Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (2): 363-378.doi: 10.3864/j.issn.0578-1752.2024.02.011

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation

XIE Qian(), JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi()   

  1. College of Horticulture, Fujian Agricultural and Forest University, Fuzhou 350002
  • Received:2023-07-17 Accepted:2023-10-09 Online:2024-01-16 Published:2024-01-19
  • Contact: CHEN QingXi

Abstract:

【Objective】 This study aimed to identify key metabolites that influence the quality of fresh Chinese olives and to investigate the metabolic mechanisms underlying quality differences. 【Method】 Four Chinese olive varieties were selected as test materials, with Huiyuan as the topgrafting rootstock. The quality of the fruits was evaluated through sensory evaluation. Metabolite identification and analysis of the KEGG pathway were conducted using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and the metabolic changes during the ripening process of the fruits were investigated too.【Result】 The results of sensory evaluation of four varieties (lines) of Chinese olive fruits showed significant differences in quality. Tianlan No.1 and Dongshan Changsui exhibited good quality, while Huiyuan and Ziyang No.1 had poor quality. A total of 651 metabolites belonging to 15 types were identified in the Chinese olive fruits of the four varieties (lines). Among these, 277 were primary metabolites of 6 types, and 365 were secondary metabolites of 9 types. Using variable projection and multiple differences, 26 characteristic differential metabolites that influence the quality of fresh Chinese olives were screened. These metabolites included amino acids and their derivatives (6), organic acids (2), lipids (2), and phenolic compounds (16). The phenolic compounds consisted of phenolic acids (3), flavonoids (3), flavonols (2), flavanols (3), and hydrolyzed tannins (5). A metabolic network were established based on the ripening process of Chinese olives to explain the differences in fresh food quality. Chinese olives with good fresh food quality showed a higher accumulation in the biosynthetic metabolic pathway of L-Asparagine and N, N-dimethylglycine, which influenced the taste of fresh food and its resilience. On the other hand, Chinese olives with poor fresh food quality exhibited relatively high levels of hydrolyzed tannins (digalloylchebuloylglucose, galloyl methyl gallate, heterophylliin A), flavonol [morin-3-O-xyloside, quercetin-3-O-(6′-galloyl], Flavan-3-ol [7-O-galloyltricetiflavan, catechin - (7,8-bc) -4α- (3,4-dihydroxyphenyl) - dihydro-2-(3H)-one, catechin-(7,8-bc)-4β-(3,4-dihydroxyphenyl)-dihydro-2-(3h)-one] in the synthesis pathway, which influenced the taste of fresh food and contributed to its bitter taste. 【Conclusion】 The differences in fresh quality of different olives were closely related to the accumulation differences in amino acid and its derivative synthesis pathways, as well as the synthesis pathways of hydrolyzed tannins, flavanols, and flavan-3-ol during their ripening process.

Key words: Canarium album (Lour.) Rauesch., sensory evaluation, dessert quality, widely targeted metabolomics, characteristic metabolites

Table 1

Sensory evaluation criteria of Chinese olive"

评价集Evaluation
sets
分值区域Vm
Score area
边界清晰化Km Boundary clarity 评价因素Evaluation factor
硬度
Firmness
回甘度
Sweetness return
涩味度
Astringency
化渣性
Mastication
香气
Fragrance

Good
v1≥7 8.5 细嫩
Tender
回甘强且持久
Strong and long-
lasting sweetness
微涩
Slightly astringent
化渣
Superior mastication
甜香感浓郁
Superior sweetness and aroma
一般
General
4≤v2<7 5.5 易嚼
Easy chew
回甘
Sweetback

Astringent
化渣中等
Moderate mastication
有甜香感
Moderate sweetness and aroma

Poor
v3<4 2.0 难嚼
Hard chew
不回甘
No return of sweetness
酸涩、苦涩
Sour and bitter
不化渣
Inferior mastication
一般
Inferior aroma

Fig. 1

Morphological characteristics, physical and chemical properties and sensory evaluation score radar chart of Chinese olive fruit * indicate a significant difference at the 0.05 level"

Fig. 2

Repeatability and metabolite classification of Chinese olive samples A: PCA analysis of Chinese olive fruit samples; B: PCA loading plot of Chinese olive fruit samples; C: Hierarchical cluster analysis of Chinese olive fruit samples; D: Classification of 651 metabolites in olive fruit, red is the primary metabolite and blue is the secondary metabolite"

Fig. 3

OPLS-DA analysis of metabolites from Chinese olive fruit A-D: Pairwise comparison sample group; 1: Score map; 2: Inertia histogram; 3: Significant diagnostic map"

Fig. 4

Statistics on the number of differential metabolites of different varieties (lines) of Chinese olive mature fruit in pairs A: The number of differential metabolites; B: The number of differential metabolite categories. Down/Up indicated that the content of low phenolic Chinese olive (DQ, TQ) was down/up-regulated compared with high phenolic Chinese olive (HP, SP)"

Fig. 5

KEGG annotation and enrichment analysis of differential metabolism in paired comparison of different varieties (lines) of Chinese olive (top 20) Each bubble in the figure represents a metabolic pathway, and its abscissa and bubble size together represent the size of the influencing factors of the pathway. The larger the enrichment factor in the figure, the greater the degree of enrichment; the larger the dot, the more the number of metabolites enriched in the pathway; the bubble color represents the P value of the enrichment analysis, and the deeper the color, the higher the enrichment degree"

Fig. 6

Venn of differential metabolites and classification of characteristic metabolites A: Low phenolic olive (DQ, TQ) compared with high phenolic olive (HP, SP) up-regulated metabolite Venn diagram; B: Common up-regulated metabolite category; C: Low phenolic olive (DQ, TQ) compared with high phenolic olive (HP, SP) down-regulated metabolite Venn diagram; D: Common down-regulated metabolite category"

Table 2

26 characteristic metabolites affecting the eating quality of Chinese olives"

类别
Category
化合物
Compound
分子式
Molecular formula
类型
Type
KEGG ID
氨基酸及其
衍生物
Amino acids
and derivatives
L-天冬酰胺 L-Asparagine C4H8N2O3 上调 Up C00152
L-鸟氨酸 L-Ornithine C5H12N2O2 上调 Up C00077
N,N-二甲基甘氨酸 N,N-Dimethylglycine C4H9NO2 上调 Up C01026
2,6-二氨基庚二酸 2,6-Diaminooimelic acid C7H14N2O4 上调 Up C00666
γ-氨基丁酸 γ-Aminobutyric acid C4H9NO2 上调 Up C00334
N-乙酰-L-甘氨酸 N-Acetyl-L-glycine C4H7NO3 下调 Down -
有机酸
Organic acids
2,2-二甲基琥珀酸 2,2-Dimethylsuccinic acid C6H10O4 上调 Up -
乙酰氧基乙酸 Acetoxyacetic acid C4H6O4 下调 Down -
脂质
Lipids
溶血磷脂酰胆碱18:3(2n异构) LysoPC 18:3 (2n isomer) C26H48NO7P 上调 Up -
溶血磷脂酰胆碱18:3 LysoPC 18:3 C26H48NO7P 上调 Up -
酚酸
Phenolic acids
5-O-对香豆酰奎宁酸 5-O-p-Coumaroylquinic acid C16H18O8 上调 Up C12208
对二聚没食子酰甲酯 p-Dimeric galloyl methyl ester C15H12O9 下调 Down -
三没食子酸Trigallic acid C21H14O13 下调 Down -
黄酮
Flavones
芹菜素-7,4′-二甲醚 Apigenin-7,4′-dimethyl ether C17H14O5 上调 Up C10019
香叶木苷 Diosmetin-7-O-rutinoside C28H32O15 上调 Up C10039
木犀草素(3′,4′,5,7-四羟黄酮)
Luteolin (3′,4′,5,7-Tetrahydroxyflavone)
C15H10O6 下调 Down C01514
黄酮醇
Flavonols
桑色素-3-O-木糖苷 Morin-3-O-xyloside C20H18O11 下调 Down -
槲皮素-3-O-(6′-没食子酰)半乳糖苷
Quercetin-3-O-(6′-galloyl)galactoside
C28H24O16 下调 Down -
黄烷醇
Flavanols
7-O-没食子酰基特利色黄烷
7-O-Galloyltricetiflavan
C22H18O10 下调 Down -
儿茶素-(7,8-bc)-4α-(3,4-二羟基苯基)-二氢-2-(3H)-酮
Catechin-(7,8-bc)-4α-(3,4-dihydroxyphenyl)-dihydro-2-(3H)-one
C24H20O9 下调 Down -
儿茶素-(7,8-bc)-4β-(3,4-二羟基苯基)-二氢-2-(3h)-酮
Catechin-(7,8-bc)-4β-(3,4-dihydroxyphenyl)-dihydro-2-(3h)-one
C24H20O9 下调 Down -
水解单宁
Hydrolysable Tannins
二酰基诃子酰基葡萄糖 Digalloylchebuloylglucose C34H28O23 下调 Down -
没食子酰没食子酸甲酯 Galloyl methyl gallate C15H12O9 下调 Down -
榛子素A(7,8,10-三甲氧基-4,5-二氢菲并[2,3]二氧戊烷)
Heterophylliin A (7,8,10-trimethoxy-4,5-dihydrophenanthro [2,3] dioxolane)
C34H26O22 下调 Down -
2,4-二-O-没食子酰-1,5-脱水-D-葡萄糖醇
2,4-Di-O-Galloyl-1,5-Anhydro-D-Glucitol
C20H20O13 下调 Down -
Phyllanemblinin D C27H26O20 下调 Down -

Fig. 7

Paired comparison of key metabolites related to metabolic pathway during Chinese olive maturation The relative content of the products transformed by Log2 ing different periods od low phenolic olive and hign phenolic olive (DQ/SP) was expressed by the hear map. Red and blue indicate high and low DQ content in low-phenol olives,respectively. *Denotes VIP≥1 and |Log2FC|≥1 of DQ/SP"

[1]
常强, 苏明华, 陈清西. 橄榄化学成分与药理活性研究进展. 热带作物学报, 2013, 34(8): 1610-1616.
CHANG Q, SU M H, CHEN Q X. The advance on the research of chemical constituents and pharmacological activities of Chinese olive. Chinese Journal of Tropical Crops, 2013, 34(8): 1610-1616. (in Chinese)
[2]
中国科学院中国植物志编辑委员会. 中国植物志(第四十三卷). 北京: 科学出版社, 1997: 17-27.
Editorial Committee of flora of China, Chinese Academy of Sciences. Burseraceae. Flora of China. vol. 43. Beijing: Science Press. 1997: 17-27. (in Chinese)
[3]
池毓斌, 谢倩, 陈清西. 几个鲜食橄榄品种(系)及良种繁育方法简介. 中国南方果树, 2016, 45(3): 154-156, 166.
CHI Y B, XIE Q, CHEN Q X. Brief introduction of several fresh olive varieties (lines) and breeding methods of improved varieties. South China Fruits, 2016, 45(3): 154-156, 166. (in Chinese)
[4]
农业部公报室. 中华人民共和国农业部公报2011年第10期. 北京: 中国农业出版社, 2011: 48.
Bulletin Office of the Ministry of Agriculture. Gazette of the ministry of agriculture of the people’s republic of China NO.10, 2011 (VOL.97). Beijing: China Agriculture Press, 2011: 48. (in Chinese)
[5]
陈杰忠. 果树栽培学各论:南方本. 4版. 北京: 中国农业出版社, 2011: 139-145.
CHEN J Z. Various Theories on Fruit Tree Cultivation:Southern Edition. 4th ed. Beijing: China Agriculture Press, 2011: 139-145. (in Chinese)
[6]
谢倩, 李易易, 张诗艳, 束燕萍, 王威, 陈清西. 基于模糊数学感官评价、理化特性与电子舌的橄榄鲜食品质分析. 食品科学, 2023, 44(3): 69-78.
XIE Q, LI Y Y, ZHANG S Y, SHU Y P, WANG W, CHEN Q X. Quality analysis of table cauarium album L. Based on fuzzy mathematics sensory evaluation, physicochemical properties and electronic tongue. Food Science, 2023, 44(3): 69-78. (in Chinese)

doi: 10.7506/spkx1002-6630-20220315-168
[7]
谢倩. 橄榄(Canarium album(lour.)raeusch.)果实发育成熟过程多酚及相关酶活性研究[D]. 福州: 福建农林大学, 2014.
XIE Q. Polyphenol components and related enzyme activities during the Chinese olive fruit development and ripening[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014. (in Chinese)
[8]
常强. 橄榄果实酚类物质及其抗氧化活性研究[D]. 福州: 福建农林大学, 2017.
CHANG Q. Investigation of polyphenol compounds and their antioxidant activity in the fruits of Chinese olive[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. (in Chinese)
[9]
李泽坤. 橄榄(Canarium album (Lour.) Raeusch)果实成熟发育蔗糖代谢变化研究[D]. 福州: 福建农林大学, 2016.
LI Z K. Changes of sucrose metabolism during fruit ripening and development of Canarium album (Lour.) Raeusch[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese)
[10]
林玉芳. 福建橄榄(Canarium album (Lour.) Raeusch.)若干功能成分和品质相关指标的研究[D]. 福州: 福建农林大学, 2016.
LIN Y F. Study on some functional components and quality-related indexes of Fujian olive (Canarium album (Lour.) Raeusch.)[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese)
[11]
彭真汾, 叶清华, 王威, 谢倩, 陈清西. 普通橄榄和清橄榄果实游离氨基酸差异成分与谷氨酰胺代谢. 食品科学, 2019, 40(4): 229-236.

doi: 10.7506/spkx1002-6630-20171228-354
PENG Z F, YE Q H, WANG W, XIE Q, CHEN Q X. Differences in free amino acid composition of fruits of common olive and sweet olive and their glutamine metabolism characteristics. Food Science, 2019, 40(4): 229-236. (in Chinese)

doi: 10.7506/spkx1002-6630-20171228-354
[12]
池毓斌. 橄榄果实品质特性及其代谢组学的初步研究[D]. 福州: 福建农林大学, 2017.
CHI Y B. A preliminary study on the fruit quality characteristics and metabolism of Canarium album[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. (in Chinese)
[13]
蔡净蓉, 王杰, 赵俊跃, 潘腾飞, 郭志雄, 佘文琴. 成熟期不同橄榄品种(系)果实代谢组及其差异. 热带作物学报, 2022, 43(11): 2304-2315.
CAI J R, WANG J, ZHAO J Y, PAN T F, GUO Z X, SHE W Q. Metabolomics and its difference of Chinese olive fruit of different varieties (lines) during the ripening period. Chinese Journal of Tropical Crops, 2022, 43(11): 2304-2315. (in Chinese)
[14]
中华人民共和国农业农村部. 热带作物品种审定规范第16部分: 橄榄NY/T 2667.16-2020 北京: 中国农业出版社, 2020.
Ministry of Agriculture and Rural Affairs of People’s Republic of China. Tropical crop variety approval specification Part 16 : Chinese olive NY / T 2667.16-2020. Beijing: China Agriculture Press, 2020. (in Chinese)
[15]
许长同. 橄榄鲜食果品质的感观与理化评价初探. 福建果树, 2009(4): 35-37.
XU C T. Preliminary study on sensory and physicochemical evaluation of fresh Chinese olive fruit quality. Fujian Fruits, 2009(4): 35-37. (in Chinese)
[16]
林玉芳, 陈清西, 关夏玉, 陈明贤, 欧高政. 橄榄总多酚提取工艺优化研究. 中国农学通报, 2011, 27(5): 396-400.
LIN Y F, CHEN Q X, GUAN X Y, CHEN M X, OU G Z. Extraction of total polyphenol from Chinese olive(Canarium ablum L.). Chinese Agricultural Science Bulletin, 2011, 27(5): 396-400. (in Chinese)
[17]
谢倩, 王威, 陈清西. 橄榄多酚含量测定方法的比较. 食品科学, 2014, 35(8): 204-207.

doi: 10.7506/spkx1002-6630-201408040
XIE Q, WANG W, CHEN Q X. Comparative study on three different methods for the determination of total phenolics in Chinese olive. Food Science, 2014, 35(8): 204-207. (in Chinese)

doi: 10.7506/spkx1002-6630-201408040
[18]
郭文鼎, 胡志敏, 卜俊玲, 王健, 马莹, 郭娟, 黄璐琦. 基于芍药转录组挖掘芍药苷生物合成相关基因. 中国中药杂志, 2022, 47(16): 4347-4357.
GUO W D, HU Z M, BU J L, WANG J, MA Y, GUO J, HUANG L Q. Identification of genes involved in biosynthesis of paeoniflorin in Paeonia lactiflora based on transcriptome analysis. China Journal of Chinese Materia Medica, 2022, 47(16): 4347-4357. (in Chinese)
[19]
KANEHISA M, GOTO S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 2000, 28(1): 27-30.

doi: 10.1093/nar/28.1.27 pmid: 10592173
[20]
彭真汾. 清橄榄与普通橄榄果实差异氨基酸及其相关酶活性研究[D]. 福州: 福建农林大学, 2018.
PENG Z F. Study on the fruit differential amino acids and its related enzyme activity between sweet olive and common olive[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese)
[21]
欧高政, 陈清西. 橄榄果实膳食纤维含量及动态变化研究. 福建农业学报, 2009, 24(1): 64-67.
OU G Z, CHEN Q X. Dietary fiber of Chinese white olives. Fujian Journal of Agricultural Sciences, 2009, 24(1): 64-67. (in Chinese)
[22]
国家药典委员会. 中华人民共和国药典: 2020年版: 一部. 北京: 中国医药科技出版社, 2020: 206.
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China: 2020 ed: Part I. Beijing: The Medicine Science and Technology Press of China, 2020: 206. (in Chinese)
[23]
VIVEK K, SUBBARAO K V, ROUTRAY W, KAMINI N R, DASH K K. Application of fuzzy logic in sensory evaluation of food products: A comprehensive study. Food and Bioprocess Technology, 2020, 13(1): 1-29.

doi: 10.1007/s11947-019-02337-4
[24]
程远, 万红建, 姚祝平, 叶青静, 王荣青, 杨悦俭, 周国治, 阮美颖. 不同品种樱桃番茄氨基酸组成及风味分析. 核农学报, 2019, 33(11): 2177-2185.

doi: 10.11869/j.issn.100-8551.2019.11.2177
CHENG Y, WAN H J, YAO Z P, YE Q J, WANG R Q, YANG Y J, ZHOU G Z, RUAN M Y. Comparative analysis of the amino acid constitution and flavor quality in different cherry tomato varieties. Journal of Nuclear Agricultural Sciences, 2019, 33(11): 2177-2185. (in Chinese)

doi: 10.11869/j.issn.100-8551.2019.11.2177
[25]
LIU H X, LIU Q, CHEN Y L, ZHU Y L, ZHOU X W, LI B. Full-length transcriptome sequencing provides insights into flavonoid biosynthesis in Camellia nitidissima Petals. Gene, 2023, 850: 146924.

doi: 10.1016/j.gene.2022.146924
[26]
何志勇, 夏文水. 橄榄果实中酚类化合物的分析研究. 安徽农业科学, 2008, 36(26): 11406-11407.
HE Z Y, XIA W S. Analysis of phenolic compounds in Canarium album(lour.)raeusch fruit. Journal of Anhui Agricultural Sciences, 2008, 36(26): 11406-11407. (in Chinese)
[27]
GAO Z, ZHANG C J, LUO M, WU Y S, DUAN S Y, LI J F, WANG L, SONG S R, XU W P, WANG S P, ZHANG C X, MA C. Proteomic analysis of pear (Pyrus pyrifolia) ripening process provides new evidence for the sugar/acid metabolism difference between core and mesocarp. Proteomics, 2016, 16(23): 3025-3041.

doi: 10.1002/pmic.201600108 pmid: 27688055
[28]
XU J Y, ZHANG Y, QI D, HUO H L, DONG X G, TIAN L M, ZHANG X S, LIU C, CAO Y F. Postharvest metabolomic changes in Pyrus ussuriensis Maxim. wild accession ‘Zaoshu Shanli’. Journal of Separation Science, 2018, 41(21): 4001-4013.

doi: 10.1002/jssc.v41.21
[29]
侯娜, 赵莉莉, 魏安智, 杨途熙. 不同种质花椒氨基酸组成及营养价值评价. 食品科学, 2017, 38(18): 113-118.

doi: 10.7506/spkx1002-6630-201718018
HOU N, ZHAO L L, WEI A Z, YANG T X. Amino acid composition and nutritional quality evaluation of different germplasms of Chinese prickly ash (Zanthoxylum bungeanum maxim). Food Science, 2017, 38(18): 113-118. (in Chinese)

doi: 10.7506/spkx1002-6630-201718018
[30]
LIOE H N, KINJO A, YASUDA S, KUBA-MIYARA M, TACHIBANA S, YASUDA M. Taste and chemical characteristics of low molecular weight fractions from tofuyo-Japanese fermented soybean curd. Food Chemistry, 2018, 252: 265-270.

doi: 10.1016/j.foodchem.2018.01.117
[31]
李学贤, 张雪, 童灵, 张思文, 叶德练, 吴良泉. 游离氨基酸改善作物风味品质综述. 中国农业大学学报, 2022, 27(4): 73-81.
LI X X, ZHANG X, TONG L, ZHANG S W, YE D L, WU L Q. Summary of free amino acids to improve crop flavor quality. Journal of China Agricultural University, 2022, 27(4): 73-81. (in Chinese)
[32]
汪沛洪. 植物生物化学. 北京: 中国农业出版社, 1994: 33-38.
WANG P H. Plant Biochemistry. Beijing: China Agriculture Press, 1994: 33-38. (in Chinese)
[33]
PENG M, SHAHZAD R, GUL A, SUBTHAIN H, SHEN S Q, LEI L, ZHENG Z G, ZHOU J J, LU D D, WANG S C, NISHAWY E, LIU X Q, TOHGE T, FERNIE A R, LUO J. Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nature Communications, 2017, 8(1): 1975.

doi: 10.1038/s41467-017-02168-x pmid: 29213047
[34]
乜兰春. 苹果果实酚类和挥发性物质含量特征及其与果实品质关系的研究[D]. 保定: 河北农业大学, 2004.
NIE L C. Metabolic characteristics of phenolic compounds and volatiles in relation to fruit quality in apples[D]. Baoding: Hebei Agricultural University, 2004. (in Chinese)
[35]
ROBICHAUD J L, NOBLE A C. Astringency and bitterness of selected phenolics in wine. Journal of the Science of Food and Agriculture, 1990, 53(3): 343-353.

doi: 10.1002/jsfa.v53:3
[36]
KALLITHRAKA S, BAKKER J, CLIFFORD M N. Evaluation of bitterness and astringency of (+)-catechin and (-)-epicatechin in red wine and in model solution. Journal of Sensory Studies, 1997, 12(1): 25-37.

doi: 10.1111/jss.1997.12.issue-1
[37]
PELEG H, GACON K, SCHLICH P, NOBLE A C. Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. Journal of the Science of Food and Agriculture, 1999, 79(8): 1123-1128.

doi: 10.1002/(ISSN)1097-0010
[38]
YOKOTSUKA K, SINGLETON V L. Interactive precipitation between graded peptides from gelatin and specific grape tannin fractions in wine-like model solutions. American Journal of Enology and Viticulture, 1987, 38(3): 199-206.

doi: 10.5344/ajev.1987.38.3.199
[39]
JÖBSTL E, O'CONNELL J, FAIRCLOUGH J P A, WILLIAMSON M P. Molecular model for astringency produced by polyphenol/protein interactions. Biomacromolecules, 2004, 5(3): 942-949.

pmid: 15132685
[40]
温鹏飞. 葡萄与葡萄酒中黄烷醇类多酚和果实原花色素合成相关酶表达规律的研究[D]. 北京: 中国农业大学, 2005.
WEN P F. Studies on flavanols in wine and grape berry and expression of genes involved in proanthocyanidins biosynthesis during berry development[D]. Beijing: China Agricultural University, 2005. (in Chinese)
[41]
林玉芳, 杜正花, 陈清西. 橄榄果实品质评价因子的筛选及指标确定. 热带作物学报, 2014, 35(4): 805-810.
LIN Y F, DU Z H, CHEN Q X. Selection of quality evaluation indices for Chinese olive. Chinese Journal of Tropical Crops, 2014, 35(4): 805-810. (in Chinese)
[42]
池毓斌, 朱丽娟, 黄敏杰, 彭真汾, 叶清华, 张静芳, 陈清西, 许长同. 鲜食橄榄品质综合评价模型的建立与验证. 果树学报, 2017, 34(8): 1051-1060.
CHI Y B, ZHU L J, HUANG M J, PENG Z F, YE Q H, ZHANG J F, CHEN Q X, XU C T. Establishment and verification of a comprehensive evaluation model for quality of fresh Chinese olive. Journal of Fruit Science, 2017, 34(8): 1051-1060. (in Chinese)
[43]
刘林敏, 邱子文, 叶清华, 谢倩, 王威, 陈清西. 橄榄蔗糖转运蛋白基因CaSWEET7/15克隆、表达和功能鉴定. 应用与环境生物学报, 2022, 28(6): 1503-1509.
LIU L M, QIU Z W, YE Q H, XIE Q, WANG W, CHEN Q X. Cloning, expression, and functional identification of CaSWEET7 and CaSWEET15 genes in Canarium album. Chinese Journal of Applied and Environmental Biology, 2022, 28(6): 1503-1509. (in Chinese)
[44]
赵金星. 橄榄果实发育过程风味物质变化及相关基因的表达分析[D]. 福州: 福建农林大学, 2018.
ZHAO J X. Changes of flavor substances and expressions of related genes in the development process of Chinese olive fruit[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese)
[1] FU Shan, LIANG Ye, XU JiuLiang, RUAN YunZe, LUO Jian, LI TingYu. Comprehensive Evaluation of Fruit Texture and Taste Quality of Pineapple Based on Multiple Methods [J]. Scientia Agricultura Sinica, 2023, 56(15): 3006-3019.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[4] Yue GE,DeQuan ZHANG,ShaoBo LI,Li CHEN,XiaoChun ZHENG,Ce LIANG,TongJing YAN,JinHuo LI,ZhenYu WANG. Eating Quality Evaluation of Lamb in Different Postmortem Phases Based on Consumers’ Sensory Preferences [J]. Scientia Agricultura Sinica, 2022, 55(18): 3640-3651.
[5] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[6] Hui LU,YuJie YUAN,SiQi ZHANG,Hong CHEN,Duo CHEN,XiaoYuan ZHONG,Bo LI,Fei DENG,Yong CHEN,GuiYong LI,WanJun REN. Evaluation of Rice Eating Quality and Optimization of Varieties of Southwest Indica Hybrid Rice Based on Three Taste Evaluation Methods [J]. Scientia Agricultura Sinica, 2021, 54(6): 1243-1257.
[7] ZOU YunQian,ZHANG Li,WU FangFang,XU RangWei,XU Juan,HU ShiQuan,XIE HePing,CHENG YunJiang. Effects of Wax Coating on Off-Flavor Compound Accumulation in the Pulp of Satsuma Mandarin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2450-2459.
[8] SHI FangFang, ZHANG QingAn. Effects of Different Citric Acid Solutions on the Quality of Apricot Kernels During Debitterizing Mediated by Ultrasound Irradiation [J]. Scientia Agricultura Sinica, 2019, 52(17): 3034-3048.
[9] WANG Qiong, XU BaoCai, YU Hai, LI Cong. Electronic Nose and Electronic Tongue Combined with Fuzzy Mathematics Sensory Evaluation to Optimize Bacon Smoking Procedure [J]. Scientia Agricultura Sinica, 2017, 50(1): 161-170.
[10] WEI Yi-min, XING Ya-nan, ZHANG Ying-quan, KONG Yan, LI Ming, ZHANG Bo, TANG Na. The Sensory Evaluation Methods of Production Process and Product of Lanzhou Hand-Extended Noodles [J]. Scientia Agricultura Sinica, 2016, 49(20): 4016-4029.
[11] XIE Yue-jie, HE Zhi-fei, LI Hong-jun. The Odor of Rabbit Meat Extracted by Supercritical Carbon Dioxide Fluid Extraction [J]. Scientia Agricultura Sinica, 2016, 49(16): 3208-3218.
[12] HE Yi-Zhong-1, CHEN Zhao-Xing-1, 2 , LIU Run-Sheng-1, FANG Yi-Wen-2, GU Zu-Liang-3, YAN Xiang-2, CHEN Hong-3, ZHANG Hong-Ming-2, TANG Huan-Qing-3, CHENG Yun-Jiang-1. Effects of Different Storage Methods on Fruit Quality of ‘Newhall’ Navel Orange (Citrus sinensis Osbeck‘Newhall’) in Southern Jiangxi Province [J]. Scientia Agricultura Sinica, 2014, 47(4): 736-748.
[13] ZHANG Bo, WEI Yi-Min, LI Wei-Jin. Comparison of Factors Influencing Noodle Sensory Qualities [J]. Scientia Agricultura Sinica, 2012, 45(12): 2447-2454.
[14] HUI Zhu-Mei, LU Wan-Xiang , LIU Yan-Lin. Advances in Research of the Effects of Assimilable Nitrogen on Formation of Aromatic Compounds in Wine Fermentation [J]. Scientia Agricultura Sinica, 2011, 44(24): 5058-5066.
[15] HAO Hong-tao,ZHAO Gai-ming,LIU Yan-xia,LI Miao-yun,ZHAO Guang-hui,FENG Kun
. Discriminant Analysis of the Grades of Ham Sausages Based on Hardness, Fracturability and Adhesiveness Properties
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2182-2188 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!