Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (12): 2439-2453.doi: 10.3864/j.issn.0578-1752.2024.12.013

• HORTICULTURE • Previous Articles     Next Articles

Targeted Metabolomics-Based Analysis of Peel Color Differences Between Yellow and Red Hawthorn

GUO RongKun1,2(), DONG NingGuang2(), NONG HuiLan1,2, WANG Han2, TENG WeiChao1(), MENG JiaXin2()   

  1. 1 Guangxi Key Laboratory of Forest Ecology and Conservation/Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation/College of Forestry, Guangxi University, Nanning 530004
    2 Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences/Beijing Engineering Research Center for Deciduous Fruit Trees/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093
  • Received:2023-11-21 Accepted:2024-04-19 Online:2024-06-16 Published:2024-06-25
  • Contact: TENG WeiChao, MENG JiaXin

Abstract:

【Objective】 The aim of this study was to explore the accumulation pattern of flavonoids and carotenoids of yellow and red hawthorn peel during the fruit ripening process, as well as to deepen the understanding of the coloration mechanism of hawthorn peel, so as to provide the guidance for peel color-directed genetic breeding. 【Method】The fruit peel of yellow hawthorn (Crataegus pinnatifida Jinruyi) and red hawthorn (Crataegus pinnatifida Ruanzi) was used as test materials. The components and content of flavonoid and carotenoid in the peel of the two cultivars during different growth stages were examined qualitatively and quantitatively based on targeted metabolomics analysis. The differential accumulation of flavonoids and carotenoid metabolites between the two cultivars was analyzed by the orthogonal partial least squares discriminant analysis (OPLS-DA). 【Result】A total of 130 kinds of flavonoids and 49 kinds of carotenoids were detected in the peel of the two hawthorn cultivars, and the components and content of these metabolites were significantly different between the two cultivars during different growth stages. The anthocyanin content of the Ruanzi peel was 400 times higher than that of the Jinruyi peel, which in the Ruanzi peel and Jinruyi peel at the mature period (S5) was 930.04 and 2.32 µg·g-1, respectively. The major anthocyanin species was cyanidin-3-O-galactoside, which accounted for more than 95% of total anthocyanins. The carotenoid metabolism analysis showed that there was no significant difference in total carotenoid content between Ruanzi and Jinruyi during the S1-S3 period, and lutein was the predominant accumulated carotenoid. The content of β-carotene, β-cryptoxanthin, neoxanthin, α-carotene, and zeaxanthin in the Jinruyi peel were significantly higher than that in the Ruanzi peel during the S4-S5 period. The massive accumulation of these carotenoid metabolites in the Jinruyi peel led to the difference in carotenoid content in the two hawthorn cultivars during the S4-S5 period. 【Conclusion】 In the hawthorn fruit mature period, the accumulation of anthocyanin in the Ruanzi peel led to the appearance of red, and the accumulation of carotenoid in the Jinruyi peel led to the appearance of yellow. The differential accumulation of anthocyanins and carotenoids played an important role in the hawthorn peel different coloration.

Key words: hawthorn, anthocyanin, flavonoid, carotenoid, metabolomics, peel color

Fig. 1

Phenotypes of Ruanzi and Jinruyi hawthorn at five developmental stages"

Fig. 2

Principal component score chart and Venn diagram of component comparison between two varieties A: Score chart of principal components; B: Comparison of components between two varieties of Venn diagram"

Fig. 3

Differences in flavonoid metabolites between two varieties and five stages A: Comparison of the quantity of flavonoid differential metabolites between two varieties at five stages; B: Venn diagram of flavonoid differential metabolites in 5 stages of two varieties; C: Heat map of flavonoid differential metabolites"

Fig. 4

Accumulation patterns of main anthocyanins and proanthocyanidins in Ruanzi and Jinruyi nd: Not detected. Different lowercase letters indicate significant difference in the same variety at different stages (P<0.05)"

Fig. 5

The proportion of flavonoid content in different stages of Ruanzi and Jinruyi hawthorn"

Fig. 6

Analysis of carotenoid metabolites A: Comparison of the number of different metabolites of carotenoids in 5 stages between two varieties; B: Wayne diagram of differential metabolites of carotenoids; C: Heat map of differential metabolites of carotenoids"

Fig. 7

Content of main carotenoid metabolites in two hawthorn varieties Different lowercase letters indicate significant difference in Jinruyi at different periods (P<0.05). Different capital letters indicate significant difference in Ruanzi at different stages (P<0.05)"

Fig. 8

Ring chart of main carotenoid content percentage in 5 periods of Jinruyi"

Fig. 9

Content of anthocyanins and carotenoids at different stages Different lowercase letters indicate significant differences in the same pigment at different stages (P<0.05)"

[1]
NAZHAND A, LUCARINI M, DURAZZO A, ZACCARDELLI M, CRISTARELLA S, SOUTO S B, SILVA A M, SEVERINO P, SOUTO E B, SANTINI A. Hawthorn (Crataegus spp.): An updated overview on its beneficial properties. Forests, 2020, 11(5): 564.
[2]
JURIKOVA T, SOCHOR J, ROP O, MLCEK J, BALLA S, SZEKERES L, ADAM V, KIZEK R. Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida BUNGE) fruits. Molecules, 2012, 17(12): 14490-14509.
[3]
LI T P, FU S Y, HUANG X, ZHANG X S, CUI Y M, ZHANG Z Y, MA Y, ZHANG X, YU Q H, YANG S N, LI S H. Biological properties and potential application of hawthorn and its major functional components: A review. Journal of Functional Foods, 2022, 90: 104988.
[4]
赵焕谆, 丰宝田. 中国果树志-山楂卷. 北京: 中国林业出版社, 1996.
ZHAO H Z, FENG B T. China Fruit Annals-Hawthorn Roll. Beijing: China Forestry Publishing House, 1996. (in Chinese)
[5]
温映红, 杨明霞, 张琴, 任瑞, 崔克强, 杨萍. 生态园林绿化中山楂的应用. 山西农业科学, 2019, 47(9): 1677-1679.
WEN Y H, YANG M X, ZHANG Q, REN R, CUI K Q, YANG P. Application of hawthorn in ecological landscape greening. Journal of Shanxi Agricultural Sciences, 2019, 47(9): 1677-1679. (in Chinese)
[6]
芦艳, 樊保国, 鲁周民. 果树的园林观赏性灰色综合评价. 西北林学院学报, 2014, 29(2): 248-251.
LU Y, FAN B G, LU Z M. Comprehensive grey evaluation of ornamental value of fruit trees. Journal of Northwest Forestry University, 2014, 29(2): 248-251. (in Chinese)
[7]
徐丽丽, 申晓青, 单素兰, 李许真, 陈书霞. 园艺作物果实皮色遗传研究进展. 分子植物育种, 2015, 13(11): 2655-2662.
XU L L, SHEN X Q, SHAN S L, LI X Z, CHEN S X. Research progress on inheritance of fruit color in horticultural crops. Molecular Plant Breeding, 2015, 13(11): 2655-2662. (in Chinese)
[8]
COYAGO-CRUZ E, CORELL M, MORIANA A, MAPELLI-BRAHM P, HERNANZ D, STINCO C M, BELTRÁN-SINCHIGUANO E, MELÉNDEZ-MARTÍNEZ A J. Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties. Food Chemistry, 2019, 277: 480-489.
[9]
YUAN H, ZHANG J X, NAGESWARAN D, LI L. Carotenoid metabolism and regulation in horticultural crops. Horticulture Research, 2015, 2: 15036.

doi: 10.1038/hortres.2015.36 pmid: 26504578
[10]
李平平, 张祥, 刘雨婷, 谢志和, 张芮豪, 赵凯, 吕俊恒, 王梓然, 文锦芬, 邹学校, 邓明华. 辣椒63份种质果皮颜色与呈色物质的关系. 园艺学报, 2022, 49(7): 1589-1601.

doi: 10.16420/j.issn.0513-353x.2021-0449
LI P P, ZHANG X, LIU Y T, XIE Z H, ZHANG R H, ZHAO K, J H, WANG Z R, WEN J F, ZOU X X, DENG M H. Studies on the relationship between pigment composition and fruit coloration of 63 peppers. Acta Horticulturae Sinica, 2022, 49(7): 1589-1601. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2021-0449
[11]
RANGANATH K G. Pigments that colour our fruits: An overview. Erwerbs-Obstbau, 2022, 64(4): 535-547.
[12]
ZHAO X C, ZHANG Y R, LONG T, WANG S C, YANG J. Regulation mechanism of plant pigments biosynthesis: anthocyanins, carotenoids, and betalains. Metabolites, 2022, 12(9): 871.
[13]
TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 2008, 54(4): 733-749.

doi: 10.1111/j.1365-313X.2008.03447.x pmid: 18476875
[14]
LIANG J L, ZHANG G Y, SONG Y T, HE C Y, ZHANG J G. Targeted metabolome and transcriptome analyses reveal the pigmentation mechanism of Hippophae (Sea Buckthorn) fruit. Foods, 2022, 11(20): 3278.
[15]
崔虎亮, 贺霞, 张前. 不同牡丹品种开花期间花瓣花青素和类黄酮组成的动态变化. 中国农业科学, 2021, 54(13): 2858-2869. doi: 10.3864/j.issn.0578-1752.2021.13.014.
CUI H L, HE X, ZHANG Q. Anthocyanins and flavonoids accumulation forms of five different color tree peony cultivars at blooming stages. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869. doi: 10.3864/j.issn.0578-1752.2021.13.014. (in Chinese)
[16]
MENG J X, YIN J, WANG H, LI H H. A TCP transcription factor in Malus halliana, MhTCP4, positively regulates anthocyanins biosynthesis. International Journal of Molecular Sciences, 2022, 23(16): 9051.
[17]
WANG Y, WANG Z Y, ZHANG J, LIU Z S, WANG H, TU H X, ZHOU J T, LUO X R, CHEN Q, HE W, YANG S F, LI M Y, LIN Y X, ZHANG Y T, ZHANG Y, LUO Y, TANG H R, WANG X R. Integrated transcriptome and metabolome analyses provide insights into the coloring mechanism of dark-red and yellow fruits in Chinese cherry [Cerasus pseudocerasus (Lindl.) G. Don]. International Journal of Molecular Sciences, 2023, 24(4): 3471.
[18]
ZHANG J F, QIU X J, TAN Q Y, XIAO Q M, MEI S Y. A comparative metabolomics study of flavonoids in radish with different skin and flesh colors (Raphanus sativus L.). Journal of Agricultural and Food Chemistry, 2020, 68(49): 14463-14470.
[19]
ZHOU X H, LIU S Y, YANG Y, LIU J, ZHUANG Y. Integrated metabolome and transcriptome analysis reveals a regulatory network of fruit peel pigmentation in eggplant (Solanum melongena L.). International Journal of Molecular Sciences, 2022, 23(21): 13475.
[20]
霍培, 季静, 王罡, 关春峰. 植物类胡萝卜素生物合成及功能. 中国生物工程杂志, 2011, 31(11): 107-113.
HUO P, JI J, WANG G, GUAN C F. Biosynthesis and function of carotenoid in plant. China Biotechnology, 2011, 31(11): 107-113. (in Chinese)
[21]
YE L S, MAI Y N, WANG Y R, YUAN J Y, SUO Y J, LI H W, HAN W J, SUN P, DIAO S F, FU J M. Metabolome and transcriptome analysis reveal the accumulation mechanism of carotenoids and the causes of color differences in persimmon (Diospyros kaki Thunb.) fruits. Agronomy, 2022, 12(11): 2688.
[22]
罗怿, 李金强, 李文云, 王小柯, 解璞. 不同品种红肉柚类胡萝卜素组分及其抗氧化能力研究. 食品研究与开发, 2022, 43(7): 18-23, 59.
LUO Y, LI J Q, LI W Y, WANG X K, XIE P. The carotenoid composition and antioxidant activity of different varieties of red-fleshed pomelo. Food Research and Development, 2022, 43(7): 18-23, 59. (in Chinese)
[23]
刁卫楠, 袁平丽, 龚成胜, 赵胜杰, 朱红菊, 路绪强, 何楠, 杨东东, 刘文革. 西瓜果肉柠檬黄色的遗传分析和基因定位. 中国农业科学, 2021, 54(18): 3945-3958. doi: 10.3864/j.issn.0578-1752.2021.18.013.
DIAO W N, YUAN P L, GONG C S, ZHAO S J, ZHU H J, LU X Q, HE N, YANG D D, LIU W G. Genetic analysis and gene mapping of canary yellow in watermelon flesh. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958. doi: 10.3864/j.issn.0578-1752.2021.18.013. (in Chinese)
[24]
FU X M, CHENG S H, LIAO Y Y, HUANG B Z, DU B, ZENG W, JIANG Y M, DUAN X W, YANG Z Y. Comparative analysis of pigments in red and yellow banana fruit. Food Chemistry, 2018, 239: 1009-1018.

doi: S0308-8146(17)31190-1 pmid: 28873516
[25]
MA X W, ZHENG B, MA Y L, XU W T, WU H X, WANG S B. Carotenoid accumulation and expression of carotenoid biosynthesis genes in mango flesh during fruit development and ripening. Scientia Horticulturae, 2018, 237: 201-206.
[26]
ZHOU W Q, ZHAO S R, XU M, NIU Y Y, NASIER M, FAN G Q, QUAN S W, ZHANG S K, WANG Y T, LIAO K. Identification of key genes controlling carotenoid metabolism during apricot fruit development by integrating metabolic phenotypes and gene expression profiles. Journal of Agricultural and Food Chemistry, 2021, 69(32): 9472-9483.

doi: 10.1021/acs.jafc.1c00496 pmid: 34347458
[27]
XU X Y, LU X N, TANG Z L, ZHANG X N, LEI F J, HOU L P, LI M L. Combined analysis of carotenoid metabolites and the transcriptome to reveal the molecular mechanism underlying fruit colouration in zucchini (Cucurbita pepo L.). Food Chemistry Molecular Sciences, 2021, 2: 100021.
[28]
WANG Y, HAO R X, GUO R K, NONG H L, QIN Y, DONG N G. Integrative analysis of metabolome and transcriptome reveals molecular insight into metabolomic variations during hawthorn fruit development. Metabolites, 2023, 13(3): 423.
[29]
YANG C J, WANG X, ZHANG J, LI N, WU R X, WANG T, DING W. Comparative metabolomic analysis of different-colored hawthorn berries (Crataegus pinnatifida) provides a new interpretation of color trait and antioxidant activity. LWT-Food Science and Technology, 2022, 163: 113623.
[30]
覃艳红, 明如宏, 姚绍嫦, 谭勇, 黄鼎. 基于代谢组学的黑老虎果实发育过程中花青苷组分动态分析. 广西中医药大学学报, 2022, 25(3): 40-45.
QIN Y H, MING R H, YAO S C, TAN Y, HUANG D. Dynamic analysis of anthocyanin components in kadsura coccinea fruits during fruit development by metabolomics. Journal of Guangxi University of Chinese Medicine, 2022, 25(3): 40-45. (in Chinese)
[31]
史斌斌, 陈楠, 李菲, 袁启凤, 颜培玲, 王立娟, 李仕品. 百香果黄酮类物质含量及发育变化. 中国南方果树, 2023, 52(1): 97-100.
SHI B B, CHEN N, LI F, YUAN Q F, YAN P L, WANG L J, LI S P. Content of flavonoids and their changes during fruit development in passion fruit. South China Fruits, 2023, 52(1): 97-100. (in Chinese)
[32]
高文科, 李明海, 赵兴东, 吴兴恩, 彭磊, 王梓然. 代谢组解析商品成熟与生理成熟芒果内在品质和类胡萝卜素合成差异. 中国农业大学学报, 2022, 27(4): 95-104.
GAO W K, LI M H, ZHAO X D, WU X E, PENG L, WANG Z R. Differences in intrinsic quality and carotenoid biosynthesis between commodity maturity and physiological maturity mango fruits by metabolome ananlsys. Journal of China Agricultural University, 2022, 27(4): 95-104. (in Chinese)
[33]
白婧. 辽宁主栽山楂品种特征差异与主要功能性成分研究[D]. 沈阳: 沈阳农业大学, 2020.
BAI J. Study on the variety characteristics and functional components of cultivated hawthorn[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese)
[34]
TADMOR Y, BURGER J, YAAKOV I, FEDER A, LIBHABER S E, PORTNOY V, MEIR A, TZURI G, SA’AR U, ROGACHEV I, AHARONI A, ABELIOVICH H, SCHAFFER A A, LEWINSOHN E, KATZIR N. Genetics of flavonoid, carotenoid, and chlorophyll pigments in melon fruit rinds. Journal of Agricultural and Food Chemistry, 2010, 58(19): 10722-10728.

doi: 10.1021/jf1021797 pmid: 20815398
[35]
SHEN Y H, YANG F Y, LU B G, ZHAO W W, JIANG T, FENG L, CHEN X J, MING R. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya. BMC Genomics, 2019, 20(1): 49.

doi: 10.1186/s12864-018-5388-0 pmid: 30651061
[36]
MONTEFIORI M, MCGHIE T K, HALLETT I C, COSTA G. Changes in pigments and plastid ultrastructure during ripening of green-fleshed and yellow-fleshed kiwifruit. Scientia Horticulturae, 2009, 119(4): 377-387.
[37]
WU M B, XU X, HU X W, LIU Y D, CAO H H, CHAN H, GONG Z H, YUAN Y J, LUO Y Q, FENG B H, LI Z G, DENG W. SlMYB72 regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit. Plant Physiology, 2020, 183(3): 854-868.

doi: 10.1104/pp.20.00156 pmid: 32414899
[38]
RANGANATH K G, SHIVASHANKARA K S, ROY T K, DINESH M R, GEETHA G A, PAVITHRA K C, RAVISHANKAR K V. Profiling of anthocyanins and carotenoids in fruit peel of different colored mango cultivars. Journal of Food Science and Technology, 2018, 55(11): 4566-4577.

doi: 10.1007/s13197-018-3392-7 pmid: 30333653
[39]
KUAI B K, CHEN J Y, HÖRTENSTEINER S. The biochemistry and molecular biology of chlorophyll breakdown. Journal of Experimental Botany, 2018, 69(4): 751-767.

doi: 10.1093/jxb/erx322 pmid: 28992212
[40]
DIXON R A, XIE D Y, SHARMA S B. Proanthocyanidins: A final frontier in flavonoid research? The New Phytologist, 2005, 165(1): 9-28.
[1] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[2] YIN YuQin, XU HuanHuan, TANG LiPing, WANG XinYa, HU ChunMei, HOU XiLin, LI Ying. Genome-Wide Identification of GST Gene Family and Functional Analysis of the BcGSTF6 Gene Related to Anthocyanin in Pak Choi [J]. Scientia Agricultura Sinica, 2024, 57(16): 3234-3249.
[3] QI XiaoYu, KONG XiaoPing, ZHOU HongWei, YAN XiangPing. Crucial Factors Impacting Carrot Flavor Analysis Based on Broad Target Metabolomics [J]. Scientia Agricultura Sinica, 2024, 57(16): 3250-3263.
[4] CHEN XiaoJuan, WANG HaiJu, WANG FuMin, YONG QingQing, HUANG ShunMan, QU Yan. Identification of Key Genes in the Flavonoid Synthesis Pathway of Meconopsis integrifolia Based on WGCNA [J]. Scientia Agricultura Sinica, 2024, 57(15): 3053-3070.
[5] YE JiaMin, ZHANG MingWei, LU Qi, ZHANG RuiFen, DENG Mei. Effects of Semi-Solid Fermentation with Lactobacillus on the Bitterness and Active Components of Shatianyu (Citrus grandis L. Osbeck) Fruit Powder [J]. Scientia Agricultura Sinica, 2024, 57(13): 2662-2673.
[6] GAO ChengAn, WAN HongJian, YE QingJing, CHENG Yuan, LIU ChenXu, HE Yong. Identification and Comparative Analysis of Processed/Fresh-Eating Chili Pepper Fruits at Different Maturation Stages by Metabolomics [J]. Scientia Agricultura Sinica, 2024, 57(12): 2424-2438.
[7] WU SiHui, ZHU HuanHuan, ZHANG JunWei, BAO ManZhu, ZHANG Jie. Determination and Analysis of Flavonoids Metabolites in Different Colors Cultivars and Blooming Stages of Prunus mume [J]. Scientia Agricultura Sinica, 2023, 56(9): 1760-1774.
[8] SHENG HongJie, LU SuWen, ZHENG XuanAng, JIA HaiFeng, FANG JingGui. Identification and Comparative Analysis of Metabolites in Grape Seed Based on Widely Targeted Metabolomics [J]. Scientia Agricultura Sinica, 2023, 56(7): 1359-1376.
[9] WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing. Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153.
[10] CHEN JinRong, LÜ ZiJian, FAN LiSha, YOU Qian, LI Tao, GONG Chao, SUN GuangWen, LI ZhiLiang, SUN BaoJuan. Analysis of Genetic Effect of Fruit Color Controlled by Epistatic Genes in Eggplant [J]. Scientia Agricultura Sinica, 2023, 56(23): 4729-4741.
[11] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[12] CAO Jie, GU YongZhe, HONG HuiLong, WU HaiTao, ZHANG Xia, SUN JianQiang, BAO LiGao, QIU LiJuan. Pigment Identification and Gene Mapping in Red Seed Coat of Soybean [J]. Scientia Agricultura Sinica, 2023, 56(14): 2643-2659.
[13] CHEN Jie, CHEN Wei. The Genetic Basis of Flavonoid Contents in Wheat and Its Application in Functional Wheat Variety Breeding [J]. Scientia Agricultura Sinica, 2023, 56(13): 2431-2442.
[14] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[15] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!