Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (11): 2328-2338.doi: 10.3864/j.issn.0578-1752.2012.11.023

• RESEARCH NOTES • Previous Articles    

Rubber Particle Protein Analysis of Hevea brasiliensis by Two Dimensional 16-BAC/SDS-PAGE and Mass Spectrometry

 DAI  Long-Jun, XIANG  Qiu-Lan, LI  Yu, NIE  Zhi-Yi, KANG  Gui-Juan, DUAN  Cui-Fang, ZENG  Ri-Zhong   

  1. 中国热带农业科学院橡胶研究所/农业部橡胶树生物学与遗传资源利用重点实验室/省部共建国家重点实验室培育基地,海南儋州 571737
  • Received:2011-12-28 Online:2012-06-01 Published:2012-02-21

Abstract: 【Objective】 The objective of the study is to investigate the protein composition and to identify the unknown proteins of the rubber particles in the latex of a rubber tree (Hevea brasiliensis Müll. Arg.).【Method】The rubber particle proteins were separated using two dimensional 16-BAC/SDS-PAGE. The protein spots were cut from the 2-DE gel, subjected to trypsin digestion, and then analyzed using MALDI-TOF-TOF or mass spectrometry de novo sequencing after 4-sulfophenyl isothiocyanate (SPITC) derivatization of tryptic peptides. 【Result】 A total of 17 rubber particle proteins were identified through a MALDI/ TOF-TOF analysis, among which a new member of the rubber elongation factor (REF) subfamily, hbREF2, was identified using a method of SPITC based de novo amino acid sequencing, and its partial 3’ terminal sequence with 87 amino acid residues was obtained. The amino acid sequence of hbREF2 had a high degree of similarity with that of a well-known REF member (gi|38122474). In addition, the complete amino acid sequence of one member in the small rubber particle protein (SRPP) subfamily, SRPP (gi|37622210), was obtained through searching the latex transcriptome ESTs database with peptide sequences.【Conclusion】Rubber particle proteins were effectively separated by a 16-BAC/SDS-PAGE method and characterized by mass spectrometry. The data showed the relative abundances of rubber particle proteins and demonstrated that the major protein components of rubber particles are REF and SRPP isoforms. The global identification of the rubber particle proteins is essential to elucidate the biological functions of the rubber particles in the latex of rubber trees.

Key words: Hevea brasiliensis, rubber particle, protein, 16-BAC/SDS-PAGE two dimensional electrophoresis, mass spectrometry

[1]Archer B L, Audley B G, Bealing F J. Biosynthesis of rubber in Hevea brasiliensis. Plastics and Rubber International, 1982, 7: 109-111.

[2]Cornish K. The separate roles of plant cis and trans prenyl transferases in cis-1,4-polyisoprene biosynthesis. European Journal of Biochemistry, 1993, 218(1): 267-271.

[3]Cornish K. Biochemistry of natural rubber, a vital raw material, emphasizing biosynthetic rate, molecular weight and compartmentalization, in evolutionarily divergent plant species. Natural Products Reports, 2001, 18(2): 182-189.

[4]Dennis M S, Henzel W J, Bell J, Kohr W, Light D R. Amino acid sequence of rubber elongation factor protein associated with rubber particles in Hevea latex. The Journal of Biological Chemistry, 1989, 264(31): 18618-18626.

[5]Oh S K, Kang H, Shin D H, Yang J, Chow K S, Yeang H Y, Wagner B, Breiteneder H, Han K H. Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. Journal of Biological Chemistry, 1999, 274(24): 17132-17138.

[6]Zeng R Z, Duan C F, Li X Y, Tian W M, Nie Z Y. Vacuolar-type inorganic pyrophosphatase located on the rubber particle in the latex is an essential enzyme in regulation of the rubber biosynthesis in Hevea brasiliensis. Plant Science, 2009, 176(5): 602-607.

[7]彭世清, 陈守才. 巴西橡胶树43 kD橡胶粒子膜蛋白基因的cDNA克隆及表达. 植物生理与分子生物学学报, 2004, 30(3): 325-330.

Peng S Q, Chen S C. Expression and cloning of cDNA encoding 43 kD rubber particle membrane protein of Hevea brasiliensis. Journal of Plant Physiology and Molecular Biology, 2004, 30(3): 325-330. (in Chinese)

[8]段翠芳, 聂智毅, 曾日中. 橡胶粒子膜蛋白双向电泳体系的建立和质谱初步分析. 热带作物学报, 2006, 27(3): 22-29.

Duan C F, Nie Z Y, Zeng R Z. Establishment of 2-DE system and primary analyses on the membrane proteins of rubber particles in Hevea brasiliensis by MALDI-TOF. Chinese Journal of Tropical Crops, 2006, 27(3): 22-29. (in Chinese)

[9]Wang X C, Shi M J, Lu X L, Ma R F, Wu C G, Guo A P, Peng M, Tian W M. A method for protein extraction from different subcellular fractions of laticifer latex in Hevea brasiliensis compatible with 2-DE and MS. Proteome Science, 2010, 8: 35.

[10]Simpson R J. Proteins and Proteomics:A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 2003: 52-62.

[11]Nothwang H G, Schindler J. Two-dimensional separation of membrane proteins by 16-BAC-SDS-PAGE//Peirce M J, Wait R. Membrane Proteomics:Methods and Protocols. New York: Human Press, 2009: 269-277.

[12]Shen H L, Cheng G, Fan H Z, Zhang J, Zhang X M, Lu H J, Liu C L, Sun F X, Jin H, Xu X J, Xu G B, Wang S, Fang C Y, Bao H M, Wang Y, Wang J, Zhong H, Yu Z N, Liu Y K, Tang Z Y, Yang P Y. Expressed proteome analysis of human hepatocellular carcinoma in nude mice (LCI‐D20) with high metastasis potential. Proteomics, 2006, 6(2): 528-537.

[13]周新文, 严  钦, 周  珮, 杨芃原. 磺基异硫氰酸苯酯化学辅助方法对新蛋白质进行从头测序. 高等学校化学学报, 2009, 30(4): 706-711.

Zhou X W, Yan Q, Zhou P, Yang P Y. De novo sequence of novel protein based on chemically-assisted method using 4-sulfophenyl isothiocyanate derivatization by mass spectrometry. Chemical Journal of Chinese Universities, 2009, 30(4): 706-711. (in Chinese)

[14]Rentsch D, Görlach J, Vogt E, Amrhein N, Martinoia E. The tonoplast-associated citrate binding protein (CBP) of Hevea brasiliensis. Journal of Biological Chemistry, 1995, 270(51): 30525-30531.

[15]Wititsuwannakul R, Rukseree K, Kanokwiroon K, Wititsuwannakul  D. A rubber particle protein specific for Hevea latex lectin binding involved in latex coagulation. Phytochemistry, 2008, 69(5): 1111-1118.

[16]Koningsveld G A V, Schreuder H A, Soedjanaatmadja U M S, Beintema J J. Chitinase and beta-1,3-glucanase in the lutoid-body fraction of Hevea latex. Phytochemistry, 1996, 43(1): 29-37.

[17]Noordermeer M A, Veldink G A, Vliegenthart J F G. Fatty acid hydroperoxide lyase: A plant cytochrome P450 enzyme involved in wound healing and pest resistance. ChemBioChem, 2001, 2(7/8): 494-504.

[18]Stamnes M A, Rutherford S L, Zuker C S. Cyclophilins: A new family of proteins involved in intracellular folding. Trends in Cell Biology, 1992, 2(9): 272-276.

[19]Chow K S, Wan K L, Isa M N M, Bahari A, Tan S H, Harikrishna K, Yeang H Y. Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. Journal of Experimental Botany, 2007, 58(10): 2429-2440.

[20]Jiang P L, Tzen J T C. Caleosin serves as the major structural protein as efficient as oleosin on the surface of seed oil bodies. Plant Signaling and Behavior, 2010, 5(4): 447-449.

[21]Oh S K, Kang H, Shin D H, Yang J, Chow K S, Yeang H Y, Wagner B, Breiteneder H, Han K H. Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. The Journal of Biological Chemistry, 1999, 274(24): 17132-17138.

[22]Wititsuwaannakul D, Rattanapittayaporn A, Koyama T, Wititsuwaannakul R. Involvement of Hevea latex organelle membrane proteins in the rubber biosynthesis activity and regulatory function. Macromolecular Bioscience, 2004, 4(3): 314-323.

[23]Martin M N. The latex of Hevea brasiliensis contains high levels of both chitinases and chitinases/lysozymes. Plant Physiology, 1991, 95(2): 469-476.

[24]Dennis M S, Light D R. Rubber elongation factor from Hevea brasiliensis. Identification, characterization, and role in rubber biosynthesis. The Journal of Biological Chemistry, 1989, 264(31): 18608-18617.

[25]吴坤鑫, 王  震, 姚茂平, 陈雄庭, 陈守才. 橡胶树不同品系橡胶粒子蛋白的比较研究. 安徽农业科学, 2008(36): 15785-15787, 15803.

Wu K X, Wang Z, Yao M P, Chen X T, Chen S C. Comparative study of electrophoretic patterns of rubber particle proteins from different clones of Hevea brasiliensis. Journal of Anhui Agricultural Sciences, 2008(36): 15785-15787, 15803. (in Chinese)

[26]Sookmark U, Renaud V P, Chrestin H, Lacote R, Naiyanetr C, Seguin M, Romruensukharom P, Narangajavana J. Characterization of polypeptides accumulated in the latex cytosol of rubber trees affected by the tapping panel dryness syndrome. Plant Cell Physiology, 2002, 43(11): 1323-1333.

[27]Cornish K, Wood D F, Windle J J. Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. Planta, 1999, 210: 85-96.

[28]Roberts N J, Scott R W, Tzen J T C. Recent biotechnological applications using oleosins. The Open Biotechnology Journal, 2008, 2: 13-21.

[29]Shimada T L, Hara-Nishimura K. Oil-body-membrane proteins and their physiological functions in plants. Biological and Pharmaceutical Bulletin, 2010, 33(3): 360-363.

[30]Yatsu L Y, Jacks T J. Spherosome membranes: Half unit-membranes. Plant Physiology, 1972, 49(6): 937-943.

[31]Sjöstranda F S. A comparison of plasma membrane, cytomembranes, and mitochondrial membrane elements with respect to ultrastructural features1. Journal of Ultrastructure Research, 1963, 9(5/6): 561-580.

[32]Gomez J B, Hamzah S. Particle size distribution in Hevea latex: Some observations on the electron microscopic method. Journal of Natural Rubber Research, 1989, 4: 204-211.

[33]Tzen J T C, Cao Y Z, Laurent P, Ratnayake C, Huang A H C. Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiology, 1993, 101: 267-276.

[34]Light D R, Lazarus R A, Dennis M S. Rubber elongation by farnesyl pyrophosphate synthases involves a novel switch in enzyme stereospecificity. Journal of Biological Chemistry, 1989, 264(31): 18598-18607.

[35]Light D R, Dennis M S. Purification of a prenyltransferase that elongates cis-polyisoprene rubber from the latex of Hevea brasiliensis. Journal of Biological Chemistry, 1989, 264(31): 18589-18597.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[3] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[4] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[5] WANG LÜYang,CUI LeiHong,FENG JiangYin,HONG QiuXia,YOU MeiJing,BAO HaoYu,HANG SuQin. Effects of CaSR and CCK-1R Mediated Soybean Protein Hydrolysate on Appetite Using Mouse [J]. Scientia Agricultura Sinica, 2022, 55(4): 807-815.
[6] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[7] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[8] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[9] TONG ShiFeng,REN ZhiBin,LIN Fei,GE YuZhu,TAO JingLi,LIU Yang. Proteomic Analysis of Sperm with Different Freezing Tolerance in Erhualian Boar [J]. Scientia Agricultura Sinica, 2022, 55(23): 4743-4752.
[10] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[11] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[12] ZHANG XinYao,ZHANG Min,ZHU YuanPeng,HUI XiaoLi,CHAI RuShan,GAO HongJian,LUO LaiChao. Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(19): 3791-3806.
[13] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[14] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[15] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!