Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (12): 2454-2466.doi: 10.3864/j.issn.0578-1752.2024.12.014

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Study on Characterization and Interaction Analysis of Co-Contamination of Multi-Mycotoxins in the Flours of Rice, Maize, Soybean and Wheat Flour in Shanghai from 2021 to 2022

ZHU ZuoYin1,2(), ZHAO HanKe1, CHENG HaiSheng1,2, HAN MengYi1, QIU Zhi1, WANG Jie1,2, ZHOU XinLi2(), YANG JunHua1()   

  1. 1 Institut e for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403
    2 School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093
  • Received:2023-11-10 Accepted:2024-04-08 Online:2024-06-16 Published:2024-06-25
  • Contact: ZHOU XinLi, YANG JunHua

Abstract:

【Objective】 The co-contamination of multiple mycotoxins in grain food ingredients has become one of most concerned problem of food safety. In this study, the characteristics and interactions of co-contamination of 14 mycotoxins in the flours of rice, maize, soybean and wheat in Shanghai were explored, in order to provide the basic reference for safety assessment, early warning and supervision of mycotoxins, and development of efficient monitoring measures. 【Method】The content of 14 mycotoxins in 621 substrates of rice, maize, soybean and wheat flour from Shanghai were determined by ultra performance liquid chromatography tandem-triple quadrupole mass spectrometry (UPLC-MS/MS). The co-contaminated characteristics and interaction probabilities of multi-mycotoxin was analyzed by the common contamination index (CCEI), correlation cluster analysis (CCA), one-way ANOVA (one-way ANOVA), and the JAVA procedure. 【Result】The main exposure of mycotoxins in the grain ingredients in Shanghai regions included ochratoxin (OTA), deoxynivalenol (DON), aflatoxins (AFs) and fumonisins (FUMs). Among them, rice was mainly contaminated by OTA and DON, maize was mainly contaminated by FUMs and DON, soybean was mainly contaminated by DON and AFs, and wheat flour was mainly contaminated with DON and its derivatives. Based on the safety limit standards of mycotoxins, the total excess rate was lower than 2.09% in four kinds of grain food ingredients, but the co-contamination rate of two or more kinds of mycotoxins were upper than 87.76%. Moreover, there was much higher interaction rates (25.44%) among different mycotoxins, such as FB1+FB2, DON+FB1, OTA+FB1, OTA+DON, AFM2+OTA, and DON+FB1+FB2. Among the higher interaction rates groups, the most of the mycotoxins cooccurrence showed weaker correlations, but the co-combinations of FB1+FB3, AFB1+DON, DON+15-ADON were all showed the significant moderate correlation. 【Conclusion】 The overall contaminated level and excessive rates of mycotoxins in the flours of rice, maize, soybean, and wheat flour from Shanghai was relatively low. However, the proportion of single samples contaminated by multi-mycotoxins was higher, and along with the difference of sample types. As a complex problem of the mycotoxin contamination in the flours of rice, maize, soybean and wheat, this study provided an important reference for the prevention and control of the co-occurrence of multi-mycotoxins in commercially available grain food ingredients in the future.

Key words: mycotoxin, rice, maize, soybean, wheat flour, co-combination, interaction analysis, Shanghai region

Table 1

Sampling distribution of grain food ingredients in 16 districts of Shanghai"

行政区名称 Name of district 大米 Rice (No.) 玉米Maize (No.) 黄豆Soybean (No.) 面粉Wheat flour (No.)
浦东Pudong 20 16 15 19
闵行Minhang 13 12 11 10
松江Songjiang 12 15 12 8
青浦Qingpu 10 9 11 6
普陀Putuo 4 6 3 4
杨浦Yangpu 5 5 5 5
嘉定Jiading 12 11 11 13
奉贤Fengxian 9 11 5 11
徐汇Xuhui 4 4 4 3
静安Jing’an 6 3 2 4
宝山Baoshan 8 11 11 10
金山Jinshan 9 11 11 11
虹口Hongkou 4 3 3 3
长宁Changning 4 2 3 4
黄浦Huangpu 4 4 3 4
崇明Chongming 13 11 8 14
线上Online 32 0 28 40
总计Total 169 134 146 169

Table 2

Mass spectral parameters of 14 mycotoxins in multiple reaction monitoring mode"

真菌毒素
Mycotoxin
保留时间
Retention period (min)
母离子
Parent ion (m/z)
子离子
Daughter ion (m/z)
碰撞电压
Impulse voltage (eV)
离子源
Ion source
AFB1 3.32 313.24 241.16*/284.97 36/22 ES+
AFB2 3.17 315.22 287.14*/259.12 28/26 ES+
AFG1 3.18 329.22 243.08*/199.86 42/26 ES+
AFG2 3.03 331.22 189.05*/245.09 40/30 ES+
AFM1 2.83 329.22 273.12*/229.17 38/22 ES+
AFM2 3.04 331.23 284.99*/241.10 42/24 ES+
DON 1.99 297.1 249.10*/231.10 13/10 ES+
3-ADON 2.71 339.23 231.16*/213.15 16/12 ES+
15-ADON 2.66 356.03 339.02*/320.94 12/6 ES+
FB1 2.97 722.39 334.38*/352.38 38/34 ES+
FB2 3.41 706.39 336.39*/354.39 36/32 ES+
FB3 3.23 706.39 336.39*/354.39 36/32 ES+
ZEN 4.19 317.24 175.05*/131.03 26/24 ES-
OTA 2.90 404.29 239.03*/221.03 34/22 ES+

Table 3

The detection rates of mycotoxins in different samples of grain food ingredients (Detection rate=number of positives/total number of respective samples)"

真菌毒素
Mycotoxin
总样品
All sample (%)
大米
Rice (%)
玉米
Maize (%)
黄豆
Soybean (%)
面粉
Wheat flour (%)
ZEN 18.20 13.61 35.82 12.08 14.20
AFB1 15.94 15.38 17.91 24.83 7.10
AFB2 21.10 13.61 44.78 8.72 20.71
AFG1 20.93 24.26 19.40 26.85 13.61
AFG2 9.82 16.57 14.93 5.37 2.96
AFM1 25.12 28.40 44.03 18.79 12.43
AFM2 35.27 44.38 44.03 30.87 23.08
OTA 47.18 59.17 45.52 51.68 32.54
DON 61.35 36.69 67.91 65.77 76.92
3-ADON 26.73 31.95 26.12 34.23 15.38
15-ADON 15.14 11.24 0.00 22.82 24.26
FB1 29.15 5.92 99.25 16.11 8.28
FB2 23.03 11.83 69.40 13.42 5.92
FB3 30.43 32.54 62.69 12.75 18.34

Table 4

Exceedance rates of mycotoxins in different samples of grain food ingredients"

真菌毒素 Mycotoxin 大米 Rice (%) 玉米 Maize (%) 黄豆 Soybean (%) 面粉 Wheat flour (%)
AFB1 - - - -
AFB1+AFB2+AFG1+AFG2 - - - 0.59 (n=1)
FB1+FB2+FB3 - - - -
OTA 4.14 (n=7) 2.24 (n=3) 0.67 (n=1) 1.18 (n=2)
ZEN - - 2.01 (n=3) -
DON - 1.49 (n=2) - -

Table 5

Levels of mycotoxin contamination in different grain food ingredients"

真菌毒素
Mycotoxin
大米 Rice 玉米 Maize 黄豆 Soybean 面粉Wheat flour
平均值
Average
(μg∙kg-1)
污染范围
Rage
(μg∙kg-1)
平均值
Average
(μg∙kg-1)
污染范围
Rage
(μg∙kg-1)
平均值
Average
(μg∙kg-1)
污染范围
Rage
(μg∙kg-1)
平均值
Average
(μg∙kg-1)
污染范围
Rage
(μg∙kg-1)
ZEN 0.48b 0.36-9.76 0.45b 0.34-8.67 5.71a 0.59-97.57 0.29b 0.36-13.52
AFB1 0.11b 0.12-1.84 0.17ab 0.11-2.56 0.23a 0.02-2.81 0.06b 0.22-2.36
AFB2 0.08b 0.12-0.80 0.37a 0.10-2.64 0.06b 0.12-0.97 0.17b 0.11-7.87
AFG1 0.11 0.13-0.64 0.13 0.10-1.57 0.12 0.14-2.15 0.10 0.14-2.36
AFG2 0.08a 0.15-0.79 0.09a 0.15-0.66 0.02b 0.11-0.41 0.02b 0.15-0.36
AFM1 0.13b 0.12-2.24 0.42a 0.12-5.32 0.07b 0.12-0.75 0.04b 0.14-0.36
AFM2 0.14b 0.11-0.78 0.35a 0.10-5.48 0.10b 0.14-0.88 0.11b 0.12-2.37
OTA 1.32a 0.21-41.52 0.71ab 0.15-12.20 0.44b 0.12-9.05 0.27b 0.12-6.86
DON 7.31b 5.00-61.99 110.59a 5.37-2091.52 26.95b 2.56-407.60 53.83a 10.79-698.84
3-ADON 2.01 0.32-56.26 3.91 0.34-93.56 1.54 0.30-26.36 33.61 2.36-1890.20
15-ADON 17.85b 0.60-261.13 0.00 0.00-0.00 78.22a 2.35-890.99 66.74a 25.75-534.56
FB1 0.35b 0.59-16.49 102.59a 1.19-749.38 4.68b 0.56-281.34 1.12b 0.45-78.72
FB2 0.19b 0.56-5.26 18.82a 1.06-167.16 1.81b 0.64-123.74 0.54b 0.64-21.60
FB3 0.24b 0.54-2.56 31.36a 1.02-217.57 3.07b 0.58-168.33 0.61b 0.52-20.15

Fig. 1

Combinated contamination of mycotoxins in different grain food ingredients A: All samples; B: Rice; C: Maize; D: Soybean; E: Wheat flour"

Fig. 2

Heat map for cluster analysis of correlation of 14 mycotoxins in different grain food ingredients A: Rice; B: Maize; C: Soybean; D: Wheat flour. **: Significant correlation (P<0.01)"

Fig. 3

Co-occurrence of mycotoxins and interaction rates in different grain food ingredients A: 2 kinds of mycotoxin combinations; B: 3 kinds of mycotoxin combinations; C: 4 kinds of mycotoxin combinations; D: 5-7 kinds of mycotoxin combinations"

[1]
LIM C W, YOSHINARI T, LAYNE J, CHAN S H. Multi-mycotoxin screening reveals separate occurrence of aflatoxins and ochratoxin a in Asian rice. Journal of Agricultural and Food Chemistry, 2015, 63(12): 3104-3113.

doi: 10.1021/acs.jafc.5b00471 pmid: 25723049
[2]
ČOLOVIĆ R, PUVAČA N, CHELI F, AVANTAGGIATO G, GRECO D, ĐURAGIĆ O, KOS J, PINOTTI L. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins, 2019, 11(11): 617.
[3]
VERHEECKE C, LIBOZ T, MATHIEU F. Microbial degradation of aflatoxin B1: Current status and future advances. International Journal of Food Microbiology, 2016, 237: 1-9.

doi: S0168-1605(16)30386-5 pmid: 27541976
[4]
RAZAFIMANJATO H, BENZARIA A, TAÏEB N, GUO X J, VIDAL N, DI SCALA C, VARINI K, MARESCA M. The ribotoxin deoxynivalenol affects the viability and functions of glial cells. Glia, 2011, 59(11): 1672-1683.

doi: 10.1002/glia.21214 pmid: 21748807
[5]
LI Q, DONG Z, LIAN W G, CUI J F, WANG J, SHEN H T, LIU W J, YANG J, ZHANG X H, CUI H J. Ochratoxin A causes mitochondrial dysfunction, apoptotic and autophagic cell death and also induces mitochondrial biogenesis in human gastric epithelium cells. Archives of Toxicology, 2019, 93(4): 1141-1155.

doi: 10.1007/s00204-019-02433-6 pmid: 30903243
[6]
LEE H J, RYU D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurrence. Journal of Agricultural and Food Chemistry, 2017, 65(33): 7034-7051.

doi: 10.1021/acs.jafc.6b04847 pmid: 27976878
[7]
ANDRADE P D, DANTAS R R, DA SILVA DE MOURA-ALVES T L, CALDAS E D. Determination of multi-mycotoxins in cereals and of total fumonisins in maize products using isotope labeled internal standard and liquid chromatography/tandem mass spectrometry with positive ionization. Journal of Chromatography A, 2017, 1490: 138-147.

doi: S0021-9673(17)30250-9 pmid: 28233520
[8]
李冰杰, 叶金, 李丽, 焦梓毅, 朱琳, 王松雪, 邵懿, 姬建生, 杨森楠. 国内外粮食中真菌毒素采样标准对比及分析. 中国粮油学报, 2023, 38(7): 259-266.
LI B J, YE J, LI L, JIAO Z Y, ZHU L, WANG S X, SHAO Y, JI J S, YANG S N. Comparison and analysis of domestic and international standards for sampling mycotoxins in grain. Journal of the Chinese Cereals and Oils Association, 2023, 38(7): 259-266. (in Chinese)
[9]
李晓龙, 吴丹, 李英军, 吴欣欣, 张群. 粮食中主要真菌毒素的调查分析与研究. 食品安全导刊, 2022(32): 106-109.
LI X L, WU D, LI Y J, WU X X, ZHANG Q. Analysis and research of main mycotoxins in grain. China Food Safety Magazine, 2022(32): 106-109. (in Chinese)
[10]
闫兆凤, 黄常刚, 杨欣. 中国主粮中真菌毒素污染现状. 卫生研究, 2022, 51(4): 685-691.
YAN Z F, HUANG C G, YANG X. Current situation of mycotoxin pollution in staple food in China. Journal of Hygiene Research, 2022, 51(4): 685-691. (in Chinese)
[11]
李俊玲, 王书舟, 吴俊威, 申磊, 姚秀娟. 河南省粮食及其制品中真菌毒素污染情况调查. 中国食品卫生杂志, 2020, 32(4): 418-421.
LI J L, WANG S Z, WU J W, SHEN L, YAO X J. Investigation of mycotoxins in grain and its products in Henan Province. Chinese Journal of Food Hygiene, 2020, 32(4): 418-421. (in Chinese)
[12]
LAI X W, LIU R C, RUAN C Q, ZHANG H, LIU C L. Occurrence of aflatoxins and ochratoxin A in rice samples from six provinces in China. Food Control, 2015, 50: 401-404.
[13]
范楷, 祭芳, 徐剑宏, 钱鸣蓉, 段劲生, 聂冬霞, 唐占敏, 赵志辉, 史建荣, 韩铮. 长三角地区市场常见农产品中40种真菌毒素的污染状况和特征分析. 中国农业科学, 2021, 54(13): 2870-2884. doi: 10.3864/j.issn.0578-1752.2021.13.015.
FAN K, JI F, XU J H, QIAN M R, DUAN J S, NIE D X, TANG Z M, ZHAO Z H, SHI J R, HAN Z. Natural occurrence and characteristic analysis of 40 mycotoxins in agro-products from Yangtze delta region. Scientia Agricultura Sinica, 2021, 54(13): 2870-2884. doi: 10.3864/j.issn.0578-1752.2021.13.015. (in Chinese)
[14]
CRUDO F, VARGA E, AICHINGER G, GALAVERNA G, MARKO D, DALL’ASTA C, DELLAFIORA L. Co-occurrence and combinatory effects of Alternaria mycotoxins and other xenobiotics of food origin: Current scenario and future perspectives. Toxins, 2019, 11(11): 640.
[15]
FERRE F S. Worldwide occurrence of mycotoxins in rice. Food Control, 2016, 62: 291-298.
[16]
KHODAEI D, JAVANMARDI F, KHANEGHAH A. The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Current Opinion in Food Science, 2021, 39: 36-42.
[17]
FINK-GREMMELS J. Mycotoxins: their implications for human and animal health. The Veterinary Quarterly, 1999, 21(4): 115-120.
[18]
范楷, 唐占敏, 聂冬霞, 祭芳, 徐剑宏, 钱鸣蓉, 段劲生, 赵志辉, 韩铮. 超高效液相色谱串联质谱测定常见农产品中40种真菌毒素. 食品安全质量检测学报, 2020, 11(19): 7019-7029.
FAN K, TANG Z M, NIE D X, JI F, XU J H, QIAN M R, DUAN J S, ZHAO Z H, HAN Z. Simultaneous determination of 40 mycotoxins in common agricultural products by ultra performance liquid chromatography-tandem mass spectrometry. Journal of Food Safety & Quality, 2020, 11(19): 7019-7029. (in Chinese)
[19]
YAN E S, WEIMIN Y. Variation analysis of cereals mycotoxin limit standards of CAC, EU, USA and China. Journal of Food Science and Technology, 37(1): 10-15.
[20]
宫春波, 王朝霞, 孙月琳, 董峰光. 食品安全风险监测数据统计处理常见问题探讨. 中国食品卫生杂志, 2013, 25(6): 575-578.
GONG C B, WANG Z X, SUN Y L, DONG F G. Application of statistic analysis processing on food safety risk surveillance data. Chinese Journal of Food Hygiene, 2013, 25(6): 575-578. (in Chinese)
[21]
BABCHISHIN K M, HELMUS L M. The influence of base rates on correlations: an evaluation of proposed alternative effect sizes with real-world data. Behavior Research Methods, 2016, 48(3): 1021-1031.

doi: 10.3758/s13428-015-0627-7 pmid: 26182856
[22]
NAKAGAWA S, CUTHILL I C. Effect size, confidence interval and statistical significance: A practical guide for biologists. Biological Reviews of the Cambridge Philosophical Society, 2007, 82(4): 591-605.
[23]
EDWARDS S G, KHARBIKAR L L, DICKIN E T, MACDONALD S, SCUDAMORE K A. Impact of pre-harvest rainfall on the distribution of fusarium mycotoxins in wheat mill fractions. Food Control, 2018, 89: 150-156.
[24]
LINDBLAD M, GIDLUND A, SULYOK M, BÖRJESSON T, KRSKA R, OLSEN M, FREDLUND E. Deoxynivalenol and other selected Fusarium toxins in Swedish wheat: Occurrence and correlation to specific Fusarium species. International Journal of Food Microbiology, 2013, 167(2): 284-291.
[25]
LUO S J, DU H L, HAFTOM K, LIU Y, XING F G. Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control, 2021, 127: 108120.
[26]
李文廷, 申颖, 李洁, 冉亚莉, 董玉英, 李旭, 栾杰. 2019年云南市售大米真菌毒素污染水平及风险评估. 食品安全质量检测学报, 2021, 12(14): 5861-5869.
LI W T, SHEN Y, LI J, RAN Y L, DONG Y Y, LI X, LUAN J. Contamination level and risk assessment of mycotoxin in rice sold in Yunnan Province in 2019. Journal of Food Safety & Quality, 2021, 12(14): 5861-5869. (in Chinese)
[27]
BRYLA M, ROSZKO M, SZYMCZYK K, JĘDRZEJCZAK R, OBIEDZIŃSKI M W. Fumonisins and their masked forms in maize products. Food Control, 2016, 59: 619-627.
[28]
LIU Y X, JIANG Y, LI R J, PANG M H, LIU Y C, DONG J G. Natural occurrence of fumonisins B1 and B2 in maize from eight provinces of China in 2014. Food Additives & Contaminants Part B, Surveillance, 2017, 10(2): 113-117.
[29]
PLEADIN J, FRECE J, LEŠIĆ T, ZADRAVEC M, VAHČIĆ N, MALENICA STAVER M, MARKOV K. Deoxynivalenol and Zearalenone in unprocessed cereals and soybean from different cultivation regions in Croatia. Food Additives & Contaminants Part B, Surveillance, 2017, 10(4): 268-274.
[30]
程天笑, 韩小敏, 王硕, 徐文静, 彭雪菲, 李凤琴, 胡利明. 2018年中国4省脱粒小麦中9种真菌毒素污染情况调查. 食品安全质量检测学报, 2020, 11(12): 3992-3999.
CHENG T X, HAN X M, WANG S, XU W J, PENG X F, LI F Q, HU L M. Investigation on contamination situation of 9 mycotoxins in wheat kernel from 4 provinces of China in 2018. Journal of Food Safety & Quality, 2020, 11(12): 3992-3999. (in Chinese)
[31]
赵柬云, 韩小敏, 徐文静, 李凤琴. 2019年中国四省小麦中12种真菌毒素污染情况调查. 中国食品卫生杂志, 2021, 33(6): 765-770.
ZHAO J Y, HAN X M, XU W J, LI F Q. Investigation of 12 mycotoxins in wheat grains from four provinces of China in 2019. Chinese Journal of Food Hygiene, 2021, 33(6): 765-770. (in Chinese)
[32]
王丽英, 任贝贝, 刘印平, 路杨, 冯静, 陈福尊, 常凤启. 河北地区面制品中脱氧雪腐镰刀菌烯醇及其衍生物和玉米赤霉烯酮污染水平调查与分析. 食品安全质量检测学报, 2020, 11(12): 4023-4028.
WANG L Y, REN B B, LIU Y P, LU Y, FENG J, CHEN F Z, CHANG F Q. Investigation and analysis of deoxynivalenol and its derivatives and Zearalenone pollution levels in flour products in Hebei Province. Journal of Food Safety & Quality, 2020, 11(12): 4023-4028. (in Chinese)
[33]
ZHAO J Y, CHENG T L, XU W J, HAN X M, ZHANG J, ZHANG H Y, WANG C, FANNING S, LI F Q. Natural co-occurrence of multi- mycotoxins in unprocessed wheat grains from China. Food Control, 2021, 130: 108321.
[34]
KABAK B. Determination of aflatoxins and ochratoxin A in retail cereal products from Turkey by high performance liquid chromatography with fluorescence detection. Food Control, 2012, 28(1): 1-6.
[35]
DOS SANTOS I D, PIZZUTTI I R, DIAS J V, FONTANA M E Z, SOUZA D M, CARDOSO C D. Mycotoxins in wheat flour: occurrence and co-occurrence assessment in samples from Southern Brazil. Food Additives & Contaminants Part B, Surveillance, 2021, 14(2): 151-161.
[36]
CANO-SANCHO G, VALLE-ALGARRA F M, JIMÉNEZ M, BURDASPAL P, LEGARDA T M, RAMOS A J, SANCHIS V, MARÍN S. Presence of trichothecenes and co-occurrence in cereal- based food from Catalonia (Spain). Food Control, 2011, 22(3/4): 490-495.
[37]
XU W J, HAN X M, LI F Q. Co-occurrence of multi-mycotoxins in wheat grains harvested in Anhui Province, China. Food Control, 2019, 96: 180.
[38]
GELDERBLOM W C A, MARASAS W F O, LEBEPE-MAZUR S, SWANEVELDER S, VESSEY C J, DE LA M HALL P. Interaction of fumonisin B1 and aflatoxin B1 in a short-term carcinogenesis model in rat liver. Toxicology, 2002, 171(2/3): 161-173.
[39]
PINHÃO M, TAVARES A M, LOUREIRO S, LOURO H, ALVITO P, SILVA M J. Combined cytotoxic and genotoxic effects of ochratoxin A and fumonisin B1 in human kidney and liver cell models. Toxicology in Vitro, 2020, 68: 104949.
[40]
WEI K M, SUN J D, GAO Q, YANG X X, YE Y L, JI J, SUN X L. 3D “honeycomb” cell/carbon nanofiber/gelatin methacryloyl (GelMA) modified screen-printed electrode for electrochemical assessment of the combined toxicity of deoxynivalenol family mycotoxins. Bioelectrochemistry, 2021, 139: 107743.
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[3] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[4] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[5] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[6] LI RongDe, HE Ping, LUO LiXia, SHI MengYa, HOU Qian, MA ZhenGuo, GUO RuiXing, CHENG HongTao. Current Situation of Breeding and Popularization of Short-Growth- Period Winter Rapeseed Varieties for Rice-Rice-Rapeseed Mode [J]. Scientia Agricultura Sinica, 2024, 57(5): 846-854.
[7] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[8] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[9] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[10] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[11] JIANG Wen, LIANG WenXin, PEI Fei, SU AnXiang, MA GaoXing, FANG Donglu, HU QiuHui, MA Ning. Effect of Pleurotus eryngii Powder on Quality Characteristics of Extruded Rice [J]. Scientia Agricultura Sinica, 2024, 57(4): 779-796.
[12] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[13] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[14] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[15] WU ChuanLei, HU XiaoYu, WANG Wei, MIAO Long, BAI PengYu, WANG GuoJi, LI Na, SHU Kuo, QIU LiJuan, WANG XiaoBo. Development and Identification of Molecular Markers for Oil-Related Functional Genes and Polymerization Analysis of Excellent Alleles in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(22): 4402-4415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!