Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4729-4741.doi: 10.3864/j.issn.0578-1752.2023.23.014

• HORTICULTURE • Previous Articles     Next Articles

Analysis of Genetic Effect of Fruit Color Controlled by Epistatic Genes in Eggplant

CHEN JinRong1,2(), LÜ ZiJian1,3, FAN LiSha1,2, YOU Qian1, LI Tao1, GONG Chao1, SUN GuangWen2, LI ZhiLiang1(), SUN BaoJuan1()   

  1. 1 Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640
    2 College of Horticulture, South China Agricultural University, Guangzhou 510642
    3 Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070
  • Received:2023-06-05 Accepted:2023-10-04 Online:2023-12-04 Published:2023-12-04
  • Contact: LI ZhiLiang, SUN BaoJuan

Abstract:

【Objective】Fruit color is an important trait that affects the commercial value of eggplant fruit. By analyzing the causes for the special segregation ratio of individual plants with purple red peel and with white peel in the F2 population constructed by crossing between two white-fruit parents, this paper could lay the foundation for elucidating the mechanism of epistatic gene interaction on regulating eggplant fruit coloration.【Method】The white-flower and white-peel female parent 19141 with mutation at the structural gene ANS involving in the anthocyanin biosynthesis pathway, white-flower and white-peel male parent 19142 with unknown mutation genes involving in the anthocyanin biosynthesis pathway, and their F1 population with purple red peel and F2 population with separate peel colors were used to explore the epistatic inheritance of eggplant fruit coloration. Genes and their mutation patterns were studied by cloning the known genes, D (SmMYB1) and Y (SmDFR) related to peel color in male parent 19142. Molecular basis of peel color-controlling epigenetic genes was analyzed by developing molecular markers based on genetic variations of peel color genes, analyzing the relationship between genotype and phenotype in E4450F2 population, and crossing with other eggplant parents without anthocyanin pigmentation in peel.【Result】The segregation ratio of plants with purple red fruit and white fruit in E4450 F2 progeny was consistent with the segregation ratio of 27:37 controlled by three pairs of epistatic genes, that is, mutations occurred at the P gene locus in 19141, with genotype DDppYY, and mutations occurred at both D and Y gene loci in 19142, with genotype ddPPyy. The results of cloning and sequencing showed that alternative splicing occurred in SmMYB1 of 19142, which led to the second exon skipping. In 19142, SNP (C→G) in the promoter region’s -326 bp upstream of the start codon resulted in the absence of a CAAT-box cis-acting element in SmDFR gene. An SNP, G to C, at the last base of the second exon, was annotated as splicing mutation, which might cause abnormal function of SmDFR gene in 19142, resulting in the eggplant peel’s inability to synthesize anthocyanin. Based on the genetic variation of SmMYB1, SmANS and SmDFR, the functional molecular markers were developed, and the progenies of E4450F2 were genotyped. The results showed that genotype and phenotype were completely consistent. D_P_Y_ corresponded to phenotypes of purple flower and purple red peel, ddP_Y_ corresponded to phenotype of purple flower and white peel, D_ppY_, D_P_yy, D_ppyy, ddppY_, ddP_yy and ddppyy genotypes corresponded to white flower and white peel phenotypes. When 19142 was crossed with white-peel inbred line 19147 (dtdtPPYY), and green-peel inbred line 19144 (DDPPyy), it was found that the fruit color of the two F1 progenies were white and green, respectively, and there was no anthocyanin pigmentation in the peel, which further proved that 19142 was a double mutant in SmMYB1 and SmDFR.【Conclusion】When two eggplant parents without anthocyanin pigmentation in the peel were crossed, the peel of the F1 generation had anthocyanidin pigmentation, and the segregation ratio of plants with anthocyanin pigmentation and non-anthocyanin pigmentation in F2 population was 27:37, it was because one of the parents had a mutation at a gene locus in the anthocyanin biosynthesis pathway, and the other parent had mutations at two other loci in the anthocyanin biosynthesis pathway. When two parents without anthocyanin pigmentation were crossed, the peel of F1 was able to synthesize anthocyanin and present purple red color, which was due to the simultaneous dominance of three epistatic gene loci D, P and Y, and anthocyanin biosynthesis was restored. Mutation of the structural gene of SmANS or SmDFR inhibited anthocyanin biosynthesis in all parts of the plant. The regulation of transcription factor mutation SmMYB1 was tissue specific, and its mutation inhibited anthocyanin biosynthesis in the peel, but did not inhabit anthocyanin biosynthesis in the flower.

Key words: eggplant, peel color, epistatic gene, anthocyanin, genetic law

Table 1

Primer sequences for target gene cloning"

用途
Usage
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
退火温度
Anneal temperature (℃)
延伸时间
Extending time (s)
克隆SmANS全长
Cloning of the full length SmANS
ANS-B1 F: CCAGTCGTTTGTTCCCACAT
R: GGACATTACCAGAGGGTTGA
55 30
ANS-B2 F: TACCTTCTTTGATCTGCCTGTT
R: GCTCTTGTACTTTCCGTTGC
60 60
ANS-B3 F: TCATCCTCCACAATATGGTGC
R: CTGTGTTGCTCCTTCACAAAGG
60 30
克隆SmMYB1全长
Cloning of the full length SmMYB1
MYB1-D1 F: TCCGTACAAGGTGGCAGGATAGGTTATTAGG
R: CGGAAGTCTACCAGCAATAAGTGACCATCTA
60 60
MYB1-C2 F: GTGCAATGATGACGCTCACA
R: GGACCTATGCCGAAAACAGA
55 30
克隆SmMYB1 cDNA
Cloning of cDNA of SmMYB1
MYB1-CDS1 F: ATGAATAATCCTCCTATAATCTGTACGTC
R: CTGCTCTAGCAGGAACAAGAT
53 30
MYB1-CDS2 F: TAATCTGTACGTCTGTGCGAGTGA
R: GTTATTTCTTTGCAGCGTTCTTCC
55 30
MYB1-CDS3 F: TGGAACACTAACCTTCTAAGG
R: TTAAACAAGTAGATTCCATAAATCAAT
50 30
克隆SmDFR全长
Cloning of the full length SmDFR
65-1036 F: AGGTCTCCCAAACCCACAAC
R: CGCTCCAGCTAGTCTCGTCA
55 60
DFR-A2 F: CTGTCAGGGAGTATTTCATGTG
R: AGCTTCTTCCCTTGCAGC
55 30
1060-1900 F: AAGATGACAGGATGGGTTCG
R: CCTTGCCACTTGCATAGTTT
53 60
DFR-A4 F: GTATACTTGGCTCTTTCATAGAGTG
R: CTGCCTGAAATTAAGCAAGATGAG
53 30
克隆SmDFR启动子
Cloning of the promoter of SmDFR
DP2 F: GGCTTCCTTCGTAGTCAA
R: CCCGCAAGTCTAATCTCAC
53 60
3-403 F: CCGTAACAAATATCAGCATTTC
R: GAGAGAATCGTATTTTTGAAAGC
50 30
DFR-qA4 F: CTGATGTTCATGGATAGACGGA
R: TGCTTGTACGTACATGATGTTAGG
53 30

Table 2

Primer sequences for InDel markers of SmMYB1 and SNP markers of SmDFR and SmANS"

标记 Marker 引物名称 Primer name 引物序列 Primer Sequence (5′-3′)
SmMYB1-26bpInDel SmMYB1 FF2 TATAATCTGTACGTCTGTGCGAGTG
SmMYB1 FR2 GCCTTAAATAATTCAACCACCTCA
SmMYB1-52bpInDel MYB1-52FF TAGGCTGAGGTGGTTGAAT
MYB1-52FR TTCGCTAAATATATTATTGTGGAGAC
SBJ-DFR SBJ-DFR-Fg GAAGGTGACCAAGTTCATGCTTCGAGTCCAAGGACCCTGAG
SBJ-DFR-Fc GAAGGTCGGAGTCAACGGATTTCGAGTCCAAGGACCCTGAC
SBJ-DFR-R AGGCAATAAGTATAGATGAGTTAACTCTG
SmANS-Chr08SNP SmANS-Chr08SNP-F CCTAAAGAGTATGTGAGGCCACAAG
SmANS-Chr08SNP-Rt GAAGGTGACCAAGTTCATGCTCCTCAAAGATGTTTCCTATACCATTTT
SmANS-Chr08SNP-Ra GAAGGTCGGAGTCAACGGATTCCTCAAAGATGTTTCCTATACCATTTA

Fig. 1

Phenotype of different E4450 progenies (A and C) and anthocyanin content (B) in peels A: Phenotypes of 19141, 19142and E4450F1; B: Anthocyanin content of 19141, 19142 and E4450F1 (**, P<0.01); C:Phenotypes of E4450F2"

Table 3

Segregation ratios of different progenies"

群体
Population
总株数
Total plants
紫红果单株数
Number of purple red peel plants Anthocyanin pigmented
白果单株数
Number of white peel plants
卡方检验x2
(2737)
P
P value
19141 30 - 30 - -
19142 30 - 30 - -
E4450F1后代 E4450F1 descendants 30 30 0 - -
E4450F2群体 E4450F2 population 247 106 141 0.054 0.817

Table 4

Alleles combination in the inbred offspring of F1 with genotype DdPpYy"

F1的配子 Gametes of F1
DPY DpY DPy Dpy dPY dpY dPy dpy
DPY DDPPYY DDPpYY DDPPYy DDPpYy DdPPYY DdPpYY DdPPYy DdPpYy
DpY DDPpYY DDppYY DDPpYy DDppYy DdPpYY DdppYY DdPpYy DdppYy
DPy DDPPYy DDPpYy DDPPyy DDPpyy DdPPYy DdPpYy DdPPyy DdPpyy
Dpy DDPpYy DDppYy DDPpyy DDppyy DdPpYy DdppYy DdPpyy Ddppyy
dPY DdPPYY DdPpYY DdPPYy DdPpYy ddPPYY ddPpYY ddPPYy ddPpYy
dpY DdPpYY DdppYY DdPpYy DdppYy ddPpYY ddppYY ddPpYy ddppYy
dPy DdPPYy DdPpYy DdPPyy DdPpyy ddPPYy ddPpYy ddPPyy ddPpyy
dpy DdPpYy DdppYy DdPpyy Ddppyy ddPpYy ddppYy ddPpyy ddppyy

Fig. 2

Sequence difference of genes related to fruit color and molecular marker development sites A: DNA sequence differences of SmMYB1 between the parents and InDel marker development sites; B: DNA sequence differences of SmANS between the parents and SNP marker development sites; C: DNA sequence differences of SmDFR between the parents and SNP marker development sites"

Fig. 3

Electrophoresis plots of InDel markers based on genetic variations of SmMYB1 A: Electrophoresis plots of MYB1-26bpInDel markers; B: Electrophoresis plots of MYB1-52bpInDel. If the DNA amplification band type of F2 was consistent with the band type in 19141, it was a DD genotype; if it was consistent with the band type in 19142, it was a dd genotype; if it was consistent with the F1 band type, it was a Dd genotype"

Fig. 4

Genotyping plots of SNP markers based on genetic variations of SmANS and SmDFR A: Genotyping plot of SmANS-Chr08SNP marker; B: Genotyping plot of SBJ-DFR marker"

Table 5

Correspondence between genotype and phenotype of E4450F2 population based on genetic variation of SmMYB1, SmANS and SmDFR"

果色
Peel color
花色
Flower color
SmMYB1-26bpInDel的基因型
Genotype of SmMYB1-26bpInDel
SmANS-Chr08SNP的基因型
<BOLD>G</BOLD>enotype of
SmANS-Chr08SNP
SBJ-DFR的基因型
<BOLD>G</BOLD>enotype of
SBJ-DFR
基因型
Genotype
株数
Plant number
紫红色Purplish red 紫色 Purple DD PP YY DDPPYY 3
紫红色Purplish red 紫色 Purple DD Pp YY DDPpYY 2
紫红色Purplish red 紫色 Purple DD PP Yy DDPPYy 2
紫红色Purplish red 紫色 Purple DD Pp Yy DDPpYy 3
紫红色Purplish red 紫色 Purple Dd PP YY DdPPYY 4
紫红色Purplish red 紫色 Purple Dd Pp YY DdPpYY 9
紫红色Purplish red 紫色 Purple Dd PP Yy DdPPYy 8
紫红色Purplish red 紫色 Purple Dd Pp Yy DdPpYy 8
白色White 白色 White DD pp YY DDppYY 2
白色White 白色 White DD pp yy DDppyy 1
白色White 白色 White DD pp Yy DDppYy 4
白色White 白色 White DD PP yy DDPPyy 2
白色White 白色 White DD Pp yy DDPpyy 1
白色White 白色 White Dd pp Yy DdppYy 8
白色White 白色 White Dd pp YY DdppYY 2
白色White 白色 White Dd pp yy Ddppyy 6
白色White 白色 White Dd Pp yy DdPpyy 6
白色White 白色 White Dd PP yy DdPPyy 4
白色White 白色 White dd pp YY ddppYY 0
白色White 白色 White dd pp Yy ddppYy 6
白色White 白色 White dd PP yy ddPPyy 1
白色White 白色 White dd pp yy ddppyy 0
白色White 白色 White dd Pp yy ddPpyy 5
白色White 紫色 Purple dd PP Yy ddPPYy 3
白色White 紫色 Purple dd Pp Yy ddPpYy 7
白色White 紫色 Purple dd PP YY ddPPYY 3
白色White 紫色 Purple dd Pp YY ddPpYY 2

Fig. 5

The flower and fruit phenotypes of male parent 19144, male parent 19147 and their F1 progenies crossed with 19142"

[1]
DAUNAY M, AUBERT S, FRARY A, DOGANLAR S, LESTER R N, BARENDSE G, WEERDEN G V D, HENNART J, HAANSTRA J, DAUPHIN F, JULLIAN E. Eggplant (Solanum melongena) fruit color:Pigments, measurements and genetics//Proceedings of the 12th EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant, 2004: 108-116.
[2]
廖毅, 孙保娟, 孙光闻, 刘厚诚, 李植良, 黎振兴, 汪国平, 陈日远. 与茄子果皮颜色相关联的AFLP及SCAR标记. 中国农业科学, 2009, 42(11): 3996-4003. doi: 10.3864/j.issn.0578-1752.2009.11.029.
LIAO Y, SUN B J, SUN G W, LIU H C, LI Z L, LI Z X, WANG G P, CHEN R Y. AFLP and SCAR markers associated with peel color in eggplant. Scientia Agricultura Sinica, 2009, 42(11): 3996-4003. doi: 10.3864/j.issn.0578-1752.2009.11.029. (in Chinese)
[3]
HOLTON T A, CORNISH E C. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell, 1995, 7(7): 1071-1083.

doi: 10.1105/tpc.7.7.1071 pmid: 12242398
[4]
KOES R, VERWEIJ W, QUATTROCCHIO F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 2005, 10(5): 236-242.

doi: 10.1016/j.tplants.2005.03.002 pmid: 15882656
[5]
LIU Y, TIKUNOV Y, SCHOUTEN R E, MARCELIS L F M, VISSER R G F, BOVY A. Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: A review. Frontiers in Chemistry, 2018, 6: 52.

doi: 10.3389/fchem.2018.00052
[6]
宫硖, 薛静, 张晓东. 植物花青素合成途径中的调控基因研究进展. 生物技术进展, 2011, 1(6): 381-390.

doi: 10.3969/j.issn.2095-2341.2011.06.01
GONG X, XUE J, ZHANG X D. Regulation genes in plant anthocyanin synthesis pathway. Current Biotechnology, 2011, 1(6): 381-390. (in Chinese)

doi: 10.3969/j.issn.2095-2341.2011.06.01
[7]
ALBERT N W, DAVIES K M, LEWIS D H, ZHANG H B, MONTEFIORI M, BRENDOLISE C, BOASE M R, NGO H, JAMESON P E, SCHWINN K E. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell, 2014, 26(3): 962-980.

doi: 10.1105/tpc.113.122069 pmid: 24642943
[8]
MIKO I. Epistasis: Gene interaction and phenotype effects. Nature Education, 2008, 197: 2.
[9]
TIGCHELAAR E C, JANICK J, ERICKSON H T. The genetics of anthocyanin coloration in eggplant (Solanum melongena L.). Genetics, 1968, 60(3): 475-491.

doi: 10.1093/genetics/60.3.475
[10]
YOU Q, LI H M, WU J, LI T, WANG Y K, SUN G W, LI Z L, SUN B J. Mapping and validation of the epistatic D and P genes controlling anthocyanin biosynthesis in the peel of eggplant (Solanum melongena L.) fruit. Horticulture Research, 2023, 10(2): uhac268.

doi: 10.1093/hr/uhac268
[11]
孙保娟, 汪瑞, 孙光闻, 王益奎, 李涛, 宫超, 衡周, 游倩, 李植良. 转录组及代谢组联合解析茄子果色上位遗传效应. 中国农业科学, 2022, 55(20): 3997-4010. doi: 10.3864/j.issn.0578-1752.2022.20.011.
SUN B J, WANG R, SUN G W, WANG Y K, LI T, GONG C, HENG Z, YOU Q, LI Z L. Transcriptome and metabolome integrated analysis of epistatic genetics effects on eggplant peel color. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010. doi: 10.3864/j.issn.0578-1752.2022.20.011. (in Chinese)
[12]
任旋. 茄子果色上位Y基因定位及候选基因分析[D]. 广州: 华南农业大学, 2021.
REN X. Mapping and candidate gene analysis of epistatic Y gene in eggplant fruit color[D]. Guangzhou: South China Agricultural University, 2021. (in Chinese)
[13]
YE S, DHILLON S, KE X Y, COLLINS A R, DAY I N M. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Research, 2001, 29(17): e88.

doi: 10.1093/nar/29.17.e88 pmid: 11522844
[14]
WADE M J. Epistasis, Complex Traits, and Mapping Genes. Microevolution Rate, Pattern, Process. Dordrecht: Springer Netherlands, 2001: 59-69.
[15]
HELLENS R P, MOREAU C, KUI L W, SCHWINN K E, THOMSON S J, FIERS M W E J, FREW T J, MURRAY S R, HOFER J M I, JACOBS J M E, DAVIES K M, ALLAN A C, BENDAHMANE A, COYNE C J, TIMMERMAN-VAUGHAN G M, NOEL ELLIS T H. Identification of Mendel’s white flower character. PLoS ONE, 2010, 5(10): e13230.

doi: 10.1371/journal.pone.0013230
[16]
SALAMAN R N. The inheritance of colour and other characters in the potato. Journal of Genetics, 1910, 1(1): 7-46.

doi: 10.1007/BF02981567
[17]
JUNG C S, GRIFFITHS H M, JONG D M, CHENG S P, BODIS M, KIM T S, JONG W S. The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theoretical and Applied Genetics, 2009, 120(1): 45-57.

doi: 10.1007/s00122-009-1158-3 pmid: 19779693
[18]
ZHANG Y F, CHENG S P, JONG D, GRIFFITHS H, HALITSCHKE R, JONG W. The potato R locus codes for dihydroflavonol 4-reductase. Theoretical and Applied Genetics, 2009, 119(5): 931-937.

doi: 10.1007/s00122-009-1100-8 pmid: 19588118
[19]
吴浪, 刘婧仪, 梁燕. 番茄绿果与红果颜色性状遗传的研究. 园艺学报, 2016, 43(4): 674-682.

doi: doi:10.16420/j.issn.0513-353x.2015-0731
WU L, LIU J Y, LIANG Y. Inheritance on fruit color character between green and red of tomato. Acta Horticulturae Sinica, 2016, 43(4): 674-682. (in Chinese)

doi: doi:10.16420/j.issn.0513-353x.2015-0731
[20]
刘军, 周晓慧, 鲍生有, 庄勇. 特殊白茄种质的果色遗传及相关性状分析. 江西农业大学学报, 2016, 38(2): 255-259.
LIU J, ZHOU X H, BAO S Y, ZHUANG Y. Fruit color heredity and related characters of white eggplant. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(2): 255-259. (in Chinese)
[21]
李全辉, 巩振辉. 线辣椒成熟果色黄色性状遗传规律. 西北农业学报, 2019, 28(5): 762-766.
LI Q H, GONG Z H. Study on the inheritance of ripe yellow fruit characters in chili pepper (Capsicum annuum var. longunt). Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(5): 762-766. (in Chinese)
[22]
CHEN M Q, XU M Y, XIAO Y, CUI D D, QIN Y Q, WU J Q, WANG W Y, WANG G P. Fine mapping identifies SmFAS encoding an anthocyanidin synthase as a putative candidate gene for flower purple color in Solanum melongena L. International Journal of Molecular Sciences, 2018, 19(3): 789.

doi: 10.3390/ijms19030789
[23]
STOMMEL J R, DUMM J M. Coordinated regulation of biosynthetic and regulatory genes coincides with anthocyanin accumulation in developing eggplant fruit. Journal of the American Society for Horticultural Science, 2015, 140(2): 129-135.

doi: 10.21273/JASHS.140.2.129
[24]
JIANG M M, LIU Y, REN L, LIAN H L, CHEN H Y. Molecular cloning and characterization of anthocyanin biosynthesis genes in eggplant (Solanum melongena L.). Acta Physiologiae Plantarum, 2016, 38(7): 163.

doi: 10.1007/s11738-016-2172-0
[25]
ZHANG Y J, HU Z L, CHU G H, HUANG C, TIAN S B, ZHAO Z P, CHEN G P. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.). Journal of Agricultural and Food Chemistry, 2014, 62(13): 2906-2912.

doi: 10.1021/jf404574c
[26]
LI L Z, HE Y J, GE H Y, LIU Y, CHEN H Y. Functional characterization of SmMYB86, a negative regulator of anthocyanin biosynthesis in eggplant (Solanum melongena L.). Plant Science, 2021, 302: 110696.

doi: 10.1016/j.plantsci.2020.110696
[27]
XI H C, HE Y J, CHEN H Y. Functional characterization of SmbHLH13 in anthocyanin biosynthesis and flowering in eggplant. Horticultural Plant Journal, 2021, 7(1): 73-80.

doi: 10.1016/j.hpj.2020.08.006
[28]
BABAK O, NIKITINSKAYA T, NEKRASHEVICH N, YATSEVICH K, KILCHEVSKY A. Identification of DNA markers of anthocyanin biosynthesis disorders based on the polymorphism of anthocyanin 1 tomato ortholog genes in pepper and eggplant. Crop Breeding, Genetics and Genomics, 2020, 2(3): e200011.
[29]
WANG X, CHEN X P, LUO S X, MA W, LI N, ZHANG W W, TIKUNOV Y, XUAN S X, ZHAO J J, WANG Y H, ZHENG G D, YU P, BAI Y L, BOVY A, SHEN S X. Discovery of a DFR gene that controls anthocyanin accumulation in the spiny Solanum group: Roles of a natural promoter variant and alternative splicing. The Plant Journal, 2022, 111(4): 1096-1109.

doi: 10.1111/tpj.v111.4
[30]
林桂荣, 李宝江, 魏毓棠. 茄子白花突变的遗传及其对相关性状的影响. 遗传, 2006, 28(6): 713-716.
LIN G R, LI B J, WEI Y T. Inheritance of the white-flower and its influence to related characters in eggplant (Solanum melongem linn). Hereditas, 2006, 28(6): 713-716. (in Chinese)
[31]
张成成, 范孟媛, 成玉富, 杨旭, 陈学好. 茄子不同花色、果色和果肉色相关性遗传研究. 植物遗传资源学报, 2021, 22(3): 700-706.

doi: 10.13430/j.cnki.jpgr.20200922004
ZHANG C C, FAN M Y, CHENG Y F, YANG X, CHEN X H. Genetic study on correlation of flower color, peel color and flesh color of eggplant. Journal of Plant Genetic Resources, 2021, 22(3): 700-706. (in Chinese)
[1] WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing. Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153.
[2] CAO Jie, GU YongZhe, HONG HuiLong, WU HaiTao, ZHANG Xia, SUN JianQiang, BAO LiGao, QIU LiJuan. Pigment Identification and Gene Mapping in Red Seed Coat of Soybean [J]. Scientia Agricultura Sinica, 2023, 56(14): 2643-2659.
[3] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[4] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[5] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[6] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[7] GAO YongBo,WANG ShiXian,WEI Min,LI Jing,GAO ZhongQiang,MENG Lun,YANG FengJuan. Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634.
[8] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[9] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
[10] XU Ming,LIN ShiQiang,NI DongXin,YI HenJie,LIU JiangHong,YANG ZhiJian,ZHENG JinGui. Cloning and Function Characterization of Chalcone Synthase Gene AgCHS1 in Ampelopsis grossedentata [J]. Scientia Agricultura Sinica, 2020, 53(24): 5091-5103.
[11] WANG Feng,WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai. Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops [J]. Scientia Agricultura Sinica, 2020, 53(23): 4904-4917.
[12] SONG Yang,LIU HongDi,WANG HaiBo,ZHANG HongJun,LIU FengZhi. Molecular Cloning and Functional Characterization of VcNAC072 Reveals Its Involvement in Anthocyanin Accumulation in Blueberry [J]. Scientia Agricultura Sinica, 2019, 52(3): 503-511.
[13] XU YunMei, LI YuMei, JIA YuXin, ZHANG ChunZhi, LI CanHui, HUANG SanWen, ZHU GuangTao. Fine Mapping and Candidate Genes Analysis for Regulatory Gene of Anthocyanin Synthesis in Red-Colored Tuber Flesh [J]. Scientia Agricultura Sinica, 2019, 52(15): 2678-2685.
[14] LI XinLei,YIN HengFu,FAN ZhengQi,LI JiYuan. The Relationship Between Anthocyanins and Flower Colors of Bud Mutation in Camellia japonica [J]. Scientia Agricultura Sinica, 2019, 52(11): 1961-1969.
[15] AN JianPing, SONG LaiQing, ZHAO LingLing, YOU ChunXiang, WANG XiaoFei, HAO YuJin. Cloning and Functional Characterization of an Auxin Response Factor Gene MdARF5 in Apple [J]. Scientia Agricultura Sinica, 2018, 51(7): 1345-1352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!