Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (14): 2643-2659.doi: 10.3864/j.issn.0578-1752.2023.14.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Pigment Identification and Gene Mapping in Red Seed Coat of Soybean

CAO Jie1,2(), GU YongZhe2, HONG HuiLong2, WU HaiTao2, ZHANG Xia2, SUN JianQiang3, BAO LiGao4, QIU LiJuan1,2()   

  1. 1 College of Life Sciences, Jilin Agricultural University, Changchun 130118
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    3 College of Agriculture, Northeast Agricultural University, Harbin 150030
    4 Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia Autonomous Region, Hohhot 010018
  • Received:2023-03-03 Accepted:2023-04-23 Online:2023-07-16 Published:2023-07-21
  • Contact: QIU LiJuan

Abstract:

【Objective】To identify the key genes controlling anthocyanin synthesis and accumulation, to uncover changes in anthocyanin content of the seed coat during seed development, and the primary anthocyanin components responsible for the red seed coat of Taixingaijiaohong (TXAJH); and to lay the groundwork for a thorough understanding of the regulatory mechanism of red seed coat formation.【Method】Using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS), the anthocyanin composition and concentration of the yellow seed coat of soybean Suinong 14 (SN14) and the red seed coat of soybean TXAJH at various developmental stages were identified. The potential areas of red testa-related genes were first identified using bulked segregant analysis (BSA) on the recombinant inbred lines (RILs) made by crossing SN14 and TXAJH. Based on this discovery, we performed marker linkage analysis to restrict the candidate intervals and predict the candidate genes, and qRT-PCR to confirm the expression of the anticipated candidate genes.【Result】When seed coats from the four developmental phases of SN14 and TXAJH were analyzed, a total of 12 anthocyanins were discovered. Cluster analysis of total anthocyanins revealed substantial changes in the seed coat's anthocyanin composition between TXAJH and SN14 as well as between TXAJH before and after color development. The anthocyanin content of the SN14 seed coat gradually decreased as the seed developed, whereas the TXAJH seed coat's content increased quickly and remained stable. After the development of the seed coat's color, the anthocyanin contents of SN14 and TXAJH showed highly significant differences, and at the mature stage, the TXAJH seed coat's anthocyanin content was more than 200 times that of SN14. The crimson coloring of the TXAJH seed coat was largely due to cyanidin-3-O-glucoside (Cy-3-glu), peonidin-3-O-glucoside (Pn-3-glu), and petunidin-3-O-glucoside (Pt-3-glu). The candidate interval for the red seed coat gene on chromosome 8 was discovered at 8.66 Mb by BSA-seq association analysis. 27 polymorphic markers were used in the marker linkage analysis, which produced 10 haplotypes and reduced the candidate interval to 702 kb. Nonsynonymous variations in 37 genes between the parents were found during this interval, these include the genes for encode the anthocyanin reductase 1 (Glyma.08g062000), the bHLH transcription factor (Glyma.08g061300 and Glyma.08g063900), and the MYB transcript factor (Glyma.08g059900). These genes may be involved in regulating the biosynthesis of anthocyanins, and anthocyanin reductase 1 can convert anthocyanins to proanthocyanidins (PA). The results of gene expression analysis revealed that candidate genes and genes related to the anthocyanin biosynthesis pathway had comparable expression patterns in SN14 and TXAJH, and both were expressed at lower levels in SN14 and at higher levels in TXAJH. It was discovered that there was a significant link between the principal constituents of seed coat anthocyanins and the level of candidate gene expression.【Conclusion】The anthocyanin makeup of SN14 and TXAJH's seed coats differed, and Cy-3-glu, Pn-3-glu, and Pt-3-glu may be to blame for the TXAJH's seed coat's red hue. According to predictions, Glyma.08g059900, Glyma.08g061300, Glyma.08g062000, and Glyma.08g063900 will likely be a candidate gene for the red seed coat, in which Glyma.08g059900, Glyma.08g061300, and Glyma.08g063900 may control a number of anthocyanin biosynthesis pathway genes.

Key words: soybean, seed coat color, anthocyanin, BSA-seq, gene mapping

Fig. 1

Seed coat color of SN14 and TXAJH in different periods"

Fig. 2

Analysis of seed coat anthocyanins A: Cluster analysis of the anthocyanin composition of the seed coat, horizontal coordinates are distances between samples, vertical coordinates are sample numbers, where S for SN14, T for TXAJH, and the numbers after the letters indicate the corresponding periods and biological replicates, respectively, and the groups of different samples are distinguished by color. B: Analysis of anthocyanin content during seed coat development, bar graphs indicate anthocyanin content and pie charts indicate the relative proportions of anthocyanins in SN14 and TXAJH at 70 d, the same anthocyanins are filled with the same colour. **indicates highly significant difference (P<0.01)"

Table 1

Genetic analysis of seed coat color traits"

杂交组合
Combinations
世代
Generation
黄色种皮数量
Number of yellow
红色种皮数量
Number of red
期望分离比
Expected ratio
卡方值
χ2
检验值
χ2(0.05, 1)
SN14×TXAJH F2:9 109 79 3﹕1 4.556 3.841

Table 2

Sample sequencing data statistics"

样品
Sample
清洁read对数
Clean reads
质量值>30碱基
Q30 (%)
可定位清洁read
Mapped (%)
平均覆盖深度
Ave depth
至少覆盖1次的碱基
Cov≥1× (%)
SN 73658060 92.50 99.03 16 97.94
TX 74839493 93.45 99.19 19 97.75
Y 110060520 94.05 99.25 29 99.03
R 109932563 93.05 99.41 30 99.03

Fig. 3

Statistical Venn diagram of variation sites between samples SNP_veen: The statistical results of SNP loci between samples; InDel_veen: The statistical results of InDel loci between samples. Variable loci statistics relate only to the location of the locus and not to the genotype"

Fig. 4

Distribution of SNP and InDel correlation values on chromosomes A: Results of SNP-ED correlation; B: Results of SNP-index correlation analysis; C: Results of InDel-ED correlation; D: Results of InDel-index correlation analysis. The horizontal coordinates are the chromosome names, the colored dots represent the ED (or Δindex) values of each SNP (or InDel) locus, the black line is the fitted ED (or Δindex) value, and the red dashed line represents the significance correlation threshold"

Table 3

Common candidate regions obtained by different association analysis methods"

关联分析类型
Type of correlation analysis
候选区域位置
Location of candidate areas (bp)
区域长度
Size of area (Mb)
基因总数
Gene number
SNP-ED Chr.08: 3500000-12530000 9.03 1174
SNP-index Chr.06: 32790000-32800000 0.01 1
Chr.06: 32940000-33020000 0.08 2
Chr.08: 3530000-12280000 8.75 1138
SNP分析结果的交集 Intersection of the results of SNP analyses Chr.08: 3530000-12280000 8.75 1138
InDel-ED Chr.08: 3290000-12530000 9.24 1201
InDel-index Chr.08: 3510000-12190000 8.68 1132
InDel分析结果的交集 Intersection of the results of InDel analyses Chr.08: 3510000-12190000 8.68 1132
所有关联分析结果的交集 Intersection of all correlation analysis results Chr.08: 3530000-12190000 8.66 1127

Fig. 5

Regional marker linkage analysis of seed coat color candidates"

Table 4

Candidate interval genes and functional notes"

基因编号 Gene ID 位置 Location (bp) 功能注释 Function
Glyma.08g058100 Chr.08: 4460549-4465659 单链核糖核酸内切酶Single-stranded-nucleate endonuclease
Glyma.08g059300 Chr.08: 4530151-4536884 吡啶核苷酸-二硫化物氧化还原酶Pyridine nucleotide-disulphide oxidoreductase
Glyma.08g059800 Chr.08: 4601723-4608768 囊泡相关蛋白Vesicle-associated protein
Glyma.08g059900 Chr.08: 4616457-4618234 MYB转录因子MYB transcription factor
Glyma.08g060400 Chr.08: 4648226-4658991 PLAC8蛋白家族PLAC8 family
Glyma.08g060500 Chr.08: 4664282-4669458 酪氨酸蛋白激酶Tyrosine protein kinase
Glyma.08g060600 Chr.08: 4673233-4676958 含五肽重复的蛋白质Proteins containing pentapeptide repeats
Glyma.08g060800 Chr.08: 4681172-4690671 苏氨酸激酶Threonine kinase
Glyma.08g060900 Chr.08: 4691761-4694059 苏氨酸蛋白激酶Threonine-protein kinase
Glyma.08g061000 Chr.08: 4694260-4698526 酪氨酸蛋白激酶Tyrosine protein kinase
Glyma.08g061100 Chr.08: 4708531-4710950 含U-BOX结构域的蛋白质8 U-box domain-containing protein 8
Glyma.08g061200 Chr.08: 4718616-4721895 NAD(P)H脱氢酶NAD(P)H dehydrogenase
Glyma.08g061300 Chr.08: 4731510-4735504 bHLH转录因子bHLH transcription factor
Glyma.08g061500 Chr.08: 4745228-4747004 PPR重复系列PPR repeat
Glyma.08g061600 Chr.08: 4751073-4754299 橙花醇合酶Nerolidol synthase
Glyma.08g062000 Chr.08: 4783724-4786913 花青素还原酶1 Anthocyanidin reductase 1
Glyma.08g062400 Chr.08: 4805184-4806757 --
Glyma.08g062500 Chr.08: 4809724-4816932 驱动蛋白Kinesin
Glyma.08g062600 Chr.08: 4817430-4821371 安全家族蛋白Safe family protein
Glyma.08g062700 Chr.08: 4829862-4832511 酪氨酸蛋白激酶Tyrosine protein kinase
Glyma.08g062800 Chr.08: 4833755-4836533 苏氨酸蛋白激酶Threonine-protein kinase
Glyma.08g062900 Chr.08: 4837205-4840140 酪氨酸蛋白激酶Tyrosine protein kinase
Glyma.08g063200 Chr.08: 4848292-4850826 蛋氨酸转氨酶Methionine transaminase
Glyma.08g063300 Chr.08: 4851595-4856852 蛋氨酸转氨酶Methionine transaminase
Glyma.08g063600 Chr.08: 4883287-4887296 MuDR家族转座酶MuDR family transposase
Glyma.08g063700 Chr.08: 4888519-4892619 角鲨烯单加氧酶Squalene monooxygenase
Glyma.08g063800 Chr.08: 4897354-4900790 L-苹果酸脱氢酶L-Malate dehydrogenase
Glyma.08g063900 Chr.08: 4905921-4906926 bHLH转录因子bHLH transcription factor
Glyma.08g064000 Chr.08: 4910549-4911502 --
Glyma.08g064200 Chr.08: 4915590-4916430 --
Glyma.08g064300 Chr.08: 4917314-4927545 蛋白质S-酰基转移酶Protein S-acyltransferase
Glyma.08g064400 Chr.08: 4927906-4929447 --
Glyma.08g064500 Chr.08: 4932437-4940287 鞘脂转运蛋白同源物Sphingolipid transporter spinster homolog
Glyma.08g064600 Chr.08: 4943335-4953605 K+ 外向逆流转运蛋白K+ efflux antiporter
Glyma.08g064700 Chr.08: 4956340-4959142 鸟氨酸环脱氨酶相关Ornithine cyclodeaminase-related
Glyma.08g064800 Chr.08: 4963573-4966706 蛋白质毛状体双折射Protein trichome birefringence-like
Glyma.08g065000 Chr.08: 4977696-4979377 PB1域PB1 domain

Fig. 6

Candidate gene expression and association analysis A: Heat map of candidate gene expression, plotted using FPKM values after Log2 calculations, with color gradients to visualize relative gene expression levels; B: Heat map of the association between candidate genes and the major anthocyanins of the seed coat, the horizontal coordinate is anthocyanins and the vertical coordinate is genes, the color gradient visualizing the correlation coefficient between the anthocyanins and the genes; C: Expression of genes related to the anthocyanin synthesis pathway at various times in the seed coat. *: P<0.05, **: P<0.01, ***: P<0.001"

[1]
GUO B F, SUN L P, JIANG S Q, REN H L, SUN R J, WEI Z Y, HONG H L, LUAN X Y, WANG J, WANG X B, XU D H, LI W B, GUO C H, QIU L J. Soybean genetic resources contributing to sustainable protein production. Theoretical and Applied Genetics, 2022, 135(11): 4095-4121.

doi: 10.1007/s00122-022-04222-9 pmid: 36239765
[2]
FANG C, KONG F J. Soybean. Current Biolog, 2022, 32(17): R902-R904.
[3]
宋健. 大豆种皮色相关基因的图位克隆及功能解析[D]. 北京: 中国农业科学院, 2019.
SONG J. Mapping cloning and functional analysis of genes relatead to oybean seed coat color[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[4]
KOVINICH N, SALEEM A, RINTOUL T L, BROWN D C W, ARNASON J T, MIKI B. Coloring genetically modified soybean grains with anthocyanins by suppression of the proanthocyanidin genes ANR1 and ANR2. Transgenic Research, 2012, 21(4): 757-771.

doi: 10.1007/s11248-011-9566-y
[5]
ENARU B, DREȚCANU G, POP T D, STǍNILǍ A, DIACONEASA Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants, 2021, 10(12): 1967.

doi: 10.3390/antiox10121967
[6]
POJER E, MATTIVI F, JOHNSON D, STOCKLEY C S. The case for anthocyanin consumption to promote human health: A review. Comprehensive Reviews in Food Science and Food Safety, 2013, 12(5): 483-508.

doi: 10.1111/crf3.2013.12.issue-5
[7]
LEE Y M, YOON Y, YOON H, PARK H M, SONG S, YEUM K J. Dietary anthocyanins against obesity and inflammation. Nutrients, 2017, 9(10): 1089.

doi: 10.3390/nu9101089
[8]
MATTIOLI R, FRANCIOSO A, MOSCA L, SILVA P. Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 2020, 25(17): 3809.

doi: 10.3390/molecules25173809
[9]
LIU J Q, ZHOU H B, SONG L, YANG Z J, QIU M, WANG J, SHI S L. Anthocyanins: Promising natural products with diverse pharmacological activities. Molecules, 2021, 26(13): 3807.

doi: 10.3390/molecules26133807
[10]
NOMI Y, IWASAKI-KURASHIGE K, MATSUMOTO H, TSUDA T, KALT W. Therapeutic effects of anthocyanins for vision and eye health. Molecules, 2019, 24(18): 3311.

doi: 10.3390/molecules24183311
[11]
NGAMSAMER C, SIRIVARASAI J, SUTJARIT N. The benefits of anthocyanins against obesity-induced inflammation. Biomolecules, 2022, 12(6): 852.

doi: 10.3390/biom12060852
[12]
DE ARRUDA NASCIMENTO E,DE LIMA COUTINHO L, DA SILVA C J, DE LIMA V L A G, DOS SANTOS AGUIAR J. In vitro anticancer properties of anthocyanins: A systematic review. Biochimica et Biophysica Acta Reviews on Cancer, 2022, 1877(4): 188748.

doi: 10.1016/j.bbcan.2022.188748
[13]
NAING A H, KIM C K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiologia Plantarum, 2021, 172(3): 1711-1723.

doi: 10.1111/ppl.v172.3
[14]
ZHANG Q L, ZHAI J J, SHAO L, LIN W, PENG C L. Accumulation of anthocyanins: an adaptation strategy of Mikania micrantha to low temperature in winter. Frontiers in Plant Science, 2019, 10: 1049.

doi: 10.3389/fpls.2019.01049
[15]
WASEEM M, RONG X Y, LI Z G. Dissecting the role of a basic helix-loop-helix transcription factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L.. Frontiers in Plant Science, 2019, 10: 734.

doi: 10.3389/fpls.2019.00734
[16]
CHUNTHABUREE S, SAKUANRUNGSIRIKUL S, WONGWARAT T, SANITCHON J, PATTANAGUL W, THEERAKULPISUT T. Changes in anthocyanin content and expression of anthocyanin synthesis genes in seedlings of black glutinous rice in response to salt stress. Asian Journal of Plant Sciences, 2016, 15(3/4): 56-65.

doi: 10.3923/ajps.2016.56.65
[17]
AI T N, NAING A H, YUN B W, LIM S H, KIM C K. Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic Petunia. Frontiers in Plant Science, 2018, 9: 1388.

doi: 10.3389/fpls.2018.01388
[18]
邱红梅, 陈亮, 侯云龙, 王新风, 陈健, 马晓萍, 崔正果, 张玲, 胡金海, 王跃强, 邱丽娟. 大豆种子颜色遗传调控机制研究进展. 作物学报, 2021, 47(12): 2299-2313.

doi: 10.3724/SP.J.1006.2021.14022
QIU H M, CHEN L, HOU Y L, WANG X F, CHEN J, MA X P, CUI Z G, ZHANG L, HU J H, WANG Y Q, QIU L J. Research progress on genetic regulatory mechanism of seed color in soybean (Glycine max). Acta Agronomica Sinica, 2021, 47(12): 2299-2313. (in Chinese)
[19]
WANG M, LI W Z, FANG C, XU F, LIU Y C, WANG Z, YANG R, ZHANG M, LIU S L, LU S J, LIN T, TANG J Y, WANG Y Q, WANG H R, LIN H, ZHU B G, CHEN M S, KONG F J, LIU B H, ZENG D L, JACKSON S A, CHU C C, TIAN Z X. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018, 50(10): 1435-1441.

doi: 10.1038/s41588-018-0229-2 pmid: 30250128
[20]
CHO Y B, JONES S I, VODKIN L O. Nonallelic homologous recombination events responsible for copy number variation within an RNA silencing locus. Plant Direct, 2019, 3(8): e00162.
[21]
TODD J J, VODKIN L O. Duplications that suppress and deletions that restore expression from a Chalcone synthase multigene family. The Plant Cell, 1996, 8(4): 687-699.

doi: 10.2307/3870344
[22]
GUO Y, QIU L J. Allele-specific marker development and selection efficiencies for both flavonoid 3’- hydroxylase and flavonoid 3’,5’-hydroxylase genes in soybean subgenus soja. Theoretical and Applied Genetics, 2013, 126(6): 1445-1455.

doi: 10.1007/s00122-013-2063-3
[23]
ZABALA G, VODKIN L. A putative autonomous 20.5 kb-CACTA transposon insertion in an F3'H allele identifies a new CACTA transposon subfamily in Glycine max. BMC Plant Biology, 2008, 8: 124.

doi: 10.1186/1471-2229-8-124
[24]
ZABALA G, VODKIN L O. A rearrangement resulting in small tandem repeats in the F3’5’H gene of white flower genotypes is associated with the soybean W1 locus. Crop Science, 2007, 47(S2): s113-s124.
[25]
NITARSKA D, STEFANINI C, HASELMAIR-GOSCH C, MIOSIC S, WALLISER B, MIKULIC-PETKOVSEK M, REGOS I, SLATNAR A, DEBENER T, TEREFE-AYANA D, VILPERTE V, HADERSDORFER J, STICH K, HALBWIRTH H. The rare orange-red colored Euphorbia pulcherrima cultivar ‘Harvest Orange’ shows a nonsense mutation in a flavonoid 3'-hydroxylase allele expressed in the bracts. BMC Plant Biology, 2018, 18(1): 216.

doi: 10.1186/s12870-018-1424-0
[26]
VIKHOREV A V, STRYGINA K V, KHLESTKINA E K. Duplicated flavonoid 3’-hydroxylase and flavonoid 3’, 5’- hydroxylase genes in barley genome. PeerJ, 2019, 7: e6266.

doi: 10.7717/peerj.6266
[27]
ZABALA G, VODKIN L O. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLoS ONE, 2014, 9(11): e111959.

doi: 10.1371/journal.pone.0111959
[28]
CHO Y B, JONES S I, VODKIN L O. Mutations in Argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max. The Plant Cell, 2017, 29(4): 708-725.

doi: 10.1105/tpc.17.00162
[29]
ZOU C, WANG P X, XU Y B. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal, 2016, 14(10): 1941-1955.

doi: 10.1111/pbi.12559 pmid: 26990124
[30]
MICHELMORE R W, PARAN I, KESSELI R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9828-9832.
[31]
ZHANG G, ANGELES E R, ABENES M L P, KHUSH G S, HUANG N. RAPD and RFLP mapping of the bacterial blight resistance gene xa-13 in rice. Theoretical and Applied Genetics, 1996, 93(1): 65-70.

doi: 10.1007/BF00225728
[32]
MA J J, ZHAO Y H, CHEN H, FU C, ZHU L, ZHOU X M, XIA H, HOU L, LI G H, ZHUANG W J, WANG X J, ZHAO C Z. Genome-wide development of polymorphic microsatellite markers and their application in peanut breeding program. Electronic Journal of Biotechnology, 2020, 44: 25-32.

doi: 10.1016/j.ejbt.2020.01.004
[33]
PAN J W, ZHOU X M, AHMAD N, ZHANG K, TANG R H, ZHAO H L, JIANG J, TIAN M D, LI C S, LI A Q, ZHANG X Y, HE L Q, MA J, LI X J, TIAN R Z, MA C L, PANDEY M K, VARSHNEY R K, WANG X J, ZHAO C Z. BSA-seq and genetic mapping identified candidate genes for branching habit in peanut. Theoretical and Applied Genetics, 2022, 135(12): 4457-4468.

doi: 10.1007/s00122-022-04231-8
[34]
RAMIREZ-GONZALEZ R H, SEGOVIA V, BIRD N, FENWICK P, HOLDGATE S, BERRY S, JACK P, CACCAMO M, UAUY C. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnology Journal, 2015, 13(5): 613-624.

doi: 10.1111/pbi.2015.13.issue-5
[35]
ZEGEYE W A, ZHANG Y X, CAO L Y, CHENG S H. Whole genome resequencing from bulked populations as a rapid QTL and gene identification method in rice. International Journal of Molecular Sciences, 2018, 19(12): 4000.

doi: 10.3390/ijms19124000
[36]
HUANG P, JIANG H, ZHU C M, BARRY K, JENKINS J, SANDOR L, SCHMUTZ J, BOX M S, KELLOGG E A, BRUTNELL T P. Sparse panicle1 is required for inflorescence development in Setaria viridis and maize. Nature Plants, 2017, 3: 17054.

doi: 10.1038/nplants.2017.54
[37]
ZHAO Y H, MA J J, LI M, DENG L, LI G H, XIA H, ZHAO S Z, HOU L, LI P C, MA C L, YUAN M, REN L, GU J Z, GUO B Z, ZHAO C Z, WANG X J. Whole-genome resequencing-based QTL-seq identified AhTc1 gene encoding a R2R3-MYB transcription factor controlling peanut purple testa colour. Plant Biotechnology Journal, 2020, 18(1): 96-105.

doi: 10.1111/pbi.v18.1
[38]
KALENDAR R, BORONNIKOVA S, SEPPÄNEN M. Isolation and purification of DNA from complicated biological samples. Methods in Molecular Biology, 2021, 2222: 57-67.

doi: 10.1007/978-1-0716-0997-2_3 pmid: 33301087
[39]
邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
QIU L J, CHANG R Z. Descriptors and Data Standard for Melon (Glycine spp.). Beijing: China Agricuture Press, 2006. (in Chinese)
[40]
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.

doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[41]
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.

doi: 10.1101/gr.107524.110 pmid: 20644199
[42]
REUMERS J, DE RIJK P, ZHAO H, LIEKENS A, SMEETS D, CLEARY J, VAN LOO P, VAN DEN BOSSCHE M, CATTHOOR K, SABBE B, DESPIERRE E, VERGOTE I, HILBUSH B, LAMBRECHTS D, DEL-FAVERO J. Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nature Biotechnology, 2012, 30(1): 61-68.

doi: 10.1038/nbt.2053
[43]
CINGOLANI P, PLATTS A, WANG L L, COON M, NGUYEN T, WANG L, LAND S J, LU X Y, RUDEN D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Lrosophila melanogaster strain w1118; iso-2; iso-3. Fly, 2012, 6(2): 80-92.
[44]
HILL J T, DEMAREST B L, BISGROVE B W, GORSI B, SU Y C, YOST H J. MMAPPR: Mutation mapping analysis pipeline for pooled RNA-seq. Genome Research, 2013, 23(4): 687-697.

doi: 10.1101/gr.146936.112 pmid: 23299975
[45]
FEKIH R, TAKAGI H, TAMIRU M, ABE A, NATSUME S, YAEGASHI H, SHARMA S, SHARMA S, KANZAKI H, MATSUMURA H, SAITOH H, MITSUOKA C, UTSUSHI H, UEMURA A, KANZAKI E, KOSUGI S, YOSHIDA K, CANO L, KAMOUN S, TERAUCHI R. MutMap+: Genetic mapping and mutant identification without crossing in rice. PLoS ONE, 2013, 8(7): e68529.

doi: 10.1371/journal.pone.0068529
[46]
邓泱泱, 荔建琦, 吴松锋, 朱云平, 陈耀文, 贺福初. nr数据库分析及其本地化. 计算机工程, 2006, 32(5): 71-73, 76.
DENG Y Y, LI J Q, WU S F, ZHU Y P, CHEN Y W, HE F C. Integrated nr database in protein annotation system and its localization. Computer Engineering, 2006, 32(5): 71-73, 76. (in Chinese)
[47]
ASHBURNER M, BALL C A, BLAKE J A, BOTSTEIN D, BUTLER H, CHERRY J M, DAVIS A P, DOLINSKI K, DWIGHT S S, EPPIG J T, HARRIS M A, HILL D P, ISSEL-TARVER L, KASARSKIS A, LEWIS S, MATESE J C, RICHARDSON J E, RINGWALD M, RUBIN G M, SHERLOCK G. Gene Ontology: Tool for the unification of biology. The gene ontology consortium. Nature Genetics, 2000, 25(1): 25-29.

doi: 10.1038/75556 pmid: 10802651
[48]
TATUSOV R L, GALPERIN M Y, NATALE D A, KOONIN E V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 2000, 28(1): 33-36.
[49]
KANEHISA M, GOTO S, KAWASHIMA S, OKUNO Y, HATTORI M. The KEGG resource for deciphering the genome. Nucleic Acids Research, 2004, 32 (Supp_1): D277-D280.

doi: 10.1093/nar/gkh063
[50]
LU N, RAO X L, LI Y, JUN J H, DIXON R A. Dissecting the transcriptional regulation of proanthocyanidin and anthocyanin biosynthesis in soybean (Glycine max). Plant Biotechnology Jounal, 2021, 19(7): 1429-1442.
[51]
YUAN B Q, YUAN C P, WANG Y M, LIU X D, QI G X, WANG Y N, DONG L C, ZHAO H K, LI Y Q, DONG Y S. Identification of genetic loci conferring seed coat color based on a high-density map in soybean. Frontiers in Plant Science, 2022, 13: 968618.

doi: 10.3389/fpls.2022.968618
[52]
AMAROWICZ R, RONALD B P. Legumes as a source of natural antioxidants. European Journal of Lipid Science and Technology, 2008, 110(10): 865-878.

doi: 10.1002/ejlt.v110:10
[53]
MALENČIĆ D, CVEJIĆ J, MILADINOVIĆ J. Polyphenol content and antioxidant properties of colored soybean seeds from central Europe. Journal of Medicinal Food, 2012, 15(1): 89-95.

doi: 10.1089/jmf.2010.0329 pmid: 21861721
[54]
LINDNER H, RAISSIG M T, SAILER C, SHIMOSATO-ASANO H, BRUGGMANN R, GROSSNIKLAUS U. SNP-Ratio mapping (SRM): Identifying lethal alleles and mutations in complex genetic backgrounds by next-generation sequencing. Genetics, 2012, 191(4): 1381-1386.

doi: 10.1534/genetics.112.141341 pmid: 22649081
[55]
ZHAO M M, HU B L, FAN Y W, DING G M, YANG W L, CHEN Y, CHEN Y H, XIE J K, ZHANG F T. Identification, analysis, and confirmation of seed storability-related loci in Dongxiang wild rice (Oryza rufipogon griff.). Genes, 2021, 12(11): 1831.

doi: 10.3390/genes12111831
[56]
LIU D, WEI X, SUN D, YANG S, SU H, WANG Z, ZHAO Y, LI L, LIANG J, YANG L, ZHANG X, YUAN Y. An SNP mutation of gene RsPP converts petal color from purple to white in radish (Raphanus sativus L.). Frontiers in Plant Science, 2021, 12: 643579.

doi: 10.3389/fpls.2021.643579
[57]
WAMBUGU P, NDJIONDJOP M N, FURTADO A, HENRY R. Sequencing of bulks of segregants allows dissection of genetic control of amylose content in rice. Plant Biotechnology Journal, 2018, 16(1): 100-110.

doi: 10.1111/pbi.12752 pmid: 28499072
[58]
LEI L, ZHENG H L, BI Y L, YANG L M, LIU H L, WANG J G, SUN J, ZHAO H W, LI X W, LI J M, LAI Y C, ZOU D T. Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice (Oryza sativa L.) using QTL-seq and RNA-seq. Rice, 2020, 13(1): 55.

doi: 10.1186/s12284-020-00416-1
[59]
HOLTON T A, CORNISH E C. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell, 1995, 7(7): 1071-1083.

doi: 10.1105/tpc.7.7.1071 pmid: 12242398
[60]
WINKEL-SHIRLEY B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126(2): 485-493.

doi: 10.1104/pp.126.2.485
[61]
JAAKOLA L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013, 18(9): 477-483.

doi: 10.1016/j.tplants.2013.06.003 pmid: 23870661
[62]
XU W J, DUBOS C, LEPINIEC L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science, 2015, 20(3): 176-185.

doi: 10.1016/j.tplants.2014.12.001 pmid: 25577424
[63]
LI Y Q, SHAN X T, TONG L N, WEI C, LU K Y, LI S Y, KIMANI S, WANG S C, WANG L, GAO X. The conserved and particular roles of the R2R3-MYB regulator FhPAP1 from Freesia hybrida in flower anthocyanin biosynthesis. Plant and Cell Physiology, 2020, 61(7): 1365-1380.

doi: 10.1093/pcp/pcaa065
[64]
高瑞芳. GmMYBA2GmMYBR协同调控大豆种皮颜色的机制解析[D]. 长春: 东北师范大学, 2021.
GAO R F. Mechanism analysis of GmMYBA2 and GmMYBR synergistic regulation of soybean seed coat color[D]. Changchun: Northeast Normal University, 2021. (in Chinese)
[65]
ZHANG Z Y, SHI Y N, MA Y C, YANG X F, YIN X R, ZHANG Y Y, XIAO Y W, LIU W L, LI Y D, LI S J, LIU X F, GRIERSON D, ALLAN A C, JIANG G H, CHEN K S. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. Plant Biotechnology Journal, 2020, 18(11): 2267-2279.

doi: 10.1111/pbi.v18.11
[66]
XU Z S, YANG Q Q, FENG K, YU X, XIONG A S. DcMYB113, a root-specific R2R3-MYB, conditions anthocyanin biosynthesis and modification in carrot. Plant Biotechnology Journal, 2020, 18(7): 1585-1597.

doi: 10.1111/pbi.v18.7
[67]
TIAN J, PENG Z, ZHANG J, SONG T T, WAN H H, ZHANG M L, YAO Y C. McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple. Plant Biotechnology Journal, 2015, 13(7): 948-961.

doi: 10.1111/pbi.2015.13.issue-7
[68]
SHIMADA S, OTSUKI H, SAKUTA M. Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. Journal of Experimental Botany, 2007, 58(5): 957-967.

pmid: 17185736
[69]
YAN F, DI S, TAKAHASHI R. CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds. Genome, 2015, 58(8): 365-374.

doi: 10.1139/gen-2015-0054 pmid: 26360633
[70]
KOVINICH N, SALEEM A, ARNASON J T, MIKI B. Identification of two anthocyanidin reductase genes and three red-brown soybean accessions with reduced anthocyanidin reductase-1 mRNA, activity, and seed coat proanthocyanidin amounts. Journal of Agricultural and Food Chemistry, 2012, 60(2): 574-584.

doi: 10.1021/jf2033939
[1] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[2] WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing. Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153.
[3] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[4] LI YunJing, XIAO Fang, WU YuHua, LI Jun, GAO HongFei, ZHAI ShanShan, LIANG JinGang, WU Gang. Establishment and Standardization of Event-Specific Real-Time Quantitative PCR Detection Method of Stress-Resistant Soybean IND-ØØ41Ø-5 [J]. Scientia Agricultura Sinica, 2023, 56(13): 2443-2460.
[5] LIU YuYing, SHEN Feng, YANG JinFeng, CAI FangFang, FU ShiFeng, LUO PeiYu, LI Na, DAI Jian, HAN XiaoRi. Variation Characteristics of Soybean Yield and Soil Nitrogen Distribution in Brown Soil Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(10): 1920-1934.
[6] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[7] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[8] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[9] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[10] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[11] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[12] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[13] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[14] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[15] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!