Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (16): 3250-3263.doi: 10.3864/j.issn.0578-1752.2024.16.012

• HORTICULTURE • Previous Articles     Next Articles

Crucial Factors Impacting Carrot Flavor Analysis Based on Broad Target Metabolomics

QI XiaoYu1(), KONG XiaoPing1,2(), ZHOU HongWei2, YAN XiangPing2   

  1. 1 College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016
    2 Xining Vegetable Technical Service Center, Xining 810003
  • Received:2024-01-26 Accepted:2024-04-11 Online:2024-08-16 Published:2024-08-27
  • Contact: KONG XiaoPing

Abstract:

【Objective】 Terpenoid metabolites serve as primary indicators for assessing the quality of carrot flavor, which influence the taste and overall flavor quality of carrots significantly. This study compared the metabolites of flavor components in mature fleshy carrot roots exhibiting pronounced sweetness group and bitterness group, which could offer valuable insights for identifying key flavor components and enhancing the cultivation and exploitation of superior genetic resources.【Method】Efficient methods for detecting and identifying metabolites were established for carrot metabolomics research. Initially, a high-throughput metabolomic analysis platform was developed using UPLC-MS/MS to analyze terpene metabolites in carrots and to identify those influencing flavor quality. Differential metabolites were screened based on OPLS-DA results using VIP and log2FC values, with thresholds set at VIP>1 and fold changes of ≥2 and ≤0.5. 【Result】 A total of 50 terpenoid metabolites were screened out and exhibited significant differences, with 12 up-regulated and 2 down-regulated. Notable upregulated metabolites included Genipine (0.754), Japonicumin B (0.936), oxyphyllanene A (1.03), carvyl acetate (1.04), and 3-(3'-hydroxybutyl)-2, 4, 4-trimethylcyclohexan-2, 5-dienone (0.662). Dehydrodigitoxin (0.617) was significantly down-regulated. In terms of terpene content, those bitter carrots showed higher levels of Normelanothyrsin A (16.98), Curcumenol (17.57), and Genipin (15.32), while sweet carrots exhibited higher levels of Normelanothyrsin A (17.61), isothyrsin alcohol (16.01), and Curcuma alcohol (18.73). Top metabolites based on p-values included micrantholide (0.994), pyrodialdehyde (0.991), methyl (E)-5, 11-dihydroxy-4-(((Z)-2-2-enoyl methylbut-)foxy)-, 10-dimethylene-2-3 oxo-2 filling a, 4, 5, 8, 9, 10, 11, 11a-decahydrocyclodeca[b]furan-6-carboxylate (0.978), (3R)-3-hydroxy-ionone (0.974), and Blumenol A (0.969). Cluster analysis was employed to compare metabolite profiles between the two carrot groups, revealing significantly higher metabolite content in group 3 than that in group -3. Differential metabolite annotation and enrichment analysis were performed using the KEGG database.【Conclusion】Terpenoid metabolites, including Gennipine, Japonicumin B, oxyphyllanene A, carvyl acetate, Normelanothyrsin A, curcumenol, isocarbamol, dehydrodigitoxin, and micrantholide, were the primary compounds influencing the flavor of carrots. These compounds were believed to play a crucial role in determining the characteristic taste of carrots.

Key words: carrots(Daucus carota var. sativa Hoffm.), broadly targeted metabolomics, flavor substance, terpene metabolites, differential metabolite, quality

Table 1

Carrot agronomy status"


Group
引种号
Introduction number
根型
Root type
根表皮颜色
Root skin
color
根肉色
Root-flesh
color
根中心柱颜色
Root center column color
根长
Root length (cm)
根粗
Root thickness (cm)
单根重
Single weight (g)
口感
Taste
-3 B202 短圆柱
Short cylinder
黄色
Yellow
黄色
Yellow
黄色
Yellow
16.8 1.9 322.5 甜Sweet
B207 短圆柱
Short cylinder
橘黄色
Aurantium
橘黄色
Aurantium
橘黄色
Aurantium
16.5 1.4 146.5 甜Sweet
H200 短圆柱
Short cylinder
橘黄色
Aurantium
橘黄色
Aurantium
橘黄色
Aurantium
14.4 1.4 85.0 甜Sweet
3 B176 短圆柱
Short cylinder
黄色
Yellow
黄色
Yellow
黄色
Yellow
16.1 1.4 115.4 苦Bitter
B261 短圆锥
Short cone
紫红色
Fuchsia
紫红色
Fuchsia
橘黄色
Aurantium
22.8 1.9 265.5 苦Bitter
H41 短圆锥
Short cone
橘红色
Tangerine
红色
Red
黄色
Yellow
13.6 2.0 192.8 苦Bitter

Fig. 1

TIC superposition diagram A: Negative ion mode (N); B: Positive ion mode (P)"

Fig. 2

Correlation analysis among samples (A), Principal component analysis (B), OPLS-DA score chart (C), and OPLS-DA validation chart (D)"

Table 2

Terpenes detected by broad targeted metabolomics methods in carrot"

分类 Class 物质 Compound B202 B207 H200 B176 B261 H41 VIP Fold change P-value
倍半萜
Sesquiterpenoids
薇甘菊内酯 Mikanolide 6.81E+05 1.83E+05 5.54E+05 1.44E+06 2.25E+06 7.02E+05 1.33E-02 1.00E+00 9.94E-01
密叶辛木素 Confertifoline 9.74E+04 9.58E+04 9.52E+04 9.81E+04 9.21E+04 9.50E+04 3.49E-01 9.90E-01 7.67E-01
甲黑素甲苷A Normelanothyrsin A 1.10E+07 1.14E+07 1.31E+07 1.03E+07 1.00E+07 1.36E+07 4.25E-01 1.05E+00 6.71E-01
克里斯帕酮 Crispanone 1.08E+06 2.96E+06 1.76E+05 4.73E+05 2.64E+06 5.59E+04 1.06E+00 3.77E-01 1.60E-01
香附可布酮 Kobusone 1.17E+05 1.10E+05 1.68E+05 1.70E+05 3.66E+05 1.28E+05 6.81E-02 9.85E-01 9.69E-01
莪术醇 Curcumol 3.53E+06 4.69E+06 3.61E+06 5.35E+06 1.23E+07 8.82E+06 6.42E-01 1.08E+00 8.36E-01
9α-羟基-11β,13-二氢扎鲁扎宁C
9alpha-hydroxy-11beta,13-dihydrozaluzanin C
7.73E+04 7.56E+04 7.52E+04 7.67E+04 7.09E+04 7.44E+04 6.41E-01 9.78E-01 5.93E-01
氧叶烯A oxyphyllanene A 2.72E+06 2.62E+06 2.71E+06 2.53E+06 2.78E+06 2.85E+06 1.36E+00 1.03E+00 1.16E-01
异呋喃醇二烯 Isofuranodiene (ISO2) 9.75E+05 1.42E+06 1.98E+06 1.11E+06 4.00E+06 2.16E+06 4.43E-02 1.09E+00 7.61E-01
布卢门醇C Blumenol C 7.91E+05 2.26E+05 5.12E+05 1.24E+06 3.08E+06 7.62E+05 2.44E-01 9.62E-01 8.96E-01
土木香内酯 Micheliolide 4.41E+05 5.66E+05 9.19E+05 3.14E+05 3.06E+06 7.02E+05 7.39E-01 7.25E-01 5.03E-01
寥二醛 polygodial 1.79E+05 2.37E+05 1.73E+05 2.71E+05 6.80E+05 4.50E+05 7.15E-01 1.00E+00 9.91E-01
1β-羟基-α-香附酮 1β-Hydroxy-α-cyperone (ISO6) 2.46E+06 2.40E+06 2.76E+06 2.21E+06 2.49E+06 2.54E+06 4.91E-01 1.02E+00 6.18E-01
吉马酮 Germacrone 5.22E+05 1.34E+06 1.68E+06 7.42E+05 3.51E+05 8.27E+05 2.15E-01 9.76E-01 9.40E-01
甲基(E)-5,11-二羟-4-((Z)-2-甲基丁-2-烯酰氧基)-3,10-二亚甲基-2-氧代
-2,3,3a,4,5,8,9,10,11,11a-十氢环癸并[b]呋喃-6-羧酸酯
Methyl (E)-5,11-dihydroxy-4-(((Z)-2-methylbut-2-enoyl)oxy)-3,10-dimethylene
-2-oxo-2,3,3a,4,5,8,9,10,11,11a-decahydrocyclodeca[b]furan-6-carboxylate
2.23E+05 1.17E+05 1.53E+05 1.84E+05 5.87E+05 7.87E+05 4.23E-01 9.87E-01 9.78E-01
异香附醇 Isocyperol 7.67E+05 2.71E+05 3.19E+05 1.01E+05 1.01E+07 3.92E+05 5.77E-01 9.37E-01 9.11E-01
原莪术醇 Procurcumenol (ISO1) 2.09E+06 1.96E+06 3.00E+06 1.45E+06 3.41E+06 2.48E+06 1.05E+00 1.25E+00 3.61E-01
3-(3'-羟基丁基)-2,4,4-三甲基环己烷-2,5-二烯酮
(R)-3-(3'-Hydroxybutyl)-2,4,4-trimethylcyclohexa-2,5-dienone
7.78E+04 6.19E+04 1.06E+05 1.48E+05 2.10E+05 2.60E+05 1.12E+00 6.62E-01 5.53E-01
11-O-β-D-葡萄糖苷3-羟基-7,8-二氢-β-紫罗兰醇
11-O-β-D-Glucoside of 3-hydroxy-7,8-didehydro-β-ionol (ISO2)
5.24E+04 7.32E+04 8.83E+04 5.26E+04 1.74E+05 1.02E+05 1.38E-01 1.08E+00 7.19E-01
倍萜
Monoterpenoids
乙酸香芹酯 Carvylacetate 3.71E+05 4.38E+05 4.18E+05 5.01E+05 1.23E+06 7.78E+05 6.19E-01 1.04E+00 9.03E-01
去氢催吐萝芙木醇 Dehydrovomifoliol 3.35E+05 4.61E+05 2.96E+05 9.11E+05 1.91E+05 9.62E+05 6.66E-01 6.30E-01 3.40E-01
α-紫罗兰酮 α-Ionone 1.27E+05 1.73E+05 1.70E+05 1.56E+05 1.51E+05 1.60E+05 6.52E-01 1.03E+00 5.77E-01
11-甲氧基 维布尔替纳尔 11-methoxy viburtinal 4.99E+04 4.58E+04 9.71E+04 4.17E+04 6.47E+04 6.86E+04 3.63E-02 7.75E-01 6.22E-01
大车前草苷 Majoroside 5.31E+05 9.27E+05 1.45E+06 4.45E+05 3.39E+05 6.86E+05 2.08E+00 1.96E+00 1.39E-02
7-脱氧马钱苷酸 7-Deoxyloganic acid 1.02E+06 1.63E+06 4.40E+05 4.24E+05 1.59E+05 8.41E+05 1.39E+00 6.78E-01 5.80E-01
脱氧斯坦硫苷 Deoxystansioside 2.91E+05 2.67E+05 5.82E+05 2.39E+05 3.59E+05 2.61E+05 4.61E-01 9.59E-01 8.90E-01
3-羟基-紫罗兰酮 3-(6''-丙二酰)葡萄糖苷
3-hydroxy-beta-ionone 3-(6''-Malonyl) glucoside
2.91E+05 2.73E+05 5.68E+05 2.47E+05 3.65E+05 2.74E+05 5.70E-01 9.38E-01 8.28E-01
丙二酰葡萄糖苷 Malonyl glucoside 2.93E+05 2.65E+05 5.51E+05 2.32E+05 3.38E+05 2.71E+05 4.00E-01 9.79E-01 9.47E-01
京尼平 Genipin 2.49E+05 4.37E+06 4.71E+06 4.12E+06 4.87E+06 4.72E+06 8.05E-01 7.54E-01 4.69E-01
紫苏子醇 Perillyl alcohol 6.57E+04 6.54E+04 1.14E+05 3.54E+04 3.49E+05 3.27E+05 4.55E-01 7.06E-01 6.73E-01
3-氧-a-紫罗兰醇 3-(6''-丙二酰)葡萄糖苷
3-oxo-Alpha-ionol 3'-(6''-Malonyl) glucoside
2.64E+06 1.14E+06 1.59E+06 2.41E+06 3.08E+06 1.45E+06 1.10E+00 8.53E-01 2.69E-01
布卢门醇 A Blumenol A 6.45E+04 8.59E+04 5.96E+04 8.76E+04 2.96E+05 1.22E+05 6.92E-01 1.01E+00 9.69E-01
博夏林4-O-丙二酰葡糖苷 Boscialin 4-O-malonyl glucoside 6.72E+04 6.41E+04 2.44E+05 5.56E+04 3.51E+05 6.22E+05 4.34E-01 1.23E+00 6.19E-01
(3R)-3-羟基-紫罗兰酮 3R-3-hydroxy-β-ionone 8.56E+04 1.17E+04 6.84E+04 2.72E+04 4.52E+05 2.28E+05 1.49E-01 1.02E+00 9.74E-01
布卢门醇B丙二酰葡萄糖苷 Blumenol B malonyl Glucoside 1.22E+05 3.48E+04 2.70E+05 2.41E+04 3.30E+05 3.56E+05 1.09E+00 6.28E-01 3.11E-01
二氢伏米叶醇4-O-丙二酰葡萄糖苷 Dihydrovomifoliol 4-O-malonyl glucoside 1.82E+05 3.48E+05 3.97E+05 2.70E+05 1.61E+06 1.51E+05 4.65E-01 1.87E+00 2.30E-01
丙二酰拜占素苷A Malonyl byzantionoside A 3.65E+04 5.93E+04 9.53E+04 1.29E+04 1.27E+05 2.68E+05 3.50E-01 7.29E-01 4.91E-01
可乔醇C Corchoionol C 1.37E+05 1.28E+05 1.69E+05 9.18E+04 1.26E+05 1.62E+05 4.59E-01 9.04E-01 6.70E-01
丙二酰 长寿花糖苷 Malonyl roseoside 6.93E+04 4.96E+04 1.29E+05 4.32E+04 1.86E+05 5.00E+04 1.16E+00 1.26E+00 4.78E-01
二萜
Ditepenoids
顺式泛醇 cis-Abienol 2.33E+04 3.00E+04 1.30E+05 2.51E+04 3.22E+04 1.56E+05 7.18E-01 1.05E+00 9.12E-01
脱氢松香酸 Dehydroabietic acid 2.27E+06 3.48E+06 9.86E+05 9.76E+05 5.46E+05 2.69E+06 1.41E+00 6.73E-01 5.72E-01
松香酸 Abietic acid 6.52E+04 1.23E+05 4.30E+04 5.86E+04 1.45E+05 3.37E+04 6.02E-01 2.57E+00 1.82E-01
海松酸 Pimaric acid 6.09E+04 3.57E+04 1.00E+05 3.21E+04 1.28E+05 7.65E+04 1.56E-01 8.40E-01 7.53E-01
异海松酸 Isopimaric acid 6.09E+04 3.57E+04 1.00E+05 3.21E+04 1.28E+05 7.65E+04 1.56E-01 8.40E-01 7.53E-01
贝壳杉烯酸 Kaurenoic acid 2.18E+04 9.61E+03 6.07E+04 6.27E+03 6.00E+04 4.09E+04 1.20E+00 6.80E-01 2.68E-01
维布萨宁J Vibsanin J 4.74E+04 5.50E+04 3.95E+04 6.17E+04 2.16E+05 2.70E+04 6.30E-01 1.57E+00 3.49E-01
三萜
Triterpene
齐墩果-12-烯-3,16-二酮 Olean-12-ene-3,16-dione 2.13E+04 5.40E+04 9.00E+00 1.71E+04 4.33E+04 1.70E+05 9.80E-01 5.87E-01 3.74E-01
粳米素B Japonicumin B 2.44E+04 3.78E+04 2.88E+04 2.46E+04 5.85E+04 2.56E+04 4.74E-01 9.36E-01 8.59E-01
萜类
Terpene
脱氢地芰普内酯 Dehydrololiolide 6.15E+04 7.41E+04 9.04E+04 5.12E+04 1.28E+05 1.05E+05 1.41E+00 6.17E-01 3.00E-01
塞洛温A Sellowin A 3.42E+04 5.32E+04 1.15E+05 2.70E+04 9.76E+04 7.00E+04 1.52E+00 2.36E+00 4.01E-02

Fig. 3

Bar chart of difference multiples"

Fig. 4

Cluster analysis of differential metabolites"

Fig 5

KEGG enrichment of differential metabolites"

[1]
李敏. 胡萝卜FT基因的克隆及遗传转化体系优化[D]. 北京: 中国农业科学院, 2021.
LI M. Cloning and genetic transformation system optimization of FT gene in carrot[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[2]
BOADI N O, BADU M, KORTEI N K, SAAH S A, ANNOR B, MENSAH M B, OKYERE H, FIEBOR A. Nutritional composition and antioxidant properties of three varieties of carrot (Daucus carota). Scientific African, 2021, 12: e00801.
[3]
MONTENEGRO I, TOMASONI G, BOSIO C, QUIÑONES N, MADRID A, CARRASCO H, OLEA A, MARTINEZ R, CUELLAR M, VILLENA J. Study on the cytotoxic activity of drimane sesquiterpenes and nordrimane compounds against cancer cell lines. Molecules, 2014, 19(11): 18993-19006.

doi: 10.3390/molecules191118993 pmid: 25412045
[4]
HASHEM S, NISAR S, SAGEENA G, MACHA M A, YADAV S K, KRISHNANKUTTY R, UDDIN S, HARIS M, BHAT A A. Therapeutic effects of curcumol in several diseases; An overview. Nutrition and Cancer, 2021, 73(2): 181-195.
[5]
VIENNOIS E, XIAO B, AYYADURAI S, WANG L X, WANG P G, ZHANG Q, CHEN Y, MERLIN D. Micheliolide, a new sesquiterpene lactone that inhibits intestinal inflammation and colitis-associated cancer. Laboratory Investigation, 2014, 94(9): 950-965.

doi: 10.1038/labinvest.2014.89 pmid: 25068660
[6]
QIN X Y, JIANG X R, JIANG X, WANG Y L, MIAO Z L, HE W G, YANG G Z, LV Z H, YU Y Z, ZHENG Y J. Micheliolide inhibits LPS-induced inflammatory response and protects mice from LPS challenge. Scientific Reports, 2016, 6: 23240.

doi: 10.1038/srep23240 pmid: 26984741
[7]
RIAZ A, RASUL A, KANWAL N, HUSSAIN G, SHAH M A, SARFRAZ I, ISHFAQ R, BATOOL R, RUKHSAR F, ADEM Ş. Germacrone: A potent secondary metabolite with therapeutic potential in metabolic diseases, cancer and viral infections. Current Drug Metabolism, 2020, 21(14): 1079-1090.
[8]
王爱华, 马红叶, 李荣飞, 杨仕品, 乔荣, 钟霈霖. 凤梨草莓与黄毛草莓种间杂种果实香气成分的代谢谱分析. 中国农业科学, 2021, 54(5): 1043-1054. doi: 10.3864/j.issn.0578-1752.2021.05.015.
WANG A H, MA H Y, LI R F, YANG S P, QIAO R, ZHONG P L. Metabolic analysis of aroma components in two interspecific hybrids from the cross of F. ananassa Duch. and Fragaria nilgerrensis Schlecht. Scientia Agricultura Sinica, 2021, 54(5): 1043-1054. doi: 10.3864/j.issn.0578-1752.2021.05.015. (in Chinese)
[9]
ZHAO J T, SAUVAGE C, ZHAO J H, BITTON F, BAUCHET G, LIU D, HUANG S W, TIEMAN D M, KLEE H J, CAUSSE M. Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nature Communications, 2019, 10: 1534.

doi: 10.1038/s41467-019-09462-w pmid: 30948717
[10]
宋慧慧. PuMYB21-PuERF106共调控梨果实香气合成和花青苷代谢的分子机制研究[D]. 合肥: 合肥工业大学, 2022.
SONG H H. Molecular mechanism of PuMYB21-PuERF106 co-regulating aroma synthesis and anthocyanin metabolism of pear fruit[D]. Hefei: Hefei University of Technology, 2022. (in Chinese)
[11]
李其晔. 不同产地紫皮洋葱挥发性风味化合物组成分析. 保鲜与加工, 2023, 23(9): 51-58.
LI Q Y. Analysis of volatile flavor compounds in purple onion from different geographical origins. Storage and Process, 2023, 23(9): 51-58. (in Chinese)
[12]
朱永聪, 崔子霄, 徐晗, 韦增辉, 张嘉雯, 白翠华, 姚丽贤. 优新荔枝品种果实品质风味特征比较. 中国食品学报, 2023, 23(6): 327-338.
ZHU Y C, CUI Z X, XU H, WEI Z H, ZHANG J W, BAI C H, YAO L X. Comparison on fruit quality and flavor of new and fine Litchi cultivars. Journal of Chinese Institute of Food Science and Technology, 2023, 23(6): 327-338. (in Chinese)
[13]
唐晓伟, 何洪巨, 宋曙辉, 王文琪, 高丽朴, 梁毅. 有机胡萝卜风味品质分析. 北方园艺, 2010(14): 9-12.
TANG X W, HE H J, SONG S H, WANG W Q, GAO L P, LIANG Y. Analysis of aroma components and flavor sensory in organic carrots. Northern Horticulture, 2010(14): 9-12. (in Chinese)
[14]
KESER D, GUCLU G, KELEBEK H, KESKIN M, SOYSAL Y, SEKERLI Y E, ARSLAN A, SELLI S. Characterization of aroma and phenolic composition of carrot (Daucus carota ‘Nantes’) powders obtained from intermittent microwave drying using GC-MS and LC-MS/MS. Food and Bioproducts Processing, 2020, 119: 350-359.
[15]
LESSA R C S, GOMES A C C A. Perillyl alcohol and its synthetic derivatives: The rising of a novel class of selective and potent antitumoral compounds. Medicinal Chemistry Research, 2022, 31(5): 677-694.
[16]
IBRAHIM M A, KAINULAINEN P, AFLATUNI A. Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: with special reference to limonene and its suitability for control of insect pests. Agricultural and Food Science, 2001, 10(3): 243-259.
[17]
KEILWAGEN J, LEHNERT H, BERNER T, BUDAHN H, NOTHNAGEL T, ULRICH D, DUNEMANN F. The terpene synthase gene family of carrot (Daucus carota L.): Identification of QTLs and candidate genes associated with terpenoid volatile compounds. Frontiers in Plant Science, 2017, 8: 1930.
[18]
MUCHLINSKI A, IBDAH M, ELLISON S, YAHYAA M, NAWADE B, LALIBERTE S, SENALIK D, SIMON P, WHITEHEAD S R, THOLL D. Diversity and function of terpene synthases in the production of carrot aroma and flavor compounds. Scientific Reports, 2020, 10: 9989.

doi: 10.1038/s41598-020-66866-1 pmid: 32561772
[19]
王淑燕, 赵峰, 饶耿慧, 林宏政, 郭永春, 傅天甫, 翁发水, 叶乃兴. 基于电子鼻和ATD-GC-MS技术分析茉莉花茶香气成分的产地差异. 食品工业科技, 2021, 42(15): 234-239.
WANG S Y, ZHAO F, RAO G H, LIN H Z, GUO Y C, FU T F, WENG F S, YE N X. Origin difference analysis of aroma components in jasmine tea based on electronic nose and ATD-GC-MS. Science and Technology of Food Industry, 2021, 42(15): 234-239. (in Chinese)
[20]
CHENG L Z, YANG Q Q, CHEN Z Y, ZHANG J R, CHEN Q, WANG Y F, WEI X L. Distinct changes of metabolic profile and sensory quality during qingzhuan tea processing revealed by LC- MS-based metabolomics. Journal of Agricultural and Food Chemistry, 2020, 68(17): 4955-4965.
[21]
WU X, LIU Y, GUO J Q, WANG J X, LI M Z, TAN Y Z, ZHENG Q F, FENG Y F. Differentiating Pu-erh raw tea from different geographical origins by 1H-NMR and U-HPLC/Q-TOF-MS combined with chemometrics. Journal of Food Science, 2021, 86(3): 779-791.
[22]
鲁忠富, 李艳伟, 汪颖, 吴晓花, 吴新义, 王尖, 汪宝根, 李国景. 基于广泛靶向代谢组学的瓠瓜果实鲜味差异代谢物分析. 中国蔬菜, 2021(6): 34-41.
LU Z F, LI Y W, WANG Y, WU X H, WU X Y, WANG J, WANG B G, LI G J. Analysis of fruit umami differential metabolites of bottle gourd based on widely targeted metabolomics. China Vegetables, 2021(6): 34-41. (in Chinese)
[23]
王卫华, 杨晓琴, 桑正林, 杨顺强, 赵平, 刘云, 朱国磊, 叶夏英. 比较代谢组学揭示不同生长期筇竹笋的代谢物差异. 食品科学, 2023, 44(14): 237-244.
WANG W H, YANG X Q, SANG Z L, YANG S Q, ZHAO P, LIU Y, ZHU G L, YE X Y. Comparative metabolomics revealed metabolite differences in bamboo shoots(Chimonobambusa tumidissinoda hsueh & T.P.Yi ex ohrnberger)at different growth stages. Food Science, 2023, 44(14): 237-244. (in Chinese)
[24]
陈秀萍, 苏文炳, 蒋际谋, 姜帆, 陈永萍. 基于UPLC-MS/MS的枇杷不同组织萜类代谢物鉴定. 果树学报, 2022, 39(11): 2099-2112.
CHEN X P, SU W B, JIANG J M, JIANG F, CHEN Y P. UPLC-MS/MS identification of terpenoid metabolites in different organs of Eriobotrya japonica. Journal of Fruit Science, 2022, 39(11): 2099-2112. (in Chinese)
[25]
霍冬敖, 田瑞丰, 任永权, 段星宇, 洪登峰, 汪波. 基于UPLC-MS/MS技术的野生及栽培韭菜籽的代谢组学研究. 广西植物, 2022, 42(12): 1995-2006.
HUO D A, TIAN R F, REN Y Q, DUAN X Y, HONG D F, WANG B. UPLC-MS/MS-based metabolomic characterization and contrastive analysis between Allium wallichii and A. tuberosum seeds. Guihaia, 2022, 42(12): 1995-2006. (in Chinese)
[26]
陈丹, 赵燕妮, 彭佳堃, 高健健, 林智, 陈雪峰, 周长锋, 戴伟东. 基于代谢组学的不同年份晒青红茶化学成分分析. 食品科学, 2022, 43(4): 150-159.
CHEN D, ZHAO Y N, PENG J K, GAO J J, LIN Z, CHEN X F, ZHOU C F, DAI W D. Chemical composition profiling of Sun-dried black tea of different ages based on metabolomics approach. Food Science, 2022, 43(4): 150-159. (in Chinese)

doi: 10.7506/spkx1002-6630-20210325-314
[27]
闫乐乐, 卜璐璐, 牛良, 曾文芳, 鲁振华, 崔国朝, 苗玉乐, 潘磊, 王志强. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响. 中国农业科学, 2022, 55(6): 1149-1158. doi: 10.3864/j.issn.0578-1752.2022.06.008.
YAN L L, BU L L, NIU L, ZENG W F, LU Z H, CUI G C /Z, MIAO Y L /Y, PAN L, WANG Z Q. Widely targeted metabolomics analysis of the effects of Myzus persicae feeding on Prunus persica secondary metabolites. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158. doi: 10.3864/j.issn.0578-1752.2022.06.008. (in Chinese)
[28]
唐昊, 李沅秋, 甘晓凤, 罗朝兵. 基于广泛代谢组学分析慈竹笋营养成分及其提取物的抗氧化活性. 现代食品科技, 2021, 37(6): 304-311.
TANG H, LI Y Q, GAN X F, LUO C B. Analyze nutritional components of Bambusa emeiensisi shoots and antioxidant activity of its extracts based on widely targeted metabolomics. Modern Food Science and Technology, 2021, 37(6): 304-311. (in Chinese)
[29]
TIAN J, WANG Y Z, YAN S X, SUN S, JIA J J, HU X X. Metabolomics technology and its applications in agricultural animal and plant research. Hereditas, 2020, 42(5): 452-465.
[30]
庄飞云, 朱德蔚. 胡萝卜种质资源描述规范和数据标准. 北京: 中国农业出版社, 2007.
ZHUANG F Y, ZHU D W. Descriptors and Data Standard for Carrot. Beijing: China Agriculture Press, 2007. (in Chinese)
[31]
李秋琳, 李燕, 陈伟, 姚金波, 朱守鸿, 袁黎, 张永山. 基于广泛靶向代谢组学的不同颜色棉花花瓣中类黄酮成分差异分析. 棉花学报, 2021, 33(6): 482-492.

doi: 10.11963/cs20210036
LI Q L, LI Y, CHEN W, YAO J B, ZHU S H, YUAN L, ZHANG Y S. Metabolomics reveals the variation of flavonoids content in petals of cotton with different colors. Cotton Science, 2021, 33(6): 482-492. (in Chinese)
[32]
FRAGA C G, CLOWERS B H, MOORE R J, ZINK E M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Analytical Chemistry, 2010, 82(10): 4165-4173.

doi: 10.1021/ac1003568 pmid: 20405949
[33]
PAVAGADHI S, SWARUP S. Metabolomics for evaluating flavor-associated metabolites in plant-based products. Metabolites, 2020, 10(5): 197.
[34]
SIMON P W, PETERSON C E, LINDSAY R C. Correlations between sensory and objective parameters of carrot flavor. Journal of Agricultural and Food Chemistry, 1980, 28(3): 559-562.
[35]
LEONARD W, ZHANG P Z, YING D Y, FANG Z X. Surmounting the off-flavor challenge in plant-based foods. Critical Reviews in Food Science and Nutrition, 2023, 63(30): 10585-10606.
[36]
陈华峰, 唐玉情, 潘亚婕, 郭晓瑞. 果实风味的代谢基础及其调控机制研究进展. 植物研究, 2021, 41(3): 474-480.

doi: 10.7525/j.issn.1673-5102.2021.03.019
CHEN H F, TANG Y Q, PAN Y J, GUO X R. Progress on the metabolic basis and regulation mechanism of fruit flavor. Bulletin of Botanical Research, 2021, 41(3): 474-480. (in Chinese)
[37]
POTT D M, OSORIO S, VALLARINO J G. From central to specialized metabolism: an overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Frontiers in Plant Science, 2019, 10: 835.

doi: 10.3389/fpls.2019.00835 pmid: 31316537
[38]
ALASALVAR C, GRIGOR J M, ZHANG D, QUANTICK P C, SHAHIDI F. Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. Journal of Agricultural and Food Chemistry, 2001, 49(3): 1410-1416.

pmid: 11312873
[39]
POLAT S, GUCLU G, KELEBEK H, KESKIN M, SELLI S. Comparative elucidation of colour, volatile and phenolic profiles of black carrot (Daucus carota L.) pomace and powders prepared by five different drying methods. Food Chemistry, 2022, 369: 130941.
[40]
LASEKAN O. Identification of the aroma compounds in Vitex doniana sweet: Free and bound odorants. Chemistry Central Journal, 2017, 11: 19.
[41]
TAMURA H, FUJITA A, TAKAGI Y, KITAHARA T, MORI K. Simple synthesis of dehydrololiolide. Bioscience, Biotechnology, and Biotechnology, 1994, 58(10): 1902-1903.
[42]
KUMAR R, BOHRA A, PANDEY A K. Metabolomics for plant improvement:status and prospects. Frontiers in Plant Science, 2017, 8: 271676.
[43]
范仕成, 高悦, 张慧贞, 黄民, 毕惠嫦. 非靶向和靶向代谢组学在药物靶点发现中的应用. 药学进展, 2017, 41(4): 263-269.
FAN S C, GAO Y, ZHANG H Z, HUANG M, BI H C. Untargeted and targeted metabolomics and their applications in discovering drug targets. Progress in Pharmaceutical Sciences, 2017, 41(4): 263-269. (in Chinese)
[44]
CUBERO-LEON E, DE RUDDER O, MAQUET A. Metabolomics for organic food authentication: results from a long-term field study in carrots. Food Chemistry, 2018, 239: 760-770.
[45]
SCIUBBA F, TOMASSINI A, GIORGI G, BRASILI E, PASQUA G, CAPUANI G, AURELI W, MICCHELI A. NMR-based metabolomic study of purple carrot optimal harvest time for utilization as a source of bioactive compounds. Applied Sciences, 2020, 10(23): 8493.
[46]
生弘杰, 卢素文, 郑暄昂, 贾海锋, 房经贵. 基于广泛靶向代谢组学的葡萄种子代谢物鉴定与比较分析. 中国农业科学, 2023, 56(7): 1359-1376. doi: 10.3864/j.issn.0578-1752.2023.07.013.
SHENG H J, LU S W, ZHENG X A, JIA H F, FANG J G. Identification and comparative analysis of metabolites in grape seed based on widely targeted metabolomics. Scientia Agricultura Sinica, 2023, 56(7): 1359-1376. doi: 10.3864/j.issn.0578-1752.2023.07.013. (in Chinese)
[47]
李玲玉, 王德富, 李振方, 申少斐, 田洪岭, 牛颜冰. 基于广泛靶向代谢组学的不同产地党参次生代谢产物比较分析. 药学学报, 2023, 58(11): 3421-3427.
LI L Y, WANG D F, LI Z F, SHEN S F, TIAN H L, NIU Y B. Second metabolites comparative analysis of Codonopsis pilosula (Franch.) Nannf. from different origins based on extensively targeted metabolomics. Acta Pharmaceutica Sinica, 2023, 58(11): 3421-3427. (in Chinese)
[48]
林洁鑫, 王鹏杰, 金珊, 叶乃兴, 黄建锋, 颜廷宇, 郑德勇, 杨江帆. 基于广泛靶向代谢组学的不同产地红茶代谢产物比较分析. 食品工业科技, 2022, 43(2): 9-19.
LIN J X, WANG P J, JIN S, YE N X, HUANG J F, YAN T Y, ZHENG D Y, YANG J F. Comparative analysis of black tea metabolites from different origins based on extensively targeted metabolomics. Science and Technology of Food Industry, 2022, 43(2): 9-19. (in Chinese)
[49]
CHANG L, ZHOU G Y, XIA J G. mGWAS-explorer 2.0: Causal analysis and interpretation of metabolite-phenotype associations. Metabolites, 2023, 13(7): 826.
[1] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[2] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[3] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[4] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[5] YANG Yang, JIA MengHan, CHEN Can, ZHANG YiHan, TONG YuXin. Effects of Different Ratios of Green-Blue Light on Basil Growth and Its Energy Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(6): 1167-1179.
[6] HUANG Hao, WU QingHong, ZHANG Yu, WANG Ye, LIU QingE, FANG YiDa, LUO ZiSheng. Effects of Novel Phase Change Coolant on the Postharvest Quality of Shiitake Mushrooms [J]. Scientia Agricultura Sinica, 2024, 57(5): 989-999.
[7] JIANG Wen, LIANG WenXin, PEI Fei, SU AnXiang, MA GaoXing, FANG Donglu, HU QiuHui, MA Ning. Effect of Pleurotus eryngii Powder on Quality Characteristics of Extruded Rice [J]. Scientia Agricultura Sinica, 2024, 57(4): 779-796.
[8] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[9] ZHOU XiaoQian, LI XiaoBei, ZHANG YanMei, ZHOU ChangYan, REN JiaLi, ZHAO XiaoYan. Effects of Origin on the Volatile Flavor Components of Morels Based on GC-IMS and GC×GC-ToF-MS [J]. Scientia Agricultura Sinica, 2024, 57(22): 4553-4567.
[10] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[11] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[12] WANG XiaoJun, WANG JinLan, JU ZeLiang, LIANG GuoLing, JIA ZhiFeng, LIU WenHui, MA Xiang, MA JinXiu, LI Wen. Comprehensive Evaluation on Production Performance and Nutritional Quality of Different Varieties of Forage Oat in the Qinghai Lake Area [J]. Scientia Agricultura Sinica, 2024, 57(19): 3730-3742.
[13] WENG WenAn, XING ZhiPeng, HU Qun, WEI HaiYan, SHI YangJie, XI XiaoBo, LI XiuLi, LIU GuiYun, CHEN Juan, YUAN FengPing, MENG Yi, LIAO Ping, GAO Hui, ZHANG HongCheng. Effects of Unmanned Dry Direct-Seeded Mode on Yield, Grain Quality of Rice and Its Economic Benefits [J]. Scientia Agricultura Sinica, 2024, 57(17): 3350-3365.
[14] LI Hong, WANG XiNa, WEI GuangYuan, MA YongXin, TIAN HaiMei, WANG YueMei, QIAN ZhiJin, TAN JunLi. Effects of Water Saving and Nitrogen Reduction on Lodging Resistance and Grain Yield of Spring Wheat in the Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(17): 3424-3439.
[15] ZHAO ZhuoChao, CAO HaoTian, ZHOU ZiXin, QU JiaLe, LI Ze, XU MingYang, YANG QiWei, ZHANG Bin, WANG NingZe, WU YongZhen, SUN Han, QIN Ran, ZHAO ChunHua, CUI Fa. Genetic Effects of the 1BL·1RS Chromosome on Wheat Yield and Quality-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(16): 3116-3126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!