09-16 Published:2018-09-16

Abstract:

Fungal, bacterial and viral diseases are serious threats to maize production. In China, maize has been planted in wide areas with different agri-ecologic types and about 30 important diseases occurred annually. Because of shorter research history and limited transmission of knowledge in maize diseases, there are some confusions in using the old pathogen names of maize diseases in China, and it affects the communication about maize diseases between researches. In this paper, six scientific names of pathogens, which causing common smut, head smut, red leaf disease, northern corn leaf spot, eyespot and black bundle disease respectively, were collated based on taxonomic history of the pathogens and advantages on modern morphological taxonomy and molecular systematics. (1) The morphological and molecular characters of causal agent of common smut showed that the agent was not closely related to species of Ustilago. The name Mycosarcoma maydis, given by Brefeld in 1912, was resurrected as the valid name for maize common smut pathogen, and Ustilago maydis, a widely used name, was the synonym now. (2) Based on host selection, sporocarp morphology, host disease characteristics and result in multiple gene analyses within Sporisorium, Sphacelotheca and other related genera, Sporisorium reilianum, re-established by Langdon & Fullerton in 1978, was described as the correct name of pathogen causing maize head smut. The name, Sphacelotheca reiliana, was as one of synonyms. Because of host specificity between maize and sorghum, the maize pathogen also named as Sporisorium reilianum f. sp. zeae. (3) The virus Barley yellow dwarf virus (BYDV) is generally considered to be causal agent of maize red leaf disease. Recently, some virus strains infected maize were sequenced, and results showed clearly that Wheat yellow dwarf virus-GPV and Maize yellow dwarf virus-RMV all belong to Polerovirus genus, are pathogens causing the disease in China. (4) In spite of similar in morphology, but it is proved that genus Kabatiella is completely different from the genus Aureobasidium by multigene phylogenetic analyses. The correct name of pathogen causing maize northern corn leaf spot is Kabatiella zeae, and Aureobasidium zeae is its synonym. (5) Helmintosporium-like fungi have undergone several changes in genera. By detailed analysis on morphology, DNA sequence data, mode of life and novel metabolite production showed that Bipolaris zeicola, causing eyespot on maize, is a valid and conserved anamorph name. The name of Bipolaris was protected over Cochliobolus and approved by the Nomenclature Committee for Fungi. (6) The name Cephalosporium acremonium was confusingly used to different fungi long-time and it has lost the strict concept of criterion species. Acremonium, including more than 150 species, is also highly polyphyletic taxon with several teleomorph genera. Molecular biological characters showed the heterogeneity of the genus Acremonium. By combining molecular characteristics with morphology, old Acremonium species were reclassified into some genera, and the name Sarocladium strictum was given to the pathogen of maize black bundle disease with the synonyms Cephalosporium acremonium and Acremonium strictum.

Key words: maize, pathogen, scientific name, collation

[1] UNGER F.Über Den Einflu Des Bodens Auf Die Verteilung Der Gewächse, Nachgewiesen in Der Vegetation Des Nordöstlichen Tirols. Wien, Austria, 1836.
[2] CORDA A C J. Icones Fungorum hucusque cognitorum. V. Prague: J G Calve, 1842.
[3] VÁNKY K. Taxonomical studies on Ustilaginales. VL. Mycotaxon, 1990, 38: 267-278.
[4] MUNKVOLD G P, WHITE D G.Compendium of Corn Diseases. 4th ed. St. Paul, Minnesota ,USA: The American Phytopathological Society Press, 2016.
[5] PIEPENBRING M, STOLL M, OBERWINKLER F.The generic position ofUstilago maydis, Ustilago scitaminea, and Ustilago esculenta(Ustilaginales). Mycological Progress, 2002, 1(1): 71-80.
[6] STOLL M, PIEPENBRING M, BEGEROW D, OBERWINKLER F.Molecular phylogeny ofUstilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences. Canadian Journal of Botany, 2003, 81(9): 976-984.
[7] STOLL M, BEGEROW D, OBERWINKLER F.Molecular phylogeny ofUstilago, Sporisorium, and related taxa based on combined analyses of rDNA sequences. Mycological Research, 2005, 109(3): 342-356.
doi: 10.1017/S0953756204002229 pmid: 15912952
[8] VÁNKY K, LUTZ M.Tubisorus, a new genus of smut fungi (Ustilaginomycetes) for Sporisorium pachycarpum. Mycologia Balcanica, 2011, 8: 129-135.
[9] KÄMPER J, KAHMANN R, BÖLKER M, MA L J, BREFORT T, SAVILLE B J, BANUETT F, KRONSTAD J W, GOLD S E, MÜLLER O, PERLIN M H, WÖSTEN H A, de VRIES R, RUIZ-HERRERA J, REYNAGA-PEÑA C G, SNETSELAAR K, McCANN M, PÉREZ-MARTÍN J, FELDBRÜGGE M, BASSE C W, STEINBERG G, IBEAS J I, HOLLOMAN W, GUZMAN P, FARMAN M, STAJICH J E, SENTANDREU R, GONZÁLEZ- PRIETO J M, KENNELL J C, MOLINA L, SCHIRAWSKI J, MENDOZA-MENDOZA A, GREILINGER D, MÜNCH K, RÖSSEL N, SCHERER M, VRANES M, LADENDORF O, VINCON V, FUCHS U, SANDROCK B, MENG S, HO E C, CAHILL M J, BOYCE K J, KLOSE J, KLOSTERMAN S J, DEELSTRA H J, ORTIZ-CASTELLANOS L, LI W, SANCHEZ-ALONSO P, SCHREIER P H, HÄUSER-HAHN I, VAUPEL M, KOOPMANN E, FRIEDRICH G, VOSS H, SCHLÜTER T, MARGOLIS J, PLATT D, SWIMMER C, GNIRKE A, CHEN F, VYSOTSKAIA V, MANNHAUPT G, GÜLDENER U, MÜNSTERKÖTTER M, HAASE D, OESTERHELD M, MEWES H W, MAUCELI E W, DeCAPRIO D, WADE C M, BUTLER J, YOUNG S, JAFFE D B, CALVO S, NUSBAUM C, GALAGAN J, BIRREN B W. Insights from the genome of the biotrophic fungal plant pathogenUstilago maydis. Nature, 2006, 444: 97-101.
doi: 10.1038/nature05248 pmid: 17080091
[10] HO E C H, CAHILL M J, SAVILLE B J. Gene discovery and transcript analyses in the corn smut pathogenUstilago maydis: expressed sequence tag and genome sequence comparison. BMC Genomics, 2007, 8: 334.
[11] GAO L, KELLIHER T, NGUYEN L, WALBOT V. Ustilago maydis reprograms cell proliferation in maize anthers. The Plant Journal, 2013, 75(6): 903-914.
[12] MCTAGGART A R.Systematics of the Ustilago-Sporisorium- Macalpinomyces complex of smut fungi[D]. Brisbane St Lucia: Queensland University of Technology, 2010.
[13] MCTAGGART A R, SHIVAS R G, GEERING A D W, VÁNKY K, SCHARASCHKIN T. A review of theUstilago-Sporisorium- Macalpinomyces complex. Persoonia, 2012, 29: 55-62.
[14] MCTAGGART A R, SHIVAS R G, GEERING A D W, CALLAGHAN B, VÁNKY K, SCHARASCHKIN T. Soral synapomorphies are significant for the systematics of theUstilago-Sporisorium- Macalpinomyces complex (Ustilaginaceae). Persoonia, 2012, 29: 63-77.
[15] MCTAGGART A R, SHIVAS R G, GEERING A D W, VÁNKY K, SCHARASCHKIN T. Taxonomic revision ofUstilago, Sporisorium and Macalpinomyces. Persoonia, 2012, 29: 116-132.
[16] BREFELD O.Untersuchungen aus dem Gesammtgebiete der Mykologie: Die Brandpilze I, Volume 5 (Studies from the Field of Mycology: The Rusts I). Commissions-Verlag von Heinrich Schoningh, Munster, German, 1912.
[17] MCTAGGART A R, SHIVAS R G, BOEKHOUT T, OBERWINKLER F, VÁNKY K, PENNYCOOK S R, BEGEROW D.Mycosarcoma(Ustilaginaceae), a resurrected generic name for corn smut, 2016, 7(2): 309-315.
[18] PIĄTEK M, LUTZ M, SOUSA F M P, SANTOS A R O, FÉLIX C R, LANDELL M F, GOMES F C O, ROSA C A.Pattersoniomyces tillandsiae gen. et comb. nov.: linking sexual and asexual morphs of the only known smut fungus associated with Bromeliaceae. Organisms, Diversity, Evolution, 2017, 17(3): 531-543.
doi: 10.1007/s13127-017-0340-8
[19] LI Y M, SHIVAS R G, CAI L.Cryptic diversity inTranzscheliella spp.(Ustilaginales) is driven by host switches. Scientific Reports, 2017, 7: 43549.
[20] LI Y M, SHIVAS R G, MCTAGGART A R, ZHAO P, CAI L.Ten new species ofMacalpinomyces on Eriachne in northern Australia. Mycologia, 2017, 109(3): 408-421.
[21] 郭林. 中国真菌志 (第十二卷): 黑粉菌科. 北京: 科学出版社,2000.
GUO L. Flora Fungorum Sinicorum.Vol. 12. Ustilaginaceae. Beijing: Science Press, 2000. (in Chinese)
[22] KÜHN J. Ustilago reiliana Kühn//RABENHORST G L. Fungi Europaei Exsiccati, 1875, ed. nova, s. 2, cent. 20, no. 1998.
[23] PASSERINI G.Ustilago reiliana Kühn//RABENHORST G L. Fungi Europaei Exsiccati, 1876, ed. nova, s. 2, cent. 1 (resp. cent. 21), no. 2096.
[24] CLINTON G P.The smuts of Illinois’ agricultural plants.Illinois Agricultural Experiment Station Bulletin, 1900, 57: 348-349.
[25] CLINTON G P. North American Ustilagineae.The Journal of Mycology, 1902, 8(3): 128-156.
doi: 10.2307/3752547
[26] MCALPINE D.The Smuts of Australia, their Structure, Life History, Treatment, and Classification. Melbourne, J. Kemp, Government Printer, 1910.
[27] LANGDON R F N, FULLERTON R A. The genus Sphacelothec(Ustilaginales): criteria for its delimitation and the consequences thereof. aMycotaxon, 1978, 6(3): 421-456.
[28] MARTINEZ C, ROUX C, DARGENT R.Biotrophic development ofSporisorium reilianum f. sp. zeae in vegetative shoot apex of maize. Phytopathology, 1999, 89: 247-253.
[29] ZUTHER K, KAHNT J, UTERMARK J, IMKAMPE J, UHSE S, SCHIRAWSKI J.Host specificity ofSporisorium reilianum is tightly linked to generation of the phytoalexin luteolinidin by Sorghum bicolor. Molecular Plant-Microbe Interactions, 2012, 25(9): 1230-1237.
[30] POLONI A, SCHIRAWSKI J.Host specificity inSporisorium reilianum is determined by distinct mechanisms in maize and sorghum. Molecular Plant Pathology, 2016, 17(5): 741-754.
[31] VÁNKY K. The smut fungi (Ustilaginomycetes) ofBothriochloa, Capillipedium and Dichanthium(Poaceae). Fungal Diversity, 2004, 15: 221-246.
[32] VÁNKY K, VÁNKY C, DENCHEV C M. Smut fungi in Africa - a checklist. Mycologia Balcanica, 2011, 8: 1-77.
[33] ALLEN T C.Symptoms of golden bantam corn inoculated withBarley yellow dwarf virus. Phytopathology, 1957, 47: 1.
[34] STONER W N.Studies of transmission ofBarley yellow dwarf virus to corn(Zea mays). Phytopathology, 1965, 55: 1078.
[35] PEARSON M N, ROBB S M.The occurrence and effects ofBarley yellow dwarf virus in maize in SW England. Plant Pathology, 1984, 33: 503-512.
[36] STONER W N.Barley yellow dwarf virus infection in maize. Phytopathology, 1977, 67: 975-981.
[37] PANAYOTOU P C.Effect of barley yellow dwarf on several varieties of maize. Plant Disease Reporter, 1977, 61(10): 815-819.
[38] BELLI G, CINQUANTA S, SANICI C.Infezioni miste di MDMV (maize dwarf mosaic virus) e BYDV (barley yellow dwarf virus) in piante di mais in Lombardia. Rivista di Patologia Vegetale, 1980, 16(1/2): 83-86.
[39] COCEANO P G, PERESSINI S.Colonisation of maize by aphid vectors ofBarley yellow dwarf virus. Annals of Applied Biology, 1989, 114(3): 443-447.
[40] BURNETT P A. World Perspectives on Barley Yellow Dwarf. Proceedings of the International Workshop, 1987, Udine, Italy. 1990, CIMMYT, Mexico, D.F. Mexico.
[41] 吴尔福, 王鸣岐. 玉米红叶病鉴定诊断及其化学防治. 自然杂志, 1984, 7(2): 84-86, 160.
WU E F, WANG M Q.Identification and diagnosis of maize red leaf disease and its control with chemicals. Chinese Journal of Nature, 1984, 7(2): 84-86, 160. (in Chinese)
[42] 周广和, 张淑香. 玉米红叶病的病源和传播途径. 中国农业科学, 1985, 18(3): 92-93.
ZHOU G H, ZHANG S X.The pathogen (BYDV) of maize red leaf disease and the ways for its spread. Scientia Agricultura Sinica, 1985, 18(3): 92-93. (in Chinese)
[43] 张惠芳, 朱福成, 杨凤琪, 张月莲, 王克兰. 大麦黄矮病毒侵染玉米研究初报. 甘肃农业科技, 1993(6): 32-33.
ZHANG H F, ZHU F C, YANG F Q, ZHANG Y L, WANG K L.Barley yellow dwarf virus infect on maize. Gansu Agricultural Science and Technology, 1993(6): 32-33. (in Chinese)
[44] BROWN J K, WYATT S D, HAZELWOOD D.Irrigated corn as a source ofBarley yellow dwarf virus and vectors in eastern Washington. Phytopathology, 1984, 74(1): 46-49.
[45] MAR T B, LAU D, SCHONS J, YAMAZAKI-LAU E, JR NHANI A.Molecular identification based on coat protein sequences of theBarley yellow dwarf virus from Brazil. Scientia Agricola, 2013, 70(6): 428-434.
[46] IVANOVIĆ D, LEVIĆ J, IVANOVIĆ M, PENČIĆ V. Barley yellow dwarf virus in maize in Yugoslavia. Maydica, 1992, 37(3): 287-292.
[47] POCSAI E, KOVÁCS G, MURÁNYI I, OROSZ Á, PAPP M, SZUNICS L. Differentiation ofBarley yellow dwarf luteovirus serotypes infecting cereals and maize in Hungary. Agronomie, 1995, 15(7/8): 401-408.
[48] MOINI A A, IZADPANAH K.Survival of barley yellow dwarf viruses in maize and Johnson grass in Mazandaran. Iranian Journal of Plant Pathology, 2000, 36(3/4): 103-104.
[49] TOKSÖZ Y, YILMAZ N D K. Samsun ilinde mısır (Zea mays L.) üretim alanlarında enfeksiyon oluşturan virüslerin belirlenmesi (Determination of viruses causing infection in corn(Zea mays L.) fields in Samsun province). Anadolu Tarım Bilimleri Dergisi (Anadolu Journal of Agricultural Sciences), 2016, 31(2): 199-206.
[50] WU B, BLANCHARD-LETORT A, LIU Y, ZHOU G, WANG X, ELENA S F, Dynamics of molecular evolution and phylogeography ofBarley yellow dwarf virus-PAV. PLoS ONE, 2011, 6(2): e16896.
[51] MILLER W A, LIU S J, BECKETT R J.Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Molecular Plant Pathology, 2002, 3(4): 177-183.
[52] DU Z Q, LI L, LIU L, WANG X F, ZHOU G.Evaluation of aphid transmission abilities and vector transmission phenotypes of barley yellow dwarf viruses in China. Journal of Plant Pathology, 2007, 89(2): 251-259.
doi: 10.1021/np070095j
[53] ZHANG W W, CHENG Z M, XU L, WU M S, WATERHOUSE P, ZHOU G H, LI S F.The complete nucleotide sequence of the barley yellow dwarf GPV isolate from China shows that it is a new member of the genusPolerovirus. Archives of Virology, 2009, 154(7): 1125-1128.
doi: 10.1007/s00705-009-0415-8 pmid: 19551470
[54] KRUEGER E N, BECKETT R J, GRAY S M, MILLER W A. The complete nucleotide sequence of the genome of Barley yellow dwarf virus-RMV reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses. Frontiers in Microbiology,2013, 4: Article 205.
[55] 成田武四, 平塚保之. トウモロコシ褐斑病菌Kabatiella zeae n. sp.について. 日植病报, 1959, 24(3): 147-153.
NARITA T, HIRATSUKA Y.Studies onKabatiella zeae n. sp., the causal fungus of a new leaf spot disease of corn. Japanese Journal of Phytopathology, 1959, 24(3): 147-153. (in Japanese)
[56] DINGLEY J M.Eye spot disease of maize in New Zealand. New Zealand Journal of Agricultural Research, 1973, 16(3): 325-328.
doi: 10.1080/00288233.1973.10421111
[57] HERMANIDES-NIJHOF E J.Aureobasidium and allied genera. Studies in Mycology, 1977, 15: 141-177.
[58] YURLOVA N A, UIJTHOF J M J, DE HOOG G S. Distinction of species inAureobasidium and related genera by PCR-ribotyping. Antonie van Leeuwenhoek, 1996, 69: 323-329.
doi: 10.1007/BF00399621 pmid: 8836430
[59] YURLOVA N A, DE HOOG G S, VAN DEN ENDE A H G. Taxonomy ofAureobasidium and allied genera. Studies in Mycology, 1999, 43: 63-69.
[60] SEIFERT K, MORGAN-JONES G, GAMS W, KENDRICK B.The Genera of Hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands, 2011.
[61] THAMBUGALA K M, ARIYAWANSA H A, LI Y M, BOONMEE S, HONGSANAN S, TIAN Q, SINGTRIPOP C, BHAT D J, CAMPORESI E, JAYAWARDENA R, LIU Z Y, XU J C, CHUKEATIROTE E, HYDE K D.Dothideales. Fungal Diversity, 2014, 68: 105-158.
[62] WIJAYAWARDENE N N, CROUS P W, KIRK P M, HAWKSWORTH D L, BOONMEE S, BRAUN U, DAI D Q, D'SOUZA M J, DIEDERICH P, DISSANAYAKE A, DOILOM M, HONGSANAN S, JONES E B G, GROENEWALD J Z, JAYAWARDENA R, LAWREY J D, LIU J K, LUCKING R, MADRID H, MANAMGODA D S, MUGGIA L, NELSEN M P, PHOOKAMSAK R, SUETRONG S, TANAKA K, THAMBUGALA K M, WANASINGHE D R N, WIKEE S, ZHANG Y, APTROOT A, ARIYAWANSA H A, BAHKALI A H, BHAT D J, GUEIDAN C, CHOMNUNTI P, DE HOOG G S, KNUDSEN K, LI W J, MCKENZIE E H C, MILLER A N, PHILLIPS A J L, PIĄTEK M, RAJA H A, SHIVAS R S, SLIPPERS B, TAYLOR J E, TIAN Q, WANG Y, WOUDENBERG J H C, CAI L, JAKLITSCH W M, HYDE K D. Naming and outline ofDothideomycetes-2014 including proposals for the protection or suppression of generic names. Fungal Diversity, 2014, 69: 1-55.
doi: 10.1007/s13225-014-0309-2 pmid: 4896388
[63] ULLSTRUP A J.Two physiologic races ofHelminthosporium maydis in the corn belt. Phytopathology, 1941, 31(6): 508-521.
[64] ULLSTRUP A J.Further studies on a species ofHelminthosporium parasitizing corn. Phytopathology, 1944, 34(2): 214-222.
[65] STOUT G L.New fungi found on the Indian corn plant in Illinois. Mycologia, 1930, 22(6): 271-287.
doi: 10.2307/3753896
[66] NELSON R R.Cochliobolus carbonum, the perfect stage of Helminthosporium carbonum. Phytopathology, 1959, 49(12): 807-810.
[67] SHOEMAKER R A.Nomenclature ofDrechslera and Bipolaris, grass parasites segregated from ‘Helminthosporium’. Canadian Journal of Botany, 1959, 37(5): 879-887.
[68] SUBRAMANIAN C V, JAIN B L.A revision of some graminicolousHelminthosporia. Current Science, 1966, 35(14): 352-355.
[69] SIVANESAN A.The Bitunicate Ascomycetes and their Anamorphs. Lubrecht & Cramer Ltd., Vaduz,Liechtenstein, 1984.
[70] MANAMGODA D S, CAI L, BAHKALI A H, CHUKEATIROTE E, HYDE K D.Cochliobolus: an overview and current status of species. Fungal Diversity, 2011, 51(1): 3-42.
[71] MANAMGODA D S, CAI L, MCKENZIE E H C, CROUS P W, MADRID H, CHUKEATIROTE E, SHIVAS R G, TAN Y P, HYDE K D. A phylogenetic and taxonomic re-evaluation of theBipolaris - Cochliobolus - Curvularia complex. Fungal Diversity, 2012, 56(1): 131-144.
[72] MANAMGODA D S, ROSSMAN A Y, CASTLEBURY L A, CROUS P W, MADRID H, CHUKEATIROTE E, HYDE K D.The genusBipolaris. Studies in Mycology, 2014, 79(1): 221-288.
[73] ROSSMAN A Y, MANAMGODA D S, HYDE K D.Proposal to conserve the nameBipolaris against Cochliobolus (Ascomycota: Pleosporales: Pleosporaceae). Taxon, 2013, 62(6): 1331-1332.
[74] CORDA A C J. Icones Fungorum Hucusque Cognitorum. Apud J. G. Calve, Pragae: 1839 .
[75] GAMS W.Cephalosporium-artige Schimmelpilze (Hyphomycetes) [Cephalosporium-like Mould Fungi (Hyphomycetes)]. Gustav Fischer Verlag, Stuttgart, Germany: 1971.
[76] GAMS W.Typisierung der GattungAcremonium. Nova Hedwigia, 1968, 16: 141-145.
[77] GAMS W, LACEY J.Cephalosporium-like Hyphomycetes: Two species of Acremonium from heated substrates. Transactions of the British Mycological Society, 1972, 59(3): 519-522.
[78] GAMS W.Cephalosporium-like Hyphomycetes: Some tropical species. Transactions of the British Mycological Society, 1975, 64: 389-404.
[79] ROSSMAN A Y, SEIFERT K A, SAMUELS G J, MINNIS A M, SCHROERS H-J, LOMBARD L, CROUS P W, PÕLDMAA K, CANNON P F, SUMMERBELL R C, GEISER D M, ZHUANG W-Y, HIROOKA Y, HERRERA C, SALGADO-SALAZAR C, CHAVERRI P. Genera inBionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection. IMA Fungus, 2013, 4(1): 41-51.
[80] GUARRO J, GAMS W, PUJOL I, GENE J.Acremonium species: new emerging fungal opportunists—in vitro antifungal susceptibilities and review. Clinical Infectious Diseases, 1997, 25: 1222-1229.
[81] GLENN A E, BACON C W, PRICE R, HANLIN R T.Molecular phylogeny ofAcremonium and its taxonomic implications. Mycologia, 1996, 88(3): 369-383.
doi: 10.2307/3760878
[82] PERDOMO H, SUTTON D A, GARCÍA D, FOTHERGILL A W, CANO J, GENE J, SUMMERBELL R C, RINALDI M G, GUARRO J.Spectrum of clinically relevantAcremonium species in the United States. Journal of Clinical Microbiology, 2011, 49(1): 243-256.
[83] NOVICKI T J, LAFE K, BUI L, BUI U, GEISE R, MARR K, COOKSON B T.Genetic diversity among clinical isolates ofAcremonium strictum determined during an investigation of a fatal mycosis. Journal of Clinical Microbiology, 2003, 41(6): 2623-2628.
doi: 10.1128/JCM.41.6.2623-2628.2003 pmid: 156529
[84] SUMMERBELL R C, GUEIDAN C, SCHROERS H J, DE HOOG G S, STARINK M, ROSETE Y A, GUARRO J, SCOTT J A.Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Studies in Mycology, 2011, 68: 139-162.
[85] GIRALDO A, GENÉ J, SUTTON D A, MADRID H, DE HOOG G S, CANO J, DECOCK C, CROUS P W, GUARR J. Phylogeny ofSarocladium(Hypocreales). Persoonia, 2015, 34: 10-24.
doi: 10.3767/003158515X685364 pmid: 4510268
[86] AGHDAM S A, FOTOUHIFAR K B.New reports of endophytic fungi associated with cherry (Prunus avium) and sour cherry(Prunus cerasus) trees in Iran. Mycologia Iranica, 2016, 3(2): 75-85.
[87] TORBATI M, ARZANLOU M, BAKHSHI M.Morphological and molecular identification of ascomycetous coprophilous fungi occurring on feces of some bird species. Current Research in Environmental & Applied Mycology, 2016, 6(3): 210-217.
[88] JOHANSEN R B, JOHNSTON P, MIECZKOWSKI P, PERRY G L W, ROBESON M S, BURNS B R, VILGALYS R. A native and an invasive dune grass share similar, patchily distributed root- associated fungal communities. Fungal Ecology, 2016, 23: 141-155.
doi: 10.1016/j.funeco.2016.08.003
[89] 许志刚. 拉汉-汉拉植物病原生物名称. 北京: 中国农业出版社, 2010.
XU Z G.Scientific Names of Plant Pathogens. Beijing: China Agriculture Press, 2010. (in Chinese)
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[14] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[15] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!