Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (12): 2424-2438.doi: 10.3864/j.issn.0578-1752.2024.12.012

• HORTICULTURE • Previous Articles     Next Articles

Identification and Comparative Analysis of Processed/Fresh-Eating Chili Pepper Fruits at Different Maturation Stages by Metabolomics

GAO ChengAn1,2(), WAN HongJian2, YE QingJing2, CHENG Yuan2, LIU ChenXu2(), HE Yong1()   

  1. 1 College of Horticulture Science, Zhejiang Agriculture & Forestry University, Hangzhou 311300
    2 Vegetable Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
  • Received:2023-11-14 Accepted:2024-04-28 Online:2024-06-25 Published:2024-06-25
  • Contact: LIU ChenXu, HE Yong

Abstract:

【Objective】 Chili pepper, the most widely cultivated vegetable crop in China, is classified into processing or fresh-eating types based on their utilizations. This study aimed to thoroughly explore the metabolic differences between these two categories by analyzing and comparing the metabolites in the fruits of processing and fresh-eating chili peppers at both the mature green and mature red stages. The research sought to lay a theoretical groundwork for understanding the metabolic and quality variations between the two types of chili peppers. 【Method】Fruit samples from the processing type chili pepper, P059, and the fresh-eating type, F270, were collected at the mature green and mature red stages. Differential metabolites were identified and analyzed by using liquid chromatography-mass spectrometry (LC-MS) combined with multivariate statistical techniques. 【Result】A comprehensive analysis identified 1 465 metabolites in the fruits of processing type P059 and fresh-eating type F270 at both mature green and mature red stages. These metabolites spanned various categories, including lipids, amino acids, and terpenes. The comparative assessments at identical maturity stages showed that the lipid content in P059 fruits was significantly higher than in F270 at both maturity stages. Notably, metabolites such as linoleic acid and 9, 10-dihydroxy-12-octadecenoic acid from the linoleic acid pathway (map00591) exhibited substantial differences. At the mature green stage, the spermidine level in P059 was over twice that was found in F270, while the homovanillic acid level in F270 was 2.93 times higher than that in P059. At the mature red stage, P059 contained 5.74 times more capsaicin than F270, whereas the proline level in F270 was 2.47 times higher than in P059. Moreover, the comparative analysis of differential metabolites during the maturation process of these two chili peppers revealed distinct metabolic changes. N-Carbamoyl-putrescine, involving in the arginine and proline metabolism pathway (map00330), showed significant variation in P059 but remained unchanged in F270. Conversely, vitamin A levels in F270 increased by 277% throughout maturation. Both varieties exhibited a substantial increase in citric acid and abscisic acid, with concentrations rising approximately 1.7-fold for citric acid and 8.4-fold for abscisic acid in P059; and 1.7-fold and 12-fold, respectively, in F270. In contrast, 13-hydroxy-9, 11-octadecadienoic acid levels diverged, surging by 300% in P059 from the mature green to the red stage, while F270 showed a significant decrease. 【Conclusion】 This study employed metabolomics techniques to explore the metabolic differentials between mature green and mature red fruits in processing type P059 and fresh-eating type F270 chili peppers. The results revealed distinct metabolites, including lipids, amino acids, vitamins, and organic acids, that differentiate the two chili pepper types. Additionally, this study shed light on the changing trends of specific metabolites, such as citric acid, abscisic acid, and 13-hydroxy-9,11- octadecadienoic acid during the maturation process of these chili peppers. These insights contribute to a more detailed understanding of the quality differences between processing and fresh-eating chili peppers.

Key words: processing-type chili pepper, fresh-eating-type chili pepper, metabolite, comparative metabolomics, fruit quality

Fig. 1

Pepper fruit quality characteristics A: The phenotype of pepper fruit. P059MG, P059MR, F270MG, and F270MR correspond to the green mature and red mature fruits of the processed-type chili P059, and the green mature and red mature fruits of the fresh-eating type chili F270, respectively (The same as below). Scale bar is 1.0 cm; B: Venn diagram of the number of metabolites detected in P059MG, P059MR, F270MG, and F270MR; C: PCA score chart"

Table 1

The classification and quantity of metabolites in P059 and F270 samples"

物质类别
Classification of compound
P059 F270
绿熟期MG 红熟期MR 绿熟期MG 红熟期MR
萜类 Terpenoids 266 267 267 265
脂类 Lipids 240 240 239 238
碳水化合物及其衍生物 Carbohydrates and derivatives 143 143 141 139
黄酮类 Flavonoids 95 96 96 96
酚酸类及其衍生物 Phenolic acids and derivatives 80 80 80 79
氨基酸及其衍生物 Amino acids and derivatives 70 70 70 70
甾体及其衍生物 Steroids and steroid derivatives 65 66 66 65
有机酸及其衍生物 Organic acids and derivatives 42 42 42 42
香豆素类及其衍生物 Coumarins and derivatives 26 26 26 26
木脂素类及其衍生物 Lignans and derivatives 20 20 20 20
生物碱及其衍生物 Alkaloids and derivatives 20 20 20 20
核苷酸及其衍生物 Nucleotides and derivatives 16 16 16 16
吲哚及其衍生物 Indoles and derivatives 15 15 15 15
维生素类 Vitamins 9 9 9 9
芪类 Stilbenes 9 9 9 9
醌类 Quinones 9 9 8 9
鞣质 Tannins 1 1 1 1
其他类 Others 331 334 332 333
总代谢物 Total metabolites 1457 1463 1457 1452

Fig. 2

Comparative metabolomic analysis of fruits at same maturity stages of P059 and F270 A and D represent volcano plot of differential groups P059MG vs F270MG and P059MR vs F270MR, respectively. B and E represent KEGG pathway enrichment plot of P059MG vs F270MG and P059MR vs F270MR, respectively. C and F represent heatmap of the top 10 abundant metabolites in P059MG vs F270MG and P059MR vs F270MR, respectively"

Fig. 3

Comparative metabolomic analysis of fruits during the of maturation process of P059 and F270 A and D represent volcano plot of differential groups P059MG vs P059MR and F270MG vs F270MR, respectively. B and E represent KEGG pathway enrichment plot of P059MG vs P059MR and F270MG vs F270MR, respectively. C and F represent heatmap of the top 10 abundant metabolites in P059MG vs P059MR and F270MG vs F270MR, respectively"

Fig. 4

Comparison of differential metabolites during the maturation process of P059 and F270 fruits A: Venn diagram of metabolites for P059MG vs P059MR and F270MG vs F270MR, respectively; B: KEGG enrichment heatmap for P059MG vs P059MR and F270MG vs F270MR, respectively; C: Heatmap of the unique and most abundant differential metabolites in the P059MG vs P059MR and F270MG vs F270MR groups, respectively; D: Heatmap of shared differential metabolites between P059MG vs P059MR and F270MG vs F270MR, respectively"

Table 2

The unique and most abundant differential metabolites in the P059MG vs P059MR group"

化合物名称
Compound name
物质分类
Classification of metabolites
变化倍数Fold change 比较组Comparision group
P059MG/P059MR P059MG vs P059MR
3-氧代-2-(2-戊烯基)环戊新辛酸 3-Oxo-2-(2-entenyl) cyclopentaneoctanoic acid 脂类 Lipids 0.28 上调Up
N-乙酰-L-谷氨酸5-半醛
N-Acetyl-L-glutamate 5-semialdehyde
氨基酸及其衍生物Amino acids and derivatives 0.38 上调Up
N-氨甲酰腐胺 N-Carbamoylputrescine 有机酸及其衍生物Organic acids and derivatives 0.48 上调Up
N-α-乙酰-L-瓜氨酸 N-alpha-Acetyl-L-citrulline 氨基酸及其衍生物Amino acids and derivatives 0.49 上调Up
D-4-羟基-2-酮戊二酸D-4-Hydroxy-2-oxoglutarate 有机酸及其衍生物 Organic acids and derivatives 2.27 下调Down
L-4-羟基谷氨酸半醛L-4-Hydroxyglutamate semialdehyde 氨基酸及其衍生物 Amino acids and derivatives 2.69 下调Down
(3R,5S)-1-吡咯啉-3-羟基-5-羧酸 (3R,5S)-1-pyrroline-3-hydroxy-5-carboxylic acid 氨基酸及其衍生物 Amino acids and derivatives 3.45 下调Down
4-胍基丁酸 4-Guanidinobutanoic acid 氨基酸及其衍生物 Amino acids and derivatives 3.64 下调Down
氧化谷胱甘肽 Oxidized glutathione 氨基酸及其衍生物 Amino acids and derivatives 3.87 下调Down
9-氧代壬酸 9-Oxo-nonanoic acid 脂类 Lipids 4.17 下调Down

Table 3

The unique and most abundant differential metabolites in the F270MG vs F270MR group"

化合物名称
Compound name
物质分类
Classification of metabolites
变化倍数Fold change 比较组Comparison group
F270MG/F270MR F270MG vs F270MR
L-天门冬氨酸 L-Aspartic acid 氨基酸及其衍生物 Amino acids and derivatives 0.22 上调Up
维生素A Vitamin A 维生素类 Vitamins 0.26 上调Up
恶辛酸 Oxoadipic acid 有机酸及其衍生物 Organic acids and derivatives 0.28 上调Up
3,4-二氢-2H-1-苯并吡喃-2-酮 3,4-Dihydro-2H-1-benzopyran-2-one 香豆素类及其衍生物 Coumarins and derivatives 0.39 上调Up
4-羟基苯甲酸 4-Hydroxybenzoic acid 酚酸类及其衍生物 Phenolic acids and derivatives 0.46 上调Up
1-O-芥子油基-β-D-葡萄糖 1-O-Sinapoyl-beta-D-glucose 酚酸类及其衍生物 Phenolic acids and derivatives 0.47 上调Up
4-羟基苯丙酮酸 4-Hydroxyphenylpyruvic acid 有机酸及其衍生物 Organic acids and derivatives 2.16 下调Down
(R)-香芹酮 (R)-Carvone 萜类 Terpenoids 4.75 下调Down
薄荷醇 Menthol 萜类 Terpenoids 5.00 下调Down
普利根 Pulegone 萜类 Terpenoids 5.26 下调Down

Table 4

Shared differential metabolites between P059MG vs P059MR and F270MG vs F270MR"

化合物名称
Compound name
物质分类
Classification of metabolites
变化倍数Fold change 比较组 Comparison group
P059 F270 P059 F270
MG/MR MG vs MR
11,12-迪赫特 11,12-DiHETrE 脂类 Lipids 0.01 0.01 上调Up 上调Up
8-异前列腺素F2a 8-Isoprostaglandin F2a 脂类 Lipids 0.03 0.03 上调Up 上调Up
二氢玉米素-O-葡萄糖苷 Dihydrozeatin-O-glucoside 脂类 Lipids 0.02 0.05 上调Up 上调Up
(S)-脱落酸 (S)-Abscisic acid 萜类 Terpenoids 0.07 0.06 上调Up 上调Up
脱落酸 Abscisic acid 萜类 Terpenoids 0.12 0.08 上调Up 上调Up
顺式玉米素O-葡萄糖苷 Cis-Zeatin O-glucoside 脂类 Lipids 0.14 0.20 上调Up 上调Up
12,13-EpOME 脂类 Lipids 0.11 0.28 上调Up 上调Up
5(S)-羟化二十烷四烯酸 5-hete 脂类 Lipids 0.20 0.34 上调Up 上调Up
(顺)乌头酸 Cis-Aconitic acid 有机酸及其衍生物
Organic acids and derivatives
0.28 0.38 上调Up 上调Up
反乌头酸 Trans-Aconitic acid 有机酸及其衍生物
Organic acids and derivatives
0.32 0.42 上调Up 上调Up
脱氢抗坏血酸 Dehydroascorbic acid 其他类 Others 0.78 0.73 上调Up 上调Up
二酮果酸 Diketogulonic acid 碳水化合物及其衍生物
Carbohydrates and derivatives
0.35 0.47 上调Up 上调Up
柠檬酸 Citric acid 有机酸及其衍生物
Organic acids and derivatives
0.49 0.49 上调Up 上调Up
酮戊二酸 Oxoglutaric acid 有机酸及其衍生物
Organic acids and derivatives
0.46 0.49 上调Up 上调Up
(10E,12Z)-(9S)-9-氢过氧十八碳-10,12-二烯酸
(10E,12Z)-(9S)-9-Hydroperoxyoctadeca-10,12-dienoic acid
脂类 Lipids 4.55 2.62 下调Down 下调Down
α-二吗啉酸 Alpha-Dimorphecolic acid 脂类 Lipids 3.52 6.72 下调Down 下调Down
8(R)-氢过氧基亚油酸 8(R)-Hydroperoxylinoleic acid 脂类 Lipids 5.64 7.13 下调Down 下调Down
9,12,13-TriHOME 脂类 Lipids 20.00 17.33 下调Down 下调Down
13(s)-羟基-9z,11e-十八二烯酸 13-hode 脂类 Lipids 0.25 3.16 上调Up 下调Down
[1]
PERRY L, DICKAU R, ZARRILLO S, HOLST I, PEARSALL D M, PIPERNO D R, BERMAN M J, COOKE R G, RADEMAKER K, RANERE A J, RAYMOND J S, SANDWEISS D H, SCARAMELLI F, TARBLE K, ZEIDLER J A. Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the americas. Science, 2007, 315(5814): 986-988.
[2]
邹学校, 马艳青, 戴雄泽, 李雪峰, 杨莎. 辣椒在中国的传播与产业发展. 园艺学报, 2020, 47(9): 1715-1726.
ZOU X X, MA Y Q, DAI X Z, LI X F, YANG S. Spread and industry development of pepper in China. Acta Horticulturae Sinica, 2020, 47(9): 1715-1726. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2020-0103
[3]
GOVINDARAJAN V S. Capsicum production, technology, chemistry, and quality. Part 1: History, botany, cultivation, and primary processing. Critical Reviews in Food Science and Nutrition, 1985, 22(2): 109-176.

doi: 10.1080/10408398509527412 pmid: 3899517
[4]
向家勇, 杨莎, 梁成亮, 陈文超, 李雪峰, 欧立军, 戴雄泽, 马艳青, 邹学校, 张竹青. 鲜食青椒果实的品质性状分析与评价. 湖南农业大学学报(自然科学版), 2023, 49(4): 436-441.
XIANG J Y, YANG S, LIANG C L, CHEN W C, LI X F, OU L J, DAI X Z, MA Y Q, ZOU X X, ZHANG Z Q. Analysis and evaluation of fruit quality traits in fresh green pepper. Journal of Hunan Agricultural University (Natural Sciences), 2023, 49(4): 436-441. (in Chinese)
[5]
廖芳芳, 胡明文, 朱文超, 苏丹, 白立伟, 陈林. 鲜食型辣椒新品种‘辣研201’. 园艺学报, 2023, 50(S1): 67-68.
LIAO F F, HU M W, ZHU W C, SU D, BAI L W, CHEN L. A New fresh-eating type pepper cultivar ‘Layan 201’. Acta Horticulturae Sinica, 2023, 50(S1): 67-68. (in Chinese)
[6]
王春勇, 王耐红, 闫颖, 李贺, 关怡卉, 金晓蕾, 孙逊. 17个鲜加工型辣椒品种农艺性状分析. 种子, 2023, 42(7): 57-63.
WANG C Y, WANG N H, YAN Y, LI H, GUAN Y H, JIN X L, SUN X. Cluster analysis and principal component analysis of agronomic traits of 17 fresh processing pepper varieties. Seed, 2023, 42(7): 57-63. (in Chinese)
[7]
MARTÍNEZ-ISPIZUA E, MARTÍNEZ-CUENCA M R, MARSAL J I, DÍEZ M J, SOLER S, VALCÁRCEL J V, CALATAYUD Á. Bioactive compounds and antioxidant capacity of valencian pepper landraces. Molecules, 2021, 26(4): 1031.
[8]
OLATUNJI T L, AFOLAYAN A J. The suitability of chili pepper (Capsicum annuum L.) for alleviating human micronutrient dietary deficiencies: a review. Food Science & Nutrition, 2018, 6(8): 2239-2251.
[9]
王楠艺, 付文婷, 吴迪, 涂祥敏, 杨万荣, 何建文. 辣椒品质研究进展. 江苏农业科学, 2022, 50(16): 21-27.
WANG N Y, FU W T, WU D, TU X M, YANG W R, HE J W. Research progress on pepper quality. Jiangsu Agricultural Sciences, 2022, 50(16): 21-27. (in Chinese)
[10]
NAIMA ZAKI A H, HAKMAOUI A, DEHBI F, OUATMANE A. Assessment of color, capsaicinoids, carotenoids and fatty acids composition of paprika produced from Moroccan pepper cultivars (Capsicum annuum L.). Journal of Natural Sciences Research, 2013: 3(7): 111-118.
[11]
SPILLER F, ALVES M K, VIEIRA S M, CARVALHO T A, LEITE C E, LUNARDELLI A, POLONI J A, CUNHA F Q, DE OLIVEIRA J R. Anti-inflammatory effects of red pepper (Capsicum baccatum) on carrageenan- and antigen-induced inflammation. The Journal of Pharmacy and Pharmacology, 2008, 60(4): 473-478.
[12]
CHAPA-OLIVER A M, MEJÍA-TENIENTE L. Capsaicin: From plants to a cancer-suppressing agent. Molecules, 2016, 21(8): 931.
[13]
BOGUSZ S Jr, LIBARDI S H, DIAS F F, COUTINHO J P, BOCHI V C, RODRIGUES D, MELO A M, GODOY H T. Brazilian Capsicum peppers: Capsaicinoid content and antioxidant activity. Journal of the Science of Food and Agriculture, 2018, 98(1): 217-224.
[14]
KELLER H, KIOSZE K, SACHSENWEGER J, HAUMANN S, OHLENSCHLÄGER O, NUUTINEN T, SYVÄOJA J E, GÖRLACH M, GROSSE F, POSPIECH H. The intrinsically disordered amino-terminal region of human RecQL4: Multiple DNA-binding domains confer annealing, strand exchange and G4 DNA binding. Nucleic Acids Research, 2014, 42(20): 12614-12627.

doi: 10.1093/nar/gku993 pmid: 25336622
[15]
OLATUNJI T L, AFOLAYAN A J. Comparison of nutritional, antioxidant vitamins and capsaicin contents in Capsicum annuum and C. frutescens. International Journal of Vegetable Science, 2020, 26(2): 190-207.
[16]
JARRET R L, BERKE T, BALDWIN E A, ANTONIOUS G F. Variability for free sugars and organic acids in Capsicum chinense. Chemistry & Biodiversity, 2009, 6(2): 138-145.
[17]
GOFF S A, KLEE H J. Plant volatile compounds: Sensory cues for health and nutritional value? Science, 2006, 311(5762): 815-819.

doi: 10.1126/science.1112614 pmid: 16469919
[18]
ZAMLJEN T, MEDIČ A, VEBERIČ R, HUDINA M, JAKOPIČ J, SLATNAR A. Metabolic variation among fruits of different chili cultivars (Capsicum spp.) using HPLC/MS. Plants, 2021, 11(1): 101.
[19]
JANG Y K, JUNG E S, LEE H A, CHOI D, LEE C H. Metabolomic characterization of hot pepper (Capsicum annuum “CM334”) during fruit development. Journal of Agricultural and Food Chemistry, 2015, 63(43): 9452-9460.
[20]
TANG Y P, ZHANG G R, YANG T, YANG S B, AISIMUTUOLA P, WANG B K, LI N, WANG J, YU Q H. Biochemical variances through metabolomic profile analysis of Capsicum chinense Jacq. during fruit development. Folia Horticulturae, 2021, 33(1): 17-26.
[21]
张晓宁, 李彩朝, 金威恒, 叶正, 张雨, 李林, 舒黄英, 郝园园, 汪志伟. 中国辣椒(Capsicum chinense)果色转变的比较代谢组分析. 分子植物育种, 2023, 21(5): 1701-1708.
ZHANG X N, LI C C, JIN W H, YE Z, ZHANG Y, LI L, SHU H Y, HAO Y Y, WANG Z W. Comparative metabolomic analysis of fruit color transition in pepper (Capsicum chinense). Molecular Plant Breeding, 2023, 21(5): 1701-1708. (in Chinese)
[22]
谭华强, 铁曼曼, 李丽平, 鲁荣海, 潘绍坤, 唐有万. 紫色辣椒HN191与二荆条的比较代谢组分析. 食品科学, 2023, 44(22): 304-312.

doi: 10.7506/spkx1002-6630-20230320-194
TAN H Q, TIE M M, LI L P, LU R H, PAN S K, TANG Y W. Comparative metabolomic analysis of purple hot pepper cultivar HN191 and erjingtiao. Food Science, 2023, 44(22): 304-312. (in Chinese)

doi: 10.7506/spkx1002-6630-20230320-194
[23]
LIU Y H, J H, LIU Z B, WANG J, YANG B Z, CHEN W C, OU L J, DAI X Z, ZHANG Z Q, ZOU X X. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.). Food Chemistry, 2020, 306: 125629.
[24]
LOZADA D N, PULICHERLA S R, HOLGUIN F O. Widely targeted metabolomics reveals metabolite diversity in jalapeño and serrano Chile peppers (Capsicum annuum L.). Metabolites, 2023, 13(2): 288.
[25]
RIVERA-PÉREZ A, ROMERO-GONZÁLEZ R, GARRIDO FRENICH A. Application of an innovative metabolomics approach to discriminate geographical origin and processing of black pepper by untargeted UHPLC-Q-Orbitrap-HRMS analysis and mid-level data fusion. Food Research International, 2021, 150: 110722.
[26]
JANDA M, PLANCHAIS S, DJAFI N, MARTINEC J, BURKETOVA L, VALENTOVA O, ZACHOWSKI A, RUELLAND E. Phosphoglycerolipids are master players in plant hormone signal transduction. Plant Cell Reports, 2013, 32(6): 839-851.

doi: 10.1007/s00299-013-1399-0 pmid: 23471417
[27]
PARSONS E P, POPOPVSKY S, LOHREY G T, ALKALAI-TUVIA S, PERZELAN Y, BOSLAND P, BEBELI P J, PARAN I, FALLIK E, JENKS M A. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum). Physiologia Plantarum, 2013, 149(2): 160-174.
[28]
VILLA-RUANO N, VELÁSQUEZ-VALLE R, ZEPEDA-VALLEJO L G, PÉREZ-HERNÁNDEZ N, VELÁZQUEZ-PONCE M, ARCOS- ADAME V M, BECERRA-MARTÍNEZ E. (1)H NMR-based metabolomic profiling for identification of metabolites in Capsicum annuum cv. Mirasol infected by beet mild curly top virus (BMCTV). Food Research International, 2018, 106: 870-877.
[29]
PATEL N, GANTAIT S, PANIGRAHI J. Extension of postharvest shelf-life in green bell pepper (Capsicum annuum L.) using exogenous application of polyamines (spermidine and putrescine). Food Chemistry, 2019, 275: 681-687.
[30]
PANKRATZ B, FEIGE B, RUNGE K, BECHTER K, SCHIELE M A, DOMSCHKE K, PRÜSS H, TEBARTZ VAN ELST L, NICKEL K, ENDRES D. Cerebrospinal fluid findings in patients with obsessive- compulsive disorder, Tourette syndrome, and PANDAS: A systematic literature review. Brain, Behavior and Immunity, 2024, 115: 319-332.
[31]
程远, 万红建, 姚祝平, 叶青静, 王荣青, 杨悦俭, 周国治, 阮美颖. 不同品种樱桃番茄氨基酸组成及风味分析. 核农学报, 2019, 33(11): 2177-2185.

doi: 10.11869/j.issn.100-8551.2019.11.2177
CHENG Y, WAN H J, YAO Z P, YE Q J, WANG R Q, YANG Y J, ZHOU G Z, RUAN M Y. Comparative analysis of the amino acid constitution and flavor quality in different cherry tomato varieties. Journal of Nuclear Agricultural Sciences, 2019, 33(11): 2177-2185. (in Chinese)

doi: 10.11869/j.issn.100-8551.2019.11.2177
[32]
LEHMANN S, FUNCK D, SZABADOS L, RENTSCH D. Proline metabolism and transport in plant development. Amino Acids, 2010, 39(4): 949-962.

doi: 10.1007/s00726-010-0525-3 pmid: 20204435
[33]
WINTER G, TODD C D, TROVATO M, FORLANI G, FUNCK D. Physiological implications of arginine metabolism in plants. Frontiers in Plant Science, 2015, 6: 534.

doi: 10.3389/fpls.2015.00534 pmid: 26284079
[34]
NAKADA Y, JIANG Y, NISHIJYO T, ITOH Y, LU C D. Molecular characterization and regulation of the aguBA operon, responsible for agmatine utilization in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 2001, 183(22): 6517-6524.
[35]
WANG Y X, ZHOU F H, ZUO J H, ZHENG Q L, GAO L P, WANG Q, JIANG A L. Pre-storage treatment of mechanically-injured green pepper (Capsicum annuum L.) fruit with putrescine reduces adverse physiological responses. Postharvest Biology and Technology, 2018, 145: 239-246.
[36]
UNDERWOOD B A, ARTHUR P. The contribution of vitamin A to public health. The FASEB Journal, 1996, 10(9): 1040-1048.
[37]
MISHRA K, JANDIAL A, SANDAL R, KHADWAL A, MALHOTRA P. Night blindness, Bitot’s spot and vitamin A deficiency. QJM: An International Journal of Medicine, 2019, 112(3): 225.
[38]
HUSSAIN S B, SHI C Y, GUO L X, KAMRAN H M, SADKA A, LIU Y Z. Recent advances in the regulation of citric acid metabolism in Citrus fruit. Critical Reviews in Plant Sciences, 2017, 36(4): 241-256.
[39]
MARÍN A, FERRERES F, TOMÁS-BARBERÁN F A, GIL M I. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). Journal of Agricultural and Food Chemistry, 2004, 52(12): 3861-3869.
[40]
MANIKHARDA, TAKAHASHI M, ARAKAKI M, YONAMINE K, HASHIMOTO F, TAKARA K, WADA K. Influence of fruit ripening on color, organic acid contents, capsaicinoids, aroma compounds, and antioxidant capacity of shimatogarashi (Capsicum frutescens). Journal of Oleo Science, 2018, 67(1): 113-123.

doi: 10.5650/jos.ess17156 pmid: 29238032
[41]
LENG P, YUAN B, GUO Y D. The role of abscisic acid in fruit ripening and responses to abiotic stress. Journal of Experimental Botany, 2014, 65(16): 4577-4588.

doi: 10.1093/jxb/eru204 pmid: 24821949
[42]
JIA H F, CHAI Y M, LI C L, LU D, LUO J J, QIN L, SHEN Y Y. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology, 2011, 157(1): 188-199.
[43]
JIA H F, JIU S T, ZHANG C, WANG C, TARIQ P, LIU Z J, WANG B J, CUI L W, FANG J G. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. Plant Biotechnology Journal, 2016, 14(10): 2045-2065.

doi: 10.1111/pbi.12563 pmid: 27005823
[44]
LEONE A, BLEVE-ZACHEO T, GERARDI C, MELILLO M T, LEO L, ZACHEO G. Lipoxygenase involvement in ripening strawberry. Journal of Agricultural and Food Chemistry, 2006, 54(18): 6835-6844.

doi: 10.1021/jf061457g pmid: 16939347
[1] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[2] QI XiaoYu, KONG XiaoPing, ZHOU HongWei, YAN XiangPing. Crucial Factors Impacting Carrot Flavor Analysis Based on Broad Target Metabolomics [J]. Scientia Agricultura Sinica, 2024, 57(16): 3250-3263.
[3] ZENG YanXin, GONG HaoNan, YOU ChunXiang, LU JingSheng, GAO WenSheng, WANG XiaoFei. Effects of Different Rootstocks on Growth and Fruit Quality of Young Ruixianghong Apple Trees with Multi-Stem Shape [J]. Scientia Agricultura Sinica, 2024, 57(14): 2847-2861.
[4] WU YaNuo, LIU Yuan, KONG JiaTao, HU ZheHui, CHEN MingHua, WU JunChen, ZHANG HongYan, JIANG YouWu, XU Juan, CHEN JiaJing. Basing Fuzzy Modeling to Evaluate Sensory Quality Differences of ‘Orah’ Mandarin Fruits from Various Production Regions [J]. Scientia Agricultura Sinica, 2024, 57(10): 2010-2022.
[5] SHENG HongJie, LU SuWen, ZHENG XuanAng, JIA HaiFeng, FANG JingGui. Identification and Comparative Analysis of Metabolites in Grape Seed Based on Widely Targeted Metabolomics [J]. Scientia Agricultura Sinica, 2023, 56(7): 1359-1376.
[6] WANG ZiDun, WANG Hui, FENG YuChen, ZHANG XueLiang, YAN LeiYu, LIU XiaoJie, ZHAO ZhengYang. Effects of Different Color Fruit Bags on Quality of Ruixue Apple Fruits [J]. Scientia Agricultura Sinica, 2023, 56(4): 729-740.
[7] LIU Chang, CUI ZiXu, ZUO Zhou, YUN HongMei, NIU Jin, YANG Yang, GUO XiaoHong, LI BuGao, GAO PengFei, ZHAO Yan, CAO GuoQing. Effects of Dietary Fiber Level on Intestinal Barrier Function, Colonic Microbiota and Metabolites in Pigs [J]. Scientia Agricultura Sinica, 2023, 56(22): 4532-4551.
[8] ZOU JinPeng, YUE HaoFeng, LI HaiXiao, LIU Zheng, LIU Ning, CAO ZhiYan, DONG JinGao. Mechanism of StLAC2 and StLAC6 Differentially Affecting Setosphaeria turcica Based on Non-Targeted Metabonomics Analysis [J]. Scientia Agricultura Sinica, 2023, 56(16): 3110-3223.
[9] SHI Ying, CHEN SiYi, ZENG YiKe, TANG Jun, LI DiPing, LI GuoJing, HUANG XianBiao, LI ChunLong, XIE ZongZhou, LIU JiHong. Mechanism Underlying the Improved Quality of Bagged Fruits in Ponkan [J]. Scientia Agricultura Sinica, 2023, 56(14): 2776-2786.
[10] CHEN ZhiMin, CHEN XiaoLin, TAN ZhenHua, CHEN ZhaoXing, SHEN DanDan, MA YanYan, ZHENG YongQiang, YI ShiLai, LÜ Qiang, XIE RangJin. Comprehensive Fruit Quality Evaluation and Suitable Areas Selection of Newhall Navel Orange in China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1949-1965.
[11] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[12] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[13] LI Gang, BAI Yang, JIA ZiYing, MA ZhengYang, ZHANG XiangChi, LI ChunYan, LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[14] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[15] AiHua WANG,HongYe MA,RongFei LI,ShiPin YANG,Rong QIAO,PeiLin ZHONG. Metabolic Analysis of Aroma Components in Two Interspecific Hybrids from the Cross of F.ananassa Duch. and Fragaria nilgerrensis Schlecht. [J]. Scientia Agricultura Sinica, 2021, 54(5): 1043-1054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!