Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (10): 1870-1881.doi: 10.3864/j.issn.0578-1752.2024.10.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Identification of an Interspecific Hexaploid Hybrid Between an A. hypogaea Cultivar and a Wild Species Arachis sp. 30119 in Peanut

LIU Hua1(), ZENG FanPei2(), WANG Qian3, CHEN GuoQuan3, MIAO LiJuan1, QIN Li1, HAN SuoYi1, DONG WenZhao1, DU Pei1(), ZHANG XinYou1()   

  1. 1 Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002
    2 School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001
    3 School of Life Sciences, Zhengzhou University, Zhengzhou 450001
  • Received:2023-11-27 Accepted:2024-02-23 Online:2024-05-16 Published:2024-05-23
  • Contact: DU Pei, ZHANG XinYou

Abstract:

【Objective】 Wild Arachis species containing many elite disease and insect resistant genes are an important gene pool for the improvement of cultivated peanut A. hypogaea L., so the introduction of chromatin from wild species into cultivated peanut remains an important task for distant hybridization of peanut. Unfortunately, only a few wild species have been successfully involved in the development of interspecific hybrids, despite the existence of a huge amount of wild germplasm resource. The wild species A. sp. 30119 contains multiple disease resistance. However, no interspecific hybrid between it and the cultivated peanut has been reported.【Method】 After crossing allotetraploid peanut cultivar Baitu 131 with diploid wild species A. sp. 30119 and followed by the embryo rescue, the interspecific hybrid F1 (W1212) was obtained. However, interspecific hybrid F1 did not produce seed when selfed. In order to reveal the reason for infertility and continue the generation, the chromosome number of root tip cells was counted and chromosome pairing in pollen mother cells during meiosis of W1212 observed. The chromosome of W1212 was doubled through colchicine treatment during the in vitro culture W1212 plantlet. Finally, we harvested four one-seeded pods from the established W1212 plants; one of the pods undergone in vitro cultured and a number of plants were established from the culture and named as Am1212. The chromosome composition of Am1212 was analyzed by sequential GISH/FISH and SSR marker. Additionally, phenotypic characteristics of Am1212 were investigated. The metaphase chromosome numbers of 8 randomly selected F3 plants were analyzed by rDNA FISH to evaluate the genetic stability of Am1212.【Result】 The average chromosome configuration during meiosis of pollen mother cells of W1212 was 1Ⅲ+6Ⅱ+15Ⅰ, and the abnormalities in chromosome pairings lead to the high sterility of F1 plants. The pollen viability of peg-setting branches of W1212 was significantly improved after chromosome doubling treatment. Sequential GISH / FISH of Baitu 131, A. sp. 30119 and Am1212 indicated that A. sp. 30119 may be a diploid with A genome. Am1212 has 60 chromosomes consisting of all chromosomes of both Baitu 131 and A. sp. 30119, which confirmed its nature of a hexaploid hybrid, but 37.5% F3 plants derived from Am1212 exhibited chromosome number variation. After conducting the screening of SSR molecular markers and phenotypic investigation, we obtained 17 dominant or co-dominant markers for specifically tracking wild species chromosomes and clarified the genetic characteristics of Am1212.【Conclusion】 In this study, we successfully created a new hexaploid peanut Am1212 which incorporated A. sp. 30119 chromatin. However, Am1212 exhibited instability in chromosome numbers and inherited unacceptable agronomic traits from wild species, such as small pods. Therefore, it is necessary to develop more accurate and efficient chromosome manipulation techniques to minimize the unfavorable gene linkage and generate alien chromosomal lines that possess compensatory effects and favorable traits for future breeding purposes.

Key words: peanut, wild species, hexaploid, oligonucleotide fluorescence in situ hybridization, molecular markers

Fig. 1

Observation of metaphase chromosomes, meiosis, and pollen viability of the interspecific hybrid W1212 A: Metaphase chromosomes of W1212; B: Meiotic chromosome pairing of W1212; C: Pollen viability of W1212; D: Pollen viability of peg-setting branches of W1212 after chromosome doubling"

Table 1

Meiotic chromosome pairing analysis of the interspecific hybrid F1"

编号
Number
单价体
Monovalent
二价体
Bivalent
三价体
Trivalent
棒状二价体
<BOLD>C</BOLD>lavate bivalent
环状二价体
<BOLD>C</BOLD>yclic bivalent
F1-1 17 5 1 2 3
F1-2 10 7 2 5 2
F1-3 15 6 1 3 3
F1-4 17 5 1 3 2
F1-5 14 8 0 3 5
F1-6 15 6 1 5 1
F1-7 14 5 2 1 4
F1-8 18 6 0 5 1
F1-9 19 4 1 1 3
F1-10 11 8 1 5 3
平均Average 15 6 1 3.42 2.58

Fig. 2

Sequence GISH/FISH and karyotype analysis of Baitu 131, A. sp. 30119 and Am1212 A-C: Sequential GISH/FISH using Multiplex # A (A, green), Multiplex # B (A, red), Multiplex # 1 (B, green), Multiplex # 2 (B, red), 45S rDNA (C, red) and 5S rDNA (C, green) as probes in Baitu131; D-E: Sequential GISH/FISH using Multiplex # A (D, green), Multiplex # B (D, red), Multiplex # 1 (E, green), Multiplex # 2 (E, red), 45S rDNA (F, red) and 5S rDNA (F, green) as probes in Am1212; G-H: DAPI staining (G) and sequential FISH using Multiplex # 1 (H, green), Multiplex # 2 (H, red), 45S rDNA (I, red) and 5S rDNA (I, green) as probes in A. sp. 30119; J: Karyotypes of Baitu 131, A.sp. 30119 and Am1212. G represented the GISH; OF represented the oligonucleotide FISH; RF represented rDNA FISH"

Fig. 3

PCR amplification pattern of Baitu131, A. sp. 30119 and Am1212 using SSR marker G82, G97"

Table 2

Dominant or co-dominant molecular markers of A. sp. 30119 in Am1212"

标记
Marker
初始名称
Origin name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
特点
Characteristics
E467 ER974516 GCATGCAAAGGAGAAAGCTC GAGTGGATAATGAGGTGAACAAAG 父本显性Male dominance
G21 AhTE0486 TGATTGGATCTCAATTCCCA TTTGATCGCTCTCTCTTTCTTTC 父本显性Male dominance
E578 GM174 CGTCTTTGTCAGATGTTTCCAA TTACCCAAAATCCCATAAGGTG 父本显性Male dominance
G41 AhTE0202 GAGAGCGGTAATTTTTATGATTTG TACTTTTGCGACTTTGTCTCCA 父本显性Male dominance
F149 XX67 TTGCCATCACGCTTCTTG TGTTGCCTTCTTCCTCCC 父本显性Male dominance
G43 AhTE0422 TGGCGTAATCTTTTAAGAACCAA AGAATTAATGTCATCAAACGAATG 父本显性Male dominance
G19 AhTE0571 TTACATAAGGCATTAACGAGTGTT AACAGCTTTGCAGGAGATGG 父本显性Male dominance
G78 AhTE0437 TGGCTTTTGGGTGTGTATGA GCCACGAGAGAATCCAAAAA 父本显性Male dominance
E57 GM1628 AAACGTGCTCTAGAAACATACAAAA CAACACATGCAATGCAACAA 共显性Co-dominance
E152 GM2831 TGAAGAAGAAGCTGAGGCAAA AGAACCTTCCATCTCTGTTGTTG 共显性Co-dominance
E441 ER974469 CAACACAAGCCCACAACAAA TCCATCATCACCCTCATCAA 共显性Co-dominance
E723 GM474 GAGGTCGCCATAGTCATCGT AAAATGTTGGGTGTTGGCAT 共显性Co-dominance
A31 PM84 TGAATGCTAGGCAACCAAAA TGTAGAGACGACACCCATGC 共显性Co-dominance
F6 1X18-F1 GGTGAGGCAATGAAAGGT AGCAACAGCCGATGAAGG 共显性Co-dominance
F69 2K49-T3 GTTCCAAACTTGTTTTCC GGTCTTCACGTTAATCTTC 共显性Co-dominance
F238 TC39C01 AGGCGCGGTGATAGAAAAC GTTTTGCTGTTCGTCCCTAAAC 共显性Co-dominance
G31 AhTE0522 TTGCTGCTGTTATCTCCTTAAAAA GCTAAAGCAAAGAGAATTGATTGG 共显性Co-dominance

Fig. 4

Morphologies of plant (A), leaves (B) and legumes (C) of Baitu131, Am1212 and A. sp. 30119"

Table 3

Comparison of amphidiploid Am1212 with Baitu131 and A. sp. 30119 in some agronomic traits"

性状Traits 白突131 Baitu 131 Am1212 t-test
叶柄长Petiole length (mm) 38.60±8.58 24.70±1.99 3.53**
主茎叶长Leaf length on main stem (mm) 33.60±3.93 28.70±3.34 n.s.
主茎叶宽Leaf width on main stem (mm) 16.10±0.96 19.50±3.67 n.s.
主茎高Height of main stem (cm) 44.20±4.79 95.40±13.81 7.01**
侧枝长Length of first primary branch (cm) 49.60±5.85 87.00±18.55 3.85**
总分枝数Number of branches 58.60±8.93 26.00±6.36 5.82**
结果枝数Number of bearing branches 18.80±3.12 8.80±1.92 5.61**
饱果Mature pod (pcs) 49.20±11.37 8.60±2.90 6.93**
幼果Immature pod (pcs) 2.50±0.50 6.80±2.95 6.96**
株型Plant type 直立Erect 半蔓生Semi-spread /

Fig. 5

Metaphase chromosome FISH and chromosome number of hexaploid Am1212 F3 A-H: FISH using 45S rDNA and 5S rDNA probes in Am1212 F3-1, Am1212 F3-2, Am1212 F3-3, Am1212 F3-4, Am1212 F3-5, Am1212 F3-6, Am1212 F3-7 and Am1212 F3-8. Blue showed DAPI staining, red showed 45S rDNA signal, and green showed 5S rDNA signal"

[1]
STALKER H T. Utilizing wild species for peanut improvement. Crop Science, 2017, 57(3): 1102-1120.
[2]
CASON J M, SIMPSON C E, BUROW M D, TALLURY S, PHAM H, RAVELOMBOLA S W. Use of wild and exotic germplasm for resistance in peanut. Journal of Plant Registrations, 2023, 17(1): 1-25.
[3]
WANG S Y, LI L N, FU L Y, LIU H, QIN L, CUI C H, MIAO L J, ZHANG Z X, GAO W, DONG W Z, HUANG B Y, ZHENG Z, TANG F S, ZHANG X Y, DU P. Development and characterization of new allohexaploid resistant to web blotch in peanut. Journal of Integrative Agriculture, 2021, 20(1): 55-64.
[4]
STALKER H T. Utilizing Arachis cardenasii as a source of Cercospora leafspot resistance for peanut improvement. Euphytica, 1984, 33(2): 529-538.
[5]
STALKER H T, BEUTE M K, SHEW B B, ISLEIB T G. Registration of five leaf spot-resistant peanut germplasm lines. Crop Science, 2002, 42(1): 314-316.

pmid: 11756308
[6]
TALLURY S P, ISLEIB T G, COPELAND S C, ROSAS-ANDERSON P, BALOTA M, SINGH D, STALKER H T. Registration of two multiple disease-resistant peanut germplasm lines derived from Arachis cardenasii krapov., & W.C. Gregory, GKP 10017. Journal of Plant Registrations, 2014, 8(1): 86-89.
[7]
HANCOCK W G, TALLURY S P, ISLEIB T G, CHU Y, OZIAS-AKINS P, STALKER H T. Introgression analysis and morphological characterization of an Arachis hypogaea × A. diogoi interspecific hybrid derived population. Crop Science, 2019, 59(2):640-649.
[8]
SINGSIT C, HOLBROOK C C, CULBREATH A K, OZIAS-AKINS P. Progenies of an interspecific hybrid between Arachis hypogaea and A. stenosperma pest resistance and molecular homogeneity. Euphytica, 1995, 83(1): 9-14.
[9]
SIMPSON C E. Use of wild Arachis species/introgression of genes into A. hypogaea L.. Peanut Science, 2001, 28(2): 114-116.
[10]
王兴军, 张新友. 花生生物技术研究. 北京: 科学出版社, 2015.
WANG X J, ZHANG X Y. Studies on Peanut Biotechnology. Beijing: Science Press, 2015. (in Chinese)
[11]
BERTIOLI D J, CLEVENGER J, GODOY I J, STALKER H T, WOOD S, SANTOS J F, BALLÉN-TABORDA C, ABERNATHY B, AZEVEDO V, CAMPBELL J, CHAVARRO C, CHU Y, FARMER A D, FONCEKA D, GAO D Y, GRIMWOOD J, HALPIN N, KORANI W, MICHELOTTO M D, OZIAS-AKINS P, VAUGHN J, YOUNGBLOOD R, MORETZSOHN M C, WRIGHT G C, JACKSON S A, CANNON S B, SCHEFFLER B E, LEAL-BERTIOLI S C M. Legacy genetics of Arachis cardenasii in the peanut crop shows the profound benefits of international seed exchange. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(38): e2104899118.
[12]
HE G H, MENG R H, NEWMAN M, GAO G Q, PITTMAN R N, PRAKASH C S. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biology, 2003, 3: 3.
[13]
MORETZSOHN M C, LEOI L, PROITE K, GUIMARÃES P M, LEAL-BERTIOLI S C M, GIMENES M A, MARTINS W S, VALLS J F M, GRATTAPAGLIA D, BERTIOLI D J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theoretical and Applied Genetics, 2005, 111(6): 1060-1071.
[14]
PALMIERI D A, BECHARA M D, CURI R A, GIMENES M A, LOPES C R. Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Molecular Ecology Notes, 2005, 5(1): 77-79.
[15]
李丽娜, 杜培, 付留洋, 刘华, 徐静, 秦利, 严玫, 韩锁义, 黄冰艳, 董文召, 汤丰收, 张新友. 花生栽培种与野生种(Arachis oteroi)人工杂交双二倍体的创制和鉴定. 作物学报, 2017, 43(1): 133-140.
LI L N, DU P, FU L Y, LIU H, XU J, QIN L, YAN M, HAN S Y, HUANG B Y, DONG W Z, TANG F S, ZHANG X Y. Development and characterization of amphidiploid derived from interspecific cross between cultivated peanut and its wild relative Arachis oteroi. Acta Agronomica Sinica, 2017, 43(1): 133-140. (in Chinese)
[16]
付留洋, 李丽娜, 李文静, 杜培, 刘华, 秦利, 黄冰艳, 董文召, 汤丰收, 臧新, 张新友. 花生栽培种(Arachis hypogaea L.)与野生种 Arachis macedoi 杂种 F1细胞遗传分析. 中国油料作物学报, 2016, 38(3): 300-306.
FU L Y, LI L N, LI W J, DU P, LIU H, QIN L, HUANG B Y, DONG W Z, TANG F S, ZANG X, ZHANG X Y. Cytogenetic analysis of interspecific hybrid between cultivated peanut (Arachis hypogaea L.) and wild species A. macedoi. Chinese Journal of Oil Crop Sciences, 2016, 38(3): 300-306. (in Chinese)
[17]
DU P, LI L N, LIU H, FU L Y, QIN L, ZHANG Z X, CUI C H, SUN Z Q, HAN S Y, XU J, DAI X D, HUANG B Y, DONG W Z, TANG F S, ZHUANG L F, HAN Y H, QI Z J, ZHANG X Y. High- resolution chromosome painting with repetitive and single copy oligonucleotides in Arachis species identifies structural rearrangements and genome differentiation. BMC Plant Biology, 2018, 18(1): 240.
[18]
DU P, FU L Y, WANG Q, LANG T, LIU H, HAN S Y, LI C Y, HUANG B Y, QIN L, DAI X D, DONG W Z, ZHANG X Y. Development of Oligo-GISH kits for efficient detection of chromosomal variants in peanut. The Crop Journal, 2023, 11(1): 238-246.
[19]
SEIJO J G, LAVIA G I, FERNÁNDEZ A, KRAPOVICKAS A, DUCASSE D, MOSCONE E A. Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). American Journal of Botany, 2004, 91(9): 1294-1303.
[20]
STALKER H T, TALLURY S P, OZIAS-AKINS P, BERTIOLI D, LEAL BERTIOLI S C. The value of diploid peanut relatives for breeding and genomics. Peanut Science, 2013, 40(2): 70-88.
[21]
COMPANY M, STALKER H T, WYNNE J C. Cytology and leafspot resistance in Arachis hypogaea × wild species hybrids. Euphytica, 1982, 31(3): 885-893.
[22]
SARAVANAN S, DURAI R S R, VAIDYANATHAN R. Cytotaxonomy and gene introgression in wild Arachis species. Agricultural Reviews, 2015, 36(1): 54-60.
[23]
STALKER H T, WYNNE J C. Cytology of interspecific hybrids in section Arachis of peanuts. Peanut Science, 1979, 6(2): 110-114.
[24]
姜慧芳, 任小平, 黄家权, 雷永, 廖伯寿. 野生花生脂肪酸组成的遗传变异及远缘杂交创造高油酸低棕榈酸花生新种质. 作物学报, 2009, 35(1): 25-32.

doi: 10.3724/SP.J.1006.2009.00025
JIANG H F, REN X P, HUANG J Q, LEI Y, LIAO B S. Genetic variation of fatty acid components in Arachis species and development of interspecific hybrids with high oleic and low palmitic acids. Acta Agronomica Sinica, 2009, 35(1): 25-32. (in Chinese)
[25]
GARCIA G M, TALLURY S P, STALKER H T, KOCHERT G. Molecular analysis of Arachis interspecific hybrids. Theoretical and Applied Genetics, 2006, 112(7): 1342-1348.
[26]
TIAN X Y, SHI L Y, GUO J, FU L Y, DU P, HUANG B Y, WU Y, ZHANG X Y, WANG Z L. Chloroplast phylogenomic analyses reveal a maternal hybridization event leading to the formation of cultivated peanuts. Frontiers in Plant Science, 2021, 12: 804568.
[27]
ZHANG H K, BIAN Y, GOU X W, ZHU B, XU C M, QI B, LI N, RUSTGI S, ZHOU H, HAN F P, JIANG J M, VON WETTSTEIN D, LIU B. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3447-3452.
[28]
KASHKUSH K, FELDMAN M, LEVY A A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 2002, 160(4): 1651-1659.

doi: 10.1093/genetics/160.4.1651 pmid: 11973318
[29]
ZHANG S Y, DU P, LU X Y, FANG J X, WANG J Q, CHEN X J, CHEN J Y, WU H, YANG Y, TSUJIMOTO H, CHU C G, QI Z J. Frequent numerical and structural chromosome changes in early generations of synthetic hexaploid wheat. Genome, 2022, 65(4): 205-217.
[30]
MADLUNG A, MASUELLI R W, WATSON B, REYNOLDS S H, DAVISON J, COMAI L. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiology, 2002, 129(2): 733-746.
[31]
CHENG F, WU J, CAI X, LIANG J L, FREELING M, WANG X W. Gene retention, fractionation and subgenome differences in polyploid plants. Nature Plants, 2018, 4: 258-268.

doi: 10.1038/s41477-018-0136-7 pmid: 29725103
[32]
DIEZ C M, ROESSLER K, GAUT B S. Epigenetics and plant genome evolution. Current Opinion in Plant Biology, 2014, 18: 1-8.

doi: 10.1016/j.pbi.2013.11.017 pmid: 24424204
[33]
DING M Q, CHEN Z J. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Current Opinion in Plant Biology, 2018, 42: 37-48.

doi: S1369-5266(17)30186-3 pmid: 29502038
[1] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[2] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[3] WU ChuanLei, HU XiaoYu, WANG Wei, MIAO Long, BAI PengYu, WANG GuoJi, LI Na, SHU Kuo, QIU LiJuan, WANG XiaoBo. Development and Identification of Molecular Markers for Oil-Related Functional Genes and Polymerization Analysis of Excellent Alleles in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(22): 4402-4415.
[4] ZHU YanTing, DANG Hao, NIU SiJie, LIN JingYi, YANG Hua, YANG Qiang, ZHANG Chong, CAI TieCheng, ZHUANG WeiJian, CHEN Hua. Screening of Interaction Proteins with AhSAP1 in Peanut Using the Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2024, 57(21): 4376-4390.
[5] LIU Han, DING Di, WANG JiangTao, ZHENG Bin, WANG XiaoXiao, ZHU ChenXu, LIU Juan, LIU Ling, FU GuoZhan, JIAO NianYuan. Coordinated Effects of Maize Ear Type and Planting Density on Interspecific Competition in Maize-Peanut Intercropping System [J]. Scientia Agricultura Sinica, 2024, 57(19): 3758-3769.
[6] HU JiaYu, GAO BingYang, GAO YiFan, YUAN ShiLun, QI Xin, HUANG YuFang, YAN JunYing, ZHAO YaNan, YE YouLiang. Effects of Magnesium Fertilizer Dosage on Nutrient Absorption and Photosynthetic Characteristics in Peanuts [J]. Scientia Agricultura Sinica, 2024, 57(16): 3220-3233.
[7] CHEN WenJie, CHEN Yuan, WEI QingYuan, TANG FuYue, GUO XiaoHong, CHEN ShuFang, QIN XiaYan, WEI RongChang, LIANG Jiang. Identification of Candidate Genes Controlling SSCLD by Utilizing High-Generation Segregating Populations RNA-seq [J]. Scientia Agricultura Sinica, 2024, 57(15): 2914-2930.
[8] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[9] YU TianYi, YANG JiShun, WU ZhengFeng, ZHANG ZhiMeng, SHEN Pu, ZHENG YongMei, LI ShangXia, WU JuXiang, SUN QiQi, WU Yue. Comparative Analysis of the Effects of Different Types of Plastic Film on Peanut Growth and Rhizobacterial Community [J]. Scientia Agricultura Sinica, 2023, 56(24): 4842-4853.
[10] JIANG WenYang, CHEN JunNan, ZAN ZhiMan, WANG JiangTao, ZHENG Bin, LIU Ling, LIU Juan, JIAO NianYuan. Regulation of Single-Seed Sowing and Phosphorus Application on Interspecific Competition and Growth of Intercropping Peanut [J]. Scientia Agricultura Sinica, 2023, 56(23): 4660-4670.
[11] YANG Sha, LIU KeKe, LIU Ying, GUO Feng, WANG JianGuo, GAO HuaXin, MENG JingJing, ZHANG JiaLei, WAN ShuBo. The Molecular Mechanism of Pod Yield Difference Between Single- Seeding Precision Sowing and Multi-Seeds Sowing of Peanut Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(22): 4386-4402.
[12] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[13] WU Yue, SUI XinHua, DAI LiangXiang, ZHENG YongMei, ZHANG ZhiMeng, TIAN YunYun, YU TianYi, SUN XueWu, SUN QiQi, MA DengChao, WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[14] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[15] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!