Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (17): 3275-3290.doi: 10.3864/j.issn.0578-1752.2018.17.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Nitrogen Application and Cassava-Peanut Intercropping on Cassava Nutrient Accumulation and System Nutrient Utilization

LIN HongXin1,2, PAN XiaoHua1, YUAN ZhanQi2, XIAO YunPing2, LIU RenGen2, WANG RuiQing2, LÜ FengJuan2   

  1. 1College of Agronomy, Jiangxi Agricultural University, Nanchang 330045; 2Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System for the Middle  and Lower Reaches of the Yangtze River, Ministry of Agriculture/National Engineering and Technology Research Center for Red Soil Improvement, Nanchang 330200
  • Received:2018-01-31 Online:2018-09-01 Published:2018-09-01

Abstract: 【Objective】Cassava-peanut intercropping is an ecological and efficient planting pattern. The effects of N application and cassava-peanut intercropping on the cassava nutrient accumulation and system nutrient utilization were studied and analyzed to provide a theoretical basis for cassava rational intercropping with peanut and nutrient efficient use. 【Method】With cassava variety South China 205 and peanut variety Yueyou200 as materials, the experiment were carried out with two N levels as with N application and without N application, and five planting patterns, including cassava monocropping, peanut monocropping, cassava intercropping with 1 row peanut, cassava intercropping with 2 rows peanut and cassava intercropping with 3 rows peanut, and the cassava nutrient accumulation and system nutrient utilization in different cassava-peanut intercropping patterns were studied in 2015 and 2016. 【Result】The results showed that with the advancement of cassava growth stages, the tuber root N, P, K accumulation and its distribution rate increased, stem N, P, K accumulation and stem N distribution rate increased, and stem P, K distribution rate were increased first and then decreased, leaf N, P, K accumulation were increased first and then decreased, and those distribution rate were decreased. The changes of N, P, K accumulation of tuber root, stem, leaf and plant in different planting patterns were different in different growth stages and different nitrogen application levels. In the same planting pattern, compared with the treatment of without nitrogen application, N, K requirements for 100 kg pod, N, P, K requirements for 100 kg fresh tuber root, cassava N harvest index, cassava P, K partial factor productivity, K intercropping advantage, total N, P accumulation in system and cassava N, P, K ratio in system of nitrogen application treatment were increased or increased significantly, however, the peanut N, K utilization efficiency, peanut total P accumulation, cassava N, K utilization efficiency, cassava K harvest index, N, P, K land equivalent ratio, peanut N, P, K ratio in system and N intercropping advantage of nitrogen application treatment were decreased or decreased significantly. At the same nitrogen application level, total N, P accumulation and N, P, K partial factor productivity of peanut intercropped were significantly lower than those of peanut monocropping. N, P, K partial factor productivity, K utilization efficiency and P harvest index of cassava intercropped were lower than those of cassava monocropping. With the increasing of the peanut rows of intercropping, peanut N, P, K land equivalent ratio, peanut N, P, K intercropping advantage, peanut N, P, K ratio in system, peanut total N, P, K accumulation and peanut N, P, K partial factor productivity were increased or increased significantly, the cassava N, P, K ratio in system were decreased. 【Conclusion】Compared with the monocropping patterns, N, P, K partial factor productivity, yield and N, P, K accumulation of single crop in patterns of cassava intercropping with 2 rows and 3 rows peanut were decreased, but system total N, P, K accumulation were increased, and showed obvious intercropping advantage, the N, P, K intercropping advantage were from 40.87 to 112.11 kg·hm-2, 19.37 to 42.67 kg·hm-2 and 68.29 to 105.62 kg·hm-2, respectively.

Key words: cassava, peanut, intercropping;N application, nutrient accumulation, system nutrient utilization, intercropping advantage

[1]    MUONEKE C O, OGWUCHE M A O, KALU B A. Effect of maize planting density on the performance of maize/soybean intercropping system in a guinea savannah agroecosystem. African Journal of Agricultural Research, 2007, 2(12): 667-677.
[2]    董宛麟, 张立祯, 于洋, 苟芳, 毛丽丽. 农林间作生态系统的资源利用研究进展. 中国农学通报, 2011, 27(28): 1-8.
DONG W L, ZHANG L Z, YU Y, GOU F, MAO L L. Resource utilization in agro-forestry intercropping ecosystems. Chinese Agricultural Science Bulletin, 2011, 27(28): 1-8. (in Chinese)
[3]    李少明, 赵平, 范茂攀, 高世昌, 郑毅. 玉米大豆间作条件下氮素养分吸收利用研究. 云南农业大学学报, 2004, 19(5): 572-574.
LI S M, ZHAO P, FAN M P, GAO S C, ZHENG Y. Nitrogen uptake and utilization intercropping system of maize and soybean. Journal of Yunnan Agricultural University, 2004, 19(5): 572-574. (in Chinese)
[4]    READ J J, REDDY K R, JENKINS J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition. European Journal of Agronomy, 2006, 24(3): 282-290.
[5]    焦念元, 宁堂原, 赵春, 侯连涛, 李增嘉, 李友军, 付国占, 韩宾. 施氮量和玉米-花生间作模式对氮磷吸收与利用的影响. 作物学报, 2008, 34(4): 706-712.
JIAO N Y, NING T Y, ZHAO C, HOU L T, LI Z J, LI Y J, FU G Z, HAN B. Effects of nitrogen application and planting pattern on N and P absorption and use in maize-peanut intercropping system. Acta Agronomica Sinica, 2008, 34(4): 706-712. (in Chinese)
[6]    赵平, 郑毅, 汤利, 鲁耀, 肖靖秀, 董艳. 小麦蚕豆间作施氮对小麦氮素吸收、累积的影响. 中国生态农业学报, 2010, 18(4): 742-747.  
ZHAO P, ZHENG Y, TANG L, LU Y, XIAO J X, DONG Y. Effect of N supply and wheat/faba bean intercropping on N uptake and accumulation of wheat. Chinese Journal of Eco-agriculture, 2010, 18(4): 742-747. (in Chinese)
[7]    刘斌, 谢飞, 凌一波, 陈年来. 不同间作播期和密度对甜瓜/向日葵间作系统氮素利用效率的影响. 中国生态农业学报, 2016, 24(1): 36-46.
LIU B, XIE F, LING Y B, CHEN N L. Effects of intercropping time and planting density on nitrogen use efficiency of melon-sunflower intercropping system. Chinese Journal of Eco-agriculture, 2016, 24(1): 36-46. (in Chinese)
[8]    李玉英, 余常兵, 孙建好, 李春杰, 李隆, 程序. 蚕豆/玉米间作系统经济生态施氮量及对氮素环境承受力. 农业工程学报, 2008, 24(3): 223-227.
LI Y Y, YU C B, SUN J H, LI C J, LI L, CHENG X. Nitrogen environmental endurance and economically-ecologically appropriate amount of nitrogen fertilizer in faba bean/maize intercropping system. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(3): 223-227. (in Chinese)
[9]    褚贵新, 沈其荣, 曹金留, 茆泽圣, 钟增涛, 赵龙. 旱作水稻与花生间作系统中的氮素固定与转移及其对土壤肥力的影响. 土壤学报, 2003, 40(5): 717-723.
CHU G X, SHEN Q R, CAO J L, MAO Z S, ZHONG Z T, ZHAO L. Biological nitrogen fixation and nitrogen export of groundnut intercropped with rice cultivated in aerobic soil and its effect on soil nitrogen fertility. Acta Pedologica Sinica, 2003, 40(5): 717-723. (in Chinese)
[10]   王兴祥, 张桃林, 何园球, 张斌, 王明珠. 花生-南酸枣间作系统氮素利用研究. 土壤学报, 2003, 40(4): 588-592.
WANG X X, ZHANG T L, HE Y Q, ZHANG B, WANG M Z. N recovery in choerospondias axillaris and peanut (arachis hypogaea) alley cropping systems on udic ferrosol in subtropical china. Acta Pedologica Sinica, 2003, 40(4): 588-592. (in Chinese)
[11]   雍太文, 董茜, 刘小明, 刘文钰, 宋春, 杨峰, 王小春, 杨文钰. 施肥方式对玉米-大豆套作体系氮素吸收利用效率的影响. 中国油料作物学报, 2014, 36(1): 84-91.
YONG T W, DONG Q, LIU X M, LIU W Y, SONG C, YANG F, WANG X C, YANG W Y. Effect of N application methods on N uptake and utilization efficiency in maize-soybean relay strip intercropping system. Chinese Journal of oil Crop Sciences, 2014, 36(1): 84-91. (in Chinese)
[12]   POLTHANEE A, WANAPAT S, MANGPROM P. Row arrangement of peanut in cassava-peanut intercropping: II. Nutrient removal and nutrient balance in soil. Khon Kaen Agriculture Journal, 1998, 26(3): 125-131.
[13]   KOTCHASATIT A. Growth, yield and nutrient uptake of cassava and peanut in cassava/peanut intercropping systems under rained conditions at Khon Kaen province[D]. Khon Kaen: Khon Kaen University, 1999.
[14]   唐秀梅, 钟瑞春, 揭红科, 刘超, 王泽平, 韩柱强, 蒋菁, 贺梁琼, 李忠, 唐荣华. 间作花生对木薯碳氮代谢产物及关键酶活性的影响. 中国农学通报, 2011, 27(3): 94-98.
TANG X M, ZHONG R C, JIE H K, LIU C, WANG Z P, HAN Z Q, JIANG Q, HE L Q, LI Z, TANG R H. Effect of interplanting peanut on metabolites and key enzyme activities of carbon-nitrogen metabolism of cassava. Chinese Agricultural Science Bulletin, 2011, 27(3): 94-98. (in Chinese)
[15]   唐秀梅, 钟瑞春, 蒋菁, 熊发前, 贺梁琼, 李忠, 韩柱强, 黄志鹏, 唐荣华. 木薯/花生间作对根际土壤微生态的影响. 基因组学与应用生物学, 2015, 34(1): 117-124.
TANG X M, ZHONG R C, JIANG J, XIONG F Q, HE L Q, LI Z, HAN Z Q, HUANG Z P, TANG R H. The effect of cassava/peanut intercropping on microecology in rhizosphere soil. Genomics and Applied Biology, 2015, 34(1): 117-124. (in Chinese)
[16]   罗兴录. 木薯与花生间作产量效应及生态经济效益研究. 耕作与栽培, 1998(4): 1-3, 8.
LUO X L. Study on yield effect and ecological economic benefit effect in intercropping of cassava and peanut. Tillage and Cultivation, 1998(4): 1-3, 8. (in Chinese)
[17]   刘子凡, 黄洁, 魏云霞, 孙鸿锐. 不同木薯/花生模式下的产量表现及其经济产出研究. 热带作物学报, 2016, 37(1): 65-69.
LIU Z F, HUANG J, WEI Y X, SUN H R. Effect of yield performance and economic returns in different cassava/peanut intercropping system. Chinese Journal of Tropical Crops, 2016, 37(1): 65-69. (in Chinese)
[18]   XU Q, HU F L, QIAN Y. Researches on photosynthetic efficiency of cassava-peanut intercropping impacted by total solar eclipse. Energy Procedia, 2011, 5: 152-157.
[19]   熊军, 闫海锋, 韦绍丽, 覃维治, 唐秀桦, 李韦柳, 韦民政, 郑虚. 木薯+花生间作对作物光合特性、农艺性状和产量的影响. 江苏农业科学, 2016, 44(6): 165-168.
XIONG J, YAN H F, WEI S L, TAN W Z, TANG X Y, LI W L, WEI M Z, ZHENG X. Effect of cassava-peanut intercropping on photosynthetic characteristics, agronomic traits and yield. Jiangsu Agricultural Sciences, 2016, 44(6): 165-168. (in Chinese)
[20]   高志红, 陈晓远, 林昌华, 张宇鹏, 何永胜. 不同施肥水平对木薯氮磷钾养分积累、分配及其产量的影响. 中国农业科学, 2011, 44(8): 1637-1645.
GAO Z H, CHEN X Y, LIN C H, ZHANG Y P, HE Y S. Effect of fertilizer application rates on cassava N, P, K accumulations and allocation and yield in sloping lands of north Guangdong. Scientia Agricultura Sinica, 2011, 44(8): 1637-1645. (in Chinese)
[21]   黄巧义, 唐拴虎, 陈建生, 张发宝, 解开治, 黄旭, 蒋瑞萍, 李苹. 氮磷钾配比对木薯养分吸收动态及产量影响. 植物营养与肥料学报, 2014, 20(4): 947-956.
HUANG Q Y, TANG S H, CHEN J S, ZHANG F B, JIE K Z, HUANG X, JIANG R P, LI P. Effects of different N, P and K treatments on absorption and accumulation of nutrients and yield of cassava. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 947-956. (in Chinese)
[22]   林洪鑫, 袁展汽, 刘仁根, 肖运萍, 黄雪花, 汪瑞清. 不同氮磷钾处理对木薯产量、养分积累、利用及经济效益的影响. 植物营养与肥料学报, 2012, 18(6): 1457-1465.
LIN H X, YUAN Z Q, LIU R G, XIAO Y P, HUANG X H, WANG R Q. Effects of different N, P and K treatments on yield, nutrient accumulation and utilization and economic benefit of cassava. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1457-1465. (in Chinese)
[23]   EL-SHARKAWY M A. Cassava biology and physiology. Plant Molecular Biology, 2004, 56(4): 481-501.
[24]   OJENIYI S O, EZEKIEL P O, ASAWALAM D O, AWO A O, ODEDINA S A, ODEDINA J N. Root growth and NPK status of cassava as influenced by oil palm bunch ash. African Journal of Biotechnology, 2009, 8(18): 4407-4412.
[25]   刘备, 孙海东, 吴炳孙, 高乐, 吴敏, 何鹏, 韦家少. 施氮量对木薯氮素营养特性及产量形成的影响. 热带作物学报, 2016, 37(7): 1254-1260.
LIU B, SUN H D, WU B S, GAO L, WU M, HE P, WEI J S. Effects of nitrogen application on nitrogen nutrition characteristics and yield formation in cassava. Chinese Journal of Tropical Crops, 2016, 37(7): 1254-1260. (in Chinese)
[26]   黄欠如, 孙永明, 熊春贵, 熊国根, 李靖, 胡惠文, 章新亮. 丘陵红壤旱地花生套作木薯产量效益分析. 江西农业学报, 2009, 21(7): 43-45.
HUANG Q R, SUN Y M, XIONG C G, XIONG G G, LI J, HU H W, ZHANG X L. Analysis on yield and economic benefit of peanut intercropped by cassava in hilly red soil upland. Acta Agriculturae Jiangxi, 2009, 21(7): 43-45. (in Chinese)
[27]   李志贤, 王建武, 杨文亭, 舒迎花, 杜清, 刘丽玲, 舒磊. 甘蔗/大豆间作减量施氮对甘蔗产量、品质及经济效益的影响. 应用生态学报, 2011, 22(3): 713-719.
LI Z X, WANG J W, YANG W T, SHU Y H, DU Q, LIU L L, SHU L. Effects of reduced nitrogen application on the yield, quality and economic benefit of sugarcane intercropped with soybean. Chinese Journal of Applied Ecology, 2011, 22(3): 713-719. (in Chinese)
[28]   焦念元, 李亚辉, 杨潇, 尹飞, 马超, 齐付国, 刘领, 熊瑛. 玉米/花生间作行比和施磷对玉米光合特性的影响. 应用生态学报, 2016, 27(9): 2959-2967.
JIAO N Y, LI Y H, YANG X, YIN F, MA C, QI F G, LIU L, XIONG Y. Effects of maize/peanut intercropping row ratio and phosphate fertilizer on photosynthetic characteristics of maize. Chinese Journal of Applied Ecology, 2016, 27(9): 2959-2967. (in Chinese)
[29]   何铁光, 秦芳, 苏天明, 苏利荣, 张野, 何永群, 李忠义, 胡钧铭, 谢丽萍. 不同栽培模式对氮磷钾养分径流流失的影响. 水土保持研究, 2014, 21(1): 95-99, 103.
HE T G, QIN F, SU T R, SU L R, ZHANG Y, HE Y Q, LI Z Y, HU J M, XIE L P. Effect of different cultivation methods on nitrogen and phosphorus losses along with runoff. Research of Soil and Water Conservation, 2014, 21(1): 95-99, 103. (in Chinese)
[30]   凌强, 赵西宁, 高晓东, 李陆生, 李虹辰, 孙文浩. 间作经济作物对黄土丘陵区旱作红枣土壤水分的调控效应. 应用生态学报, 2016, 27(2): 504-510.
LING Q, ZHAO X N, GAO X D, LI L S, LI H C, SUN W H. Effects of inter-row economic crop planting on soil moisture in a rain-fed jujube orchard in loess hilly region, China. Chinese Journal of Applied Ecology, 2016, 27(2): 504-510. (in Chinese)
[31]   褚军, 薛建辉, 吴殿鸣, 金梅娟, 吴永波. 不同施氮水平下杨树-苋菜间作系统对土壤氮素流失的影响. 应用生态学报, 2014, 25(9): 2591-2597.
CHU J, XUE J H, WU D M, JIN M J, WU Y B. Effects of poplar-amaranth intercropping system on the soil nitrogen loss under different nitrogen applying levels. Chinese Journal of Applied Ecology, 2014, 25(9): 2591-2597. (in Chinese)
[32]   KAMRUZZAMAN M, HASANUZZAMA M. Factors affecting profitability of sugarcane production as monoculture and as intercrop in selected areas of Bangladesh. Bangladesh Journal of Agricultural Research, 2008, 32(3): 433-444.
[33]   杨文亭, 李志贤, 舒磊, 王建武. 甘蔗//大豆间作和减量施氮对甘蔗产量、植株及土壤氮素的影响. 生态学报, 2011, 31(20): 6108-6115.
YANG W T, LI Z X, SHU L, WANG J W. Effect of sugarcane// soybean intercropping and reduced nitrogen rates on sugarcane yield, plant and soil nitrogen. Acta Ecologica Sinica, 2011, 31(20): 6108-6115. (in Chinese)
[34]   杨亚东, 冯晓敏, 胡跃高, 任长忠, 曾昭海. 豆科作物间作燕麦对土壤固氮微生物丰度和群落结构的影响. 应用生态学报, 2017, 28(3): 957-965.
YANG Y D, FENG X M, HU Y G, REN C Z, ZENG Z H. Effects of legume-oat intercropping on abundance and community structure of soil N2-fixing bacteria. Chinese Journal of Applied Ecology, 2017, 28(3): 957-965. (in Chinese)
[35]   ZHANG F S, LI L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 2003, 248(1/2): 305-312.
[36]   李玉英, 孙建好, 李春杰, 李隆, 程序, 张福锁. 施氮对蚕豆/玉米间作系统蚕豆农艺性状及结瘤特性的影响. 中国农业科学, 2009, 42(10): 3467-3474.
LI Y Y, SUN J H, LI C J, LI L, CHENG X, ZHANG F S. Effects of interspecific interactions and nitrogen fertilization rates on the agoronmic and nodulation characteristics of intercropped faba bean. Scientia Agricultura Sinica, 2009, 42(10): 3467-3474. (in Chinese)
[37]   聂胜委, 陈源泉, 隋鹏, 高旺盛, 黄坚雄, 李媛媛, 熊杰, 史学朋, 吴雪梅, 孙自广. 玉米与不同植物间作对田间氨挥发的影响. 中国农业科学, 2011, 44(3): 634-640 .
NIE S W, CHEN Y Q, SUI P, GAO W S, HUANG J X, LI Y Y, XIONG J, SHI X P, WU X M, SUN Z G. Ammonia volatilization in intercropping field of maize with different crops. Scientia Agricultura Sinica, 2011, 44(3): 634-640. (in Chinese)
 
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[3] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[4] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[5] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[6] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[7] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[8] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
[9] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[10] JING Dan, YUE XiaoFeng, BAI YiZhen, GUO Can, DING XiaoXia, LI PeiWu, ZHANG Qi. The Infectivity of Aspergillus flavus in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(23): 5008-5020.
[11] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[12] XUE HuaLong,LOU MengYu,LI Xue,WANG Fei,GUO BinBin,GUO DaYong,LI HaiGang,JIAO NianYuan. Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation [J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725.
[13] ZHANG MaoNing,HUANG BingYan,MIAO LiJuan,XU Jing,SHI Lei,ZHANG ZhongXin,SUN ZiQi,LIU Hua,QI FeiYan,DONG WenZhao,ZHENG Zheng,ZHANG XinYou. Genetic Analysis of Peanut Kernel Traits in a Nested-crossing Population by Major Gene Plus Polygenes Mixed Model [J]. Scientia Agricultura Sinica, 2021, 54(13): 2916-2930.
[14] TingHui HU,LiangQiang CHENG,Jun WANG,JianWei LÜ,QingLin RAO. Evaluation of Shade Tolerance of Peanut with Different Genotypes and Screening of Identification Indexes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1140-1153.
[15] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!