Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (22): 4386-4402.doi: 10.3864/j.issn.0578-1752.2023.22.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

The Molecular Mechanism of Pod Yield Difference Between Single- Seeding Precision Sowing and Multi-Seeds Sowing of Peanut Based on Transcriptome Analysis

YANG Sha(), LIU KeKe, LIU Ying, GUO Feng, WANG JianGuo, GAO HuaXin, MENG JingJing, ZHANG JiaLei(), WAN ShuBo()   

  1. Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100
  • Received:2023-04-30 Accepted:2023-06-25 Online:2023-11-16 Published:2023-11-17

Abstract:

【Objective】In China, in order to ensure the emergence rate and quality of seedlings, the field often adopts multiple seed seeding. However, inter-plant competition in multi-seeds sowing often limits the growth and eventual yield of subsequent plants. In order to solve this contradiction, the team studied and established the high-yield cultivation technology of single-seed precision seeding. The combination of seed saving and yield increase effect of single-seed precision seeding technology can bring greater benefits and realize cost savings and increased efficiency. The differentially expressed genes in peanut leaves, roots and pods under different planting methods were used to explore the regulatory mechanism of single-seeding precision sowing to improve peanut pod yield, providing theoretical basis and technical support for further promoting peanut high yield and high efficiency. 【Method】Peanut variety Huayu 25 was used as the test material, while the yield related indexes of single-seed sowing and multi-seeds sowing were determined. Inverted three leaves, taproot and lateral root of peanut at 30 days after flowering and peanut pod at young fruit stage of chicken head were selected for transcriptome sequencing, and the yield differences of peanut under different sowing methods were revealed on the molecular level. 【Result】Compared with multi-seeds sowing, the pod number per plant, full fruit number per plant, fruit weight per plant and economic coefficient of single-seed sowing were significantly increased. After the transcriptome data is assembled, each library contains an average of 44.3 million readings. Through the analysis of differentially expressed genes, GO and KEGG pathways in different combinations, it was found that the expression levels of transcription factors, photosystem Ⅱ oxygen-releasing complex, chloroplast membrane, oxidation-reduction reaction and other genes involved in the processes of GA signal and light signal transduction were increased in the leaves of plants under single-seed sowing compared with multi-grain cave seeding. Genes related to phenylpropyl metabolism pathway induced by biological and abiotic stress were significantly enriched in roots, including cytochrome P450 gene, oxidation-reduction gene, stress response transcription factor and signal regulatory protein. The accumulation of starch and sucrose metabolism genes was more conducive to seed kernel enrichment during pod development. 【Conclusion】The up-regulated expression of photosynthetic related genes in peanut leaves at seedling stage could promote the increase of photosynthetic efficiency, which was closely related to the increase of yield. Single-seed sowing improved the ability of root system to resist biological and abiotic stress, and combined with the up-regulation of energy and material related genes in the early stage of pod development, it was beneficial for the development of underground peanut pod and increased peanut yield.

Key words: peanut, single seed precision sowing, yield, RNA-Seq, photosynthesis, phenylpropanoid pathway

Fig. 1

The diagram of plant pattern"

Table 1

Changes of per peanut pod at maturity stage under different planting methods"

处理
Treatment
单株荚果数
Pods number per plant
单株饱果数
Full pods number per plant
单株果重
Pod weight per plant (g)
经济系数
Economic coefficient
单粒精播Single-seeding sowing 36.65a 24.53a 49.76a 0.50a
三粒穴播Three-seeds sowing 25.36b 15.28b 30.08b 0.47b
五粒穴播Five-seeds sowing 18.32c 11.57c 21.61c 0.44c

Table 2

Statistical analysis of transcriptome sequencing basic data"

样品名称
Sample
总Reads数
Total Reads
比对Reads数(比例,%)
Mapped Reads (rate, %)
唯一比对Reads数(比例,%)
Unique mapped Reads (rate, %)
GC
(%)
Q30
(%)
SL1 44772228 38582620(86.18) 33161778(74.07) 44.66 92.74
SL2 46785506 32233417(68.90) 27751126(59.32) 43.93 93.31
SL3 44432256 32447247(73.03) 28195266(63.46) 43.72 92.98
TL1 45116924 34153847(75.70) 29418012(65.20) 43.99 92.73
TL2 43591552 31397226(72.03) 27154180(62.29) 43.86 92.28
TL3 42632812 26466552(62.08) 22807469(53.50) 43.4 92.07
FL1 44072996 35858508(81.36) 31020506(70.38) 44.3 92.71
FL2 45559666 43974477(96.52) 38094612(83.61) 44.79 92.81
FL3 46187310 31797098(68.84) 27572825(59.70) 43.88 93.07
SR1 47377928 43355223(91.51) 37493509(79.14) 44.5 92.19
SR2 45195968 41281627(91.34) 36025392(79.71) 43.88 92.36
SR3 45334094 41321686(91.15) 35598328(78.52) 44.39 95.29
TR1 41574892 37787724(90.89) 32604339(78.42) 44.05 92.44
TR2 41568054 38387877(92.35) 33053700(79.52) 44.18 92.58
TR3 42011010 37666147(89.66) 32554905(77.49) 44.1 92.28
FR1 44329820 40528849(91.43) 35108182(79.20) 44.04 92.27
FR2 45598270 40336991(88.46) 34921268(76.58) 43.95 92.45
FR3 43519726 39373659(90.47) 34031257(78.20) 44.14 92.91
SP1 49413724 47483883(96.09) 41146339(83.27) 43.03 93
SP2 45104370 42742170(94.76) 36636507(81.23) 44.65 92.98
SP3 43696522 41148585(94.17) 35223387(80.61) 44.6 93.11
TP1 44665792 43185909(96.69) 37602935(84.19) 44.34 92.98
TP2 42940308 40711465(94.81) 34920983(81.32) 44.29 93.2
TP3 40846304 38967000(95.40) 33445775(81.88) 43.97 93.65
FP1 41393174 38868585(93.90) 33223381(80.26) 44.02 93.27
FP2 44726794 42588347(95.22) 36499220(81.60) 43.88 93.13
FP3 43701578 41660050(95.33) 35997345(82.37) 43.46 93.61

Fig. 2

Statistics diagram (A) and Venn (B) of differentially expressed genes in peanut leaves, roots and pods under different sowing methods"

Table 3

GO and KEGG enrichment analysis of DEGs in peanut leaves, roots and pods under different sowing methods"

说明 Description 上调 Up 下调 Down
GO
SL vs FL 序列特异性DNA结合Sequence-specific DNA binding 核小体组装、染色质组装、核小体组织、DNA包装
Nucleosome assembly, chromatin assembly, nucleosome organization, DNA packaging
SL vs TL 光系统Ⅱ放氧复合体、膜外成分、类囊体膜、氧化还原复合体、光系统Ⅱ
Photosystem Ⅱoxygen evolving complex, extrinsic component of membrane, thylakoid membrane, oxidoreductase complex, photosystem Ⅱ
核小体组装、染色质组装、核小体组织、DNA包装、染色质组装或卸载
Nucleosome assembly, chromatin assembly, nucleosome organization, DNA packaging, chromatin assembly or disassembly
KEGG
SL vs FL 植物-病原体互作、甘油脂代谢类胡萝卜素、生物合成、甘油磷脂代谢
Plant-pathogen interaction, glycerolipid metabolism, carotenoid biosynthesis, glycerophospholipid metabolism
硫胺素代谢、2-氧代羧酸代谢
Thiamine metabolism, 2-Oxocarboxylic acid metabolism
SL vs TL 甘油脂代谢、卟啉和叶绿素代谢
Glycerolipid metabolism, porphyrin and chlorophyll metabolism
柠檬酸循环、氨基酸生物合成、精氨酸和脯氨酸代谢、半胱氨酸和蛋氨酸代谢
Citrate cycle, biosynthesis of amino acids, arginine and proline metabolism, cysteine and methionine metabolism
GO
SR vs FR 对生物刺激的响应、对氧化胁迫的响应、过氧化物酶活性、氧化还原酶活性、抗氧化剂活性
Response to biotic stimulus, response to oxidative stress, peroxidase activity, oxidoreductase activity, antioxidant activity
二糖代谢过程、低聚糖生物合成过程、丝氨酸水解酶活性
Disaccharide metabolic process, oligosaccharide biosynthetic process, serine hydrolase activity
SR vs TR 过氧化物酶活性、氧化还原酶活性、细胞壁、对氧化胁迫响应、多种有机体过程
Peroxidase activity, oxidoreductase activity, cell wall, response to oxidative stress, multi-organism process
生长素响应、糖脂运输、糖脂转运蛋白活性、磺基转移酶活性
Response to auxin, glycolipid transport, glycolipid transporter activity, sulfotransferase activity
KEGG
SR vs FR 苯丙素生物合成、MAPK信号途径、植物-病原体互作、谷胱甘肽代谢
Phenylpropanoid biosynthesis, MAPK signaling pathway, plant- pathogen interaction, glutathione metabolism
淀粉和蔗糖代谢、ABC转运蛋白
Starch and sucrose metabolism, ABC transporters
SR vs TR 植物-病原体互作、苯丙素生物合成、MAPK信号途径、类黄酮生物合成
Plant-pathogen interaction, phenylpropanoid biosynthesis, MAPK signaling pathway, flavonoid biosynthesis
剪接体、嘌呤代谢、内质网中的蛋白质加工、内吞作用
Spliceosome, purine metabolism, protein processing in endoplasmic reticulum, endocytosis
GO
SP vs FP 细胞外区域、聚半乳糖醛酸酶活性、内肽酶活性
Extracellular region, polygalacturonase activity, endopeptidase activity
金属离子运输、细胞葡聚糖代谢过程、质外体、序列特异性DNA结合
Metal ion transport, cellular glucan metabolic process, apoplast, sequence-specific DNA binding
SP vs TP 对生物刺激的反应、多糖代谢过程、防御反应、纤维素合酶活性、聚半乳糖醛酸酶活性
Response to biotic stimulus, polysaccharide metabolic process, defense response, cellulose synthase activity, polygalacturonase activity
DNA复制、DNA代谢过程、染色体、DNA包装复合体、微管结合
DNA replication, DNA metabolic process, chromosome, DNA packaging complex, microtubule binding
KEGG
SP vs FP 苯丙素生物合成、淀粉和蔗糖代谢
Phenylpropanoid biosynthesis, starch and sucrose metabolism
植物-病原体互作、脂肪酸降解
Plant-pathogen interaction, fatty acid degradation
SP vs TP 苯丙素生物合成、卟啉与叶绿素代谢、生长素响应、淀粉和蔗糖代谢
Phenylpropanoid biosynthesis, porphyrin and chlorophyll metabolism, auxin response, starch and sucrose metabolism
DNA复制、类黄酮生物合成、错配修复、色氨酸代谢、糖酵解/糖异生
DNA replication, flavonoid biosynthesis, mismatch repair, tryptophan metabolism, glycolysis/gluconeogenesis

Table 4

List of differentially expressed genes related to high yield in leaf, root and pod under single-seed sowing"

基因ID
Gene_ID
基因说明
Gene description
比较组
Comparison group
转录因子Transcription factor SL vs FL
arahy.Tifrunner.gnm1.ann1.DV7QWZ MYB类DNA结合域MYB-like DNA-binding domain 2.62
arahy.Tifrunner.gnm1.ann1.HAG9AR MYB类DNA结合域MYB-like DNA-binding domain 1.86
arahy.Tifrunner.gnm1.ann1.C9M3KU MYB类DNA结合域MYB-like DNA-binding domain 1.78
arahy.Tifrunner.gnm1.ann1.F9DTFM GRAS结构域家族GRAS domain family 2.19
arahy.Tifrunner.gnm1.ann1.CF7XAP GRAS结构域家族GRAS domain family 1.67
arahy.Tifrunner.gnm1.ann1.8X00QX GRAS结构域家族GRAS domain family 1.68
arahy.Tifrunner.gnm1.ann1.52HH2Q DnaJ结构域DnaJ domain 2.74
arahy.Tifrunner.gnm1.ann1.BDT6Z1 DnaJ结构域DnaJ domain 2.87
arahy.Tifrunner.gnm1.ann1.206U1W WRKY DNA结合域WRKY DNA-binding domain 2.81
arahy.Tifrunner.gnm1.ann1.KK3V44 WRKY DNA结合域WRKY DNA-binding domain 2.01
arahy.Tifrunner.gnm1.ann1.EXJ5K8 WRKY DNA结合域WRKY DNA-binding domain 1.98
arahy.Tifrunner.gnm1.ann1.TC7Y0P WRKY DNA结合域WRKY DNA-binding domain 2.48
arahy.Tifrunner.gnm1.ann1.N4K2VQ HSP70蛋白HSP70 protein 2.05
arahy.Tifrunner.gnm1.ann1.LTRJ1V HSP70蛋白HSP70 protein 1.82
arahy.Tifrunner.gnm1.ann1.ECZ3V7 HSP70蛋白HSP70 protein 1.95
SL vs TL
arahy.Tifrunner.gnm1.ann1.ZTD7SX WRKY DNA结合域WRKY DNA-binding domain 3.48
arahy.Tifrunner.gnm1.ann1.13YX47 WRKY DNA结合域WRKY DNA-binding domain 2.62
arahy.Tifrunner.gnm1.ann1.EXJ5K8 WRKY DNA结合域WRKY DNA-binding domain 2.36
arahy.Tifrunner.gnm1.ann1.WH6N3S WRKY DNA结合域WRKY DNA-binding domain 3.51
arahy.Tifrunner.gnm1.ann1.TC7Y0P WRKY DNA结合域WRKY DNA-binding domain 1.69
arahy.Tifrunner.gnm1.ann1.LTRJ1V HSP70蛋白Hsp70 protein 1.88
arahy.Tifrunner.gnm1.ann1.N4K2VQ HSP70蛋白Hsp70 protein 1.91
arahy.Tifrunner.gnm1.ann1.PR7AYB MYB类DNA结合域Myb-like DNA-binding domain 1.74
arahy.Tifrunner.gnm1.ann1.UW10HH DnaJ结构域DnaJ domain 1.29
arahy.Tifrunner.gnm1.ann1.BDT6Z1 DnaJ结构域DnaJ domain 2.44
arahy.Tifrunner.gnm1.ann1.6YZ37K DnaJ结构域DnaJ domain 1.55
arahy.Tifrunner.gnm1.ann1.FPX6WQ GRAS结构域家族GRAS domain family 1.38
arahy.Tifrunner.gnm1.ann1.F9DTFM GRAS结构域家族GRAS domain family 2.17
arahy.Tifrunner.gnm1.ann1.3U6Z4I GRAS结构域家族GRAS domain family 1.52
MAPK信号途径MAPK signal pathway SR vs FR
arahy.Tifrunner.gnm1.ann1.VQ5KVR 聚酮环化酶Polyketide cyclase 1.18
arahy.Tifrunner.gnm1.ann1.UY7VYK 氨基转移酶Ⅰ类和Ⅱ类Aminotransferase classⅠandⅡ 2.33
arahy.Tifrunner.gnm1.ann1.744VXT 半胱氨酸富集分泌蛋白家族Cysteine-rich secretory protein family 5.92
arahy.Tifrunner.gnm1.ann1.WP6DIZ 半胱氨酸富集分泌蛋白家族Cysteine-rich secretory protein family 10.14
arahy.Tifrunner.gnm1.ann1.SLKX21 半胱氨酸富集分泌蛋白家族Cysteine-rich secretory protein family 8.91
arahy.Tifrunner.gnm1.ann1.T12YHH 半胱氨酸富集分泌蛋白家族Cysteine-rich secretory protein family 10.98
arahy.Tifrunner.gnm1.ann1.WFS9KG NADPH 氧化酶NADPH oxidase 3.56
SR vs TR
arahy.Tifrunner.gnm1.ann1.XA421G 蛋白激酶结构域Protein kinase domain 1.61
arahy.Tifrunner.gnm1.ann1.RQ7QZ9 蛋白激酶结构域Protein kinase domain 1.27
arahy.Tifrunner.gnm1.ann1.CD5B6Y 蛋白磷酸酶2C Protein phosphatase 2C 1.39
arahy.Tifrunner.gnm1.ann1.GYA3XJ 蛋白激酶结构域Protein kinase domain 2.02
arahy.Tifrunner.gnm1.ann1.SQ16A9 蛋白激酶结构域Protein kinase domain 1.65
arahy.Tifrunner.gnm1.ann1.UY7VYK 氨基转移酶Ⅰ类和Ⅱ类Aminotransferase classⅠandⅡ 2.64
arahy.Tifrunner.gnm1.ann1.S2Q0RR 氨基转移酶Ⅰ类和Ⅱ类Aminotransferase classⅠandⅡ 4.41

Table 5

Significant GO terms for DEGs in SP vs TP"

分类
Category
GO ID 描述
Description
基因占比
Gene ratio
Bg比例
Bg ratio
<BOLD>P</BOLD>
padj 基因号
<BOLD>G</BOLD>ene ID
基因
Gene
数量
Count
生物过程
Biological processes
GO:0009733 生长素响应
Response to auxin
4/1852 56/15502
0.914927
1 arahy.Tifrunner.gnm1.ann1.T2QDAL/arahy.Tifrunner.gnm1.ann1.DWH8JW/arahy.Tifrunner.gnm1.ann1.SE3NL1/arahy.Tifrunner.gnm1.ann1.3U3G48 arahy.T2QDAL/arahy.DWH8JW/arahy.SE3NL1/arahy.3U3G48 4
GO:0016567 蛋白泛素化
Protein ubiquitination
7/1852 93/15502 0.938425 1 arahy.Tifrunner.gnm1.ann1.VNN39M/arahy.Tifrunner.gnm1.ann1.AS1G8G/arahy.Tifrunner.gnm1.ann1.2EPV6W/novel.3009/arahy.Tifrunner.gnm1.ann1.U5RGLT/arahy.Tifrunner.gnm1.ann1.SWIT4Z/arahy.Tifrunner.gnm1.ann1.3VLA0M arahy.VNN39M/arahy.AS1G8G/arahy.2EPV6W/-/arahy.U5RGLT/arahy.SWIT4Z/arahy.3VLA0M 7
GO:0032446 蛋白修饰
Protein modification
by small protein
conjugation
7/1852 95/15502
0.946406
1 arahy.Tifrunner.gnm1.ann1.VNN39M/arahy.Tifrunner.gnm1.ann1.AS1G8G/arahy.Tifrunner.gnm1.ann1.2EPV6W/novel.3009/arahy.Tifrunner.gnm1.ann1.U5RGLT/arahy.Tifrunner.gnm1.ann1.SWIT4Z/arahy.Tifrunner.gnm1.ann1.3VLA0M arahy.VNN39M/arahy.AS1G8G/arahy.2EPV6W/-/arahy.U5RGLT/arahy.SWIT4Z/arahy.3VLA0M 7
GO:0070647 蛋白修饰
Protein modification
by small protein
conjugation
9/1852
156/15502
0.996949
1 arahy.Tifrunner.gnm1.ann1.VNN39M/arahy.Tifrunner.gnm1.ann1.AS1G8G/arahy.Tifrunner.gnm1.ann1.2EPV6W/novel.3009/arahy.Tifrunner.gnm1.ann1.U5RGLT/arahy.Tifrunner.gnm1.ann1.SWIT4Z/arahy.Tifrunner.gnm1.ann1.IA0PF7/arahy.Tifrunner.gnm1.ann1.3VLA0M/novel.4376 arahy.VNN39M/arahy.AS1G8G/arahy.2EPV6W/-/arahy.U5RGLT/arahy.SWIT4Z/arahy.IA0PF7/arahy.3VLA0M/-
9
细胞组成
Cell composition
GO:0009507 叶绿体
Chloroplast
4/629 18/5537 0.139551
0.853529
arahy.Tifrunner.gnm1.ann1.L27P26/arahy.Tifrunner.gnm1.ann1.ZGZX3T/arahy.Tifrunner.gnm1.ann1.RCVM4C/arahy.Tifrunner.gnm1.ann1.L0KK3Q arahy.L27P26/arahy.ZGZX3T/arahy.RCVM4C/arahy.L0KK3Q 4
分子功能
Molecular function
GO:0004842 泛素蛋白转移酶活性
Ubiquitin-protein transferase activity
7/2629
125/23997 0.987201
1 arahy.Tifrunner.gnm1.ann1.VNN39M/arahy.Tifrunner.gnm1.ann1.AS1G8G/arahy.Tifrunner.gnm1.ann1.2EPV6W/novel.3009/arahy.Tifrunner.gnm1.ann1.U5RGLT/arahy.Tifrunner.gnm1.ann1.SWIT4Z/arahy.Tifrunner.gnm1.ann1.3VLA0M arahy.VNN39M/arahy.AS1G8G/arahy.2EPV6W/-/arahy.U5RGLT/arahy.SWIT4Z/arahy.3VLA0M
7
GO:0019787 泛素类蛋白转移酶活性
Ubiquitin-like protein
transferase activity
7/2629 125/23997 0.987201
1 arahy.Tifrunner.gnm1.ann1.VNN39M/arahy.Tifrunner.gnm1.ann1.AS1G8G/arahy.Tifrunner.gnm1.ann1.2EPV6W/novel.3009/arahy.Tifrunner.gnm1.ann1.U5RGLT/arahy.Tifrunner.gnm1.ann1.SWIT4Z/arahy.Tifrunner.gnm1.ann1.3VLA0M arahy.VNN39M/arahy.AS1G8G/arahy.2EPV6W/-/arahy.U5RGLT/arahy.SWIT4Z/arahy.3VLA0M 7

Fig. 3

GO and KEGG analysis for DEGs shared by SR vs FR and SR vs TR, SP vs FP and SP vs TP A:SR vs FR,SR vs TR;B:SP vs FP,SP vs TP"

Fig. 4

Weighted gene co-expression network analysis"

Fig. 5

Expression analysis of Phenylpropanoid pathway related genes in peanut roots and pods"

Fig. 6

Detection of differentially expressed genes in transcriptome data"

[1]
王才斌. 实施理性栽培, 推进山东花生生产可持续发展. 花生学报, 2018, 47(1): 74-76, 68.
WANG C B. Rational cultivation promotes the sustainable development of peanut production in Shandong. Journal of Peanut Science, 2018, 47(1): 74-76, 68. (in Chinese)
[2]
王在序, 盖树人. 山东花生. 上海: 上海科学技术出版社, 1999: 1-15.
WANG Z X, GAI S R. Shandong Peanut. Shanghai: Shanghai Scientific & Technical Press, 1999: 1-15. (in Chinese)
[3]
张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015, 48(18): 3757-3766.

doi: 10.3864/j.issn.0578-1752.2015.18.019
ZHANG J L, GUO F, YANG D Q, MENG J J, YANG S, WANG X Y, TAO S X, LI X G, WAN S B. Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation. Scientia Agricultura Sinica, 2015, 48(18): 3757-3766. (in Chinese)
[4]
LIANG X Y, GUO F, FENG Y, ZHANG J L, YANG S, MENG J J, LI X G, WAN S B. Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of Arachis hypogaea. Journal of Integrative Agriculture, 2020, 19(4): 1019-1032.

doi: 10.1016/S2095-3119(19)62712-7
[5]
梁晓艳, 郭峰, 张佳蕾, 孟静静, 李林, 万书波, 李新国. 单粒精播对花生冠层微环境、光合特性及产量的影响. 应用生态学报, 2015, 26(12): 3700-3706.
LIANG X Y, GUO F, ZHANG J L, MENG J J, LI L, WAN S B, LI X G. Effects of single-seed sowing on canopy microenvironment,photosynthetic characteristics and pod yield of peanut (Arachis hypogaca), Chinese Journal of Applied Ecology, 2015, 26(12): 3700-3706. (in Chinese)
[6]
张佳蕾, 张雷, 林英杰, 刘颖, 王建国, 郭峰, 唐朝辉, 李新国, 万书波. 单粒精播对花生生物学特性的影响. 中国油料作物学报, 2020, 42(6): 960-969.
ZHANG J L, ZHANG L, LIN Y J, LIU Y, WANG J G, GUO F, TANG Z H, LI X G, WAN S B. Effects of single seed sowing on biological characteristics of peanut. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 960-969. (in Chinese)

doi: 10.19802/j.issn.1007-9084.2020048
[7]
梁晓艳, 郭峰, 张佳蕾, 孟静静, 李林, 万书波, 李新国. 适宜密度单粒精播提高花生碳氮代谢酶活性及荚果产量与籽仁品质. 中国油料作物学报, 2016, 38(3): 336-343.

doi: 10.7505/j.issn.1007-9084.2016.03.010
LIANG X Y, GUO F, ZHANG J L, MENG J J, LI L, WAN S B, LI X G. Effects of single-seed sowing density on characteristics related to yield and quality of peanut (Arachis hypogaca L.). Chinese Journal of Oil Crop Sciences, 2016, 38(3): 336-343. (in Chinese)
[8]
张佳蕾, 郭峰, 苗昊翠, 李利民, 杨莎, 耿耘, 孟静静, 李新国, 万书波. 单粒精播对高产花生株间竞争缓解效应研究. 花生学报, 2018, 47(2): 52-58.
ZHANG J L, GUO F, MIAO H C, LI L M, YANG S, GENG Y, MENG J J, LI X G, WAN S B. Study on relieving inter-plant competition by single seed sowing of high yield peanut. Journal of Peanut Science, 2018, 47(2): 52-58. (in Chinese)
[9]
ZHUANG W J, CHEN H, YANG M, WANG J P, PANDEY M K, ZHANG C, CHANG W C, ZHANG L S, ZHANG X T, TANG R H, GARG V, WANG X J, TANG H B, CHOW C N, WANG J P, DENG Y, WANG D P, KHAN A W, YANG Q, CAI T C, BAJAJ P, WU K C, GUO B Z, ZHANG X Y, LI J J, LIANG F, HU J, LIAO B S, LIU S Y, CHITIKINENI A, YAN H S, ZHENG Y X, SHAN S H, LIU Q Z, XIE D Y, WANG Z Y, ALI KHAN S, ALI N, ZHAO C Z, LI X G, LUO Z L, ZHANG S B, ZHUANG R R, PENG Z, WANG S Y, MAMADOU G, ZHUANG Y H, ZHAO Z F, YU W C, XIONG F Q, QUAN W P, YUAN M, LI Y, ZOU H S, XIA H, ZHA L, FAN J P, YU J G, XIE W P, YUAN J Q, CHEN K, ZHAO S S, CHU W T, CHEN Y T, SUN P C, MENG F B, ZHUO T, ZHAO Y H, LI C J, HE G H, ZHAO Y L, WANG C C, KAVIKISHOR P B, PAN R L, PATERSON A H, WANG X Y, MING R, VARSHNEY R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 2019, 51(5): 865-876.

doi: 10.1038/s41588-019-0402-2 pmid: 31043757
[10]
CHOPRA R, BUROW G, FARMER A, MUDGE J, SIMPSON C E, BUROW M D. Comparisons of de novo transcriptome assemblers in diploid and polyploid species using peanut (Arachis spp.) RNA-Seq data. PLoS ONE, 2014, 9(12): e115055.

doi: 10.1371/journal.pone.0115055
[11]
BERTIOLI D J J, JENKINS J, CLEVENGER J, DUDCHENKO O, GAO D Y, SEIJO G, LEAL-BERTIOLI S C M, REN L H, FARMER A D, PANDEY M K, SAMOLUK S S, ABERNATHY B, AGARWAL G, BALLÉN-TABORDA C, CAMERON C, CAMPBELL J, CHAVARRO C, CHITIKINENI A, CHU Y, DASH S, EL BAIDOURI M, GUO B Z, HUANG W, DO KIM K, KORANI W, LANCIANO S, LUI C G, MIROUZE M, MORETZSOHN M C, PHAM M, SHIN J H, SHIRASAWA K, SINHAROY S, SREEDASYAM A, WEEKS N T, ZHANG X Y, ZHENG Z, SUN Z Q, FROENICKE L, AIDEN E L, MICHELMORE R, VARSHNEY R K, HOLBROOK C C, CANNON E K S, SCHEFFLER B E, GRIMWOOD J, OZIAS-AKINS P, CANNON S B, JACKSON S A, SCHMUTZ J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 2019, 51(5): 877-884.

doi: 10.1038/s41588-019-0405-z
[12]
CUI Y Y, ZHAI Y L, FLAISHMAN M, LI J P, CHEN S W, ZHENG C L, MA H Q. Ethephon induces coordinated ripening acceleration and divergent coloration responses in fig (Ficus carica L.) flowers and receptacles. Plant Molecular Biology, 2021, 105(4): 347-364.

doi: 10.1007/s11103-020-01092-x
[13]
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.

doi: S1674-2052(20)30187-8 pmid: 32585190
[14]
LANGFELDER P, HORVATH S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559.

doi: 10.1186/1471-2105-9-559 pmid: 19114008
[15]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.

doi: 10.1006/meth.2001.1262
[16]
MENGISTE T, CHEN X, SALMERON J, DIETRICH R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. The Plant Cell, 2003, 15(11): 2551-2565.

doi: 10.1105/tpc.014167
[17]
AMIN A B, RATHNAYAKE K N, YIM W C, GARCIA T M, WONE B, CUSHMAN J C, WONE B W M. Crassulacean acid metabolism abiotic stress-responsive transcription factors: A potential genetic engineering approach for improving crop tolerance to abiotic stress. Frontiers in Plant Science, 2019, 10: 129.

doi: 10.3389/fpls.2019.00129 pmid: 30853963
[18]
张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响. 作物学报, 2023, 49(5): 1397-1409.

doi: 10.3724/SP.J.1006.2023.23003
ZHANG J J, CHEN J P, TANG Y L, ZHANG R, CAO H Z, WANG L J, MA M J, WANG H, WANG Y C, GUO J M, JAGADISH K, YANG Q H, SHAO R X. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering. Acta Agronomica Sinica, 2023, 49(5): 1397-1409. (in Chinese)
[19]
WANG Y F, GUO Y Y, ZHAO C F, LI H J, ZHANG R H. Exogenous melatonin achieves drought tolerance by improving photosynthesis in maize seedlings leaves. Russian Journal of Plant Physiology, 2021, 68(4): 718-727.

doi: 10.1134/S102144372104021X
[20]
BANERJEE A, ROYCHOUDHURY A. WRKY proteins: Signaling and regulation of expression during abiotic stress responses. The Scientific World Journal, 2015, 2015: 807560.
[21]
WEI H B, ZHAO H B, SU T, BAUSEWEIN A, GREINER S, HARMS K, RAUSCH T. Chicory R2R3-MYB transcription factors CiMYB5 and CiMYB3 regulate fructan 1-exohydrolase expression in response to abiotic stress and hormonal cues. Journal of Experimental Botany, 2017, 68(15): 4323-4338.

doi: 10.1093/jxb/erx210 pmid: 28922763
[22]
WANG G Z, ZHOU S S, LUO Y, MA C J, GONG Y H, ZHOU Y, GAO S S, HUANG Z C, YAN L L, HU Y, BIAN Y B. The heat shock protein 40 LeDnaJ regulates stress resistance and indole-3-acetic acid biosynthesis in Lentinula edodes. Fungal Genetics and Biology, 2018, 118: 37-44.

doi: 10.1016/j.fgb.2018.07.002
[23]
ZHENG Y P, XIN C Y, WANG C B, SUN X S, YANG W Q, WAN S B, ZHENG Y M, FENG H, CHEN D X, SUN X W, WU Z F. Effects of phosphorus fertilizer on root morphology, physiological characteristics and yield in peanut (Arachis hypogaea). Chinese Journal of Plant Ecology, 2014, 37(8): 777-785.

doi: 10.3724/SP.J.1258.2013.00081
[24]
GABER A, OGATA T, MARUTA T, YOSHIMURA K, TAMOI M, SHIGEOKA S. The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol. Plant and Cell Physiology, 2012, 53(9): 1596-1606.

doi: 10.1093/pcp/pcs100
[25]
ZHAI C Z, ZHAO L, YIN L J, CHEN M, WANG Q Y, LI L C, XU Z S, MA Y Z. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. PLoS ONE, 2013, 8(10): e73989.

doi: 10.1371/journal.pone.0073989
[26]
PASSAIA G, QUEVAL G, BAI J, MARGIS-PINHEIRO M, FOYER C H. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65(5): 1403-1413.

doi: 10.1093/jxb/ert486
[27]
DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology, 2021, 63(1): 180-209.

doi: 10.1111/jipb.v63.1
[28]
WOHL J, PETERSEN M. Functional expression and characterization of cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis in Physcomitrella patens. Plant Cell Reports, 2020, 39(5): 597-607.

doi: 10.1007/s00299-020-02517-z
[29]
NAIKOO M I, DAR M I, RAGHIB F, JALEEL H, AHMAD B, RAINA A, AHMAD KHAN F, NAUSHIN F. Role and regulation of plants phenolics in abiotic stress tolerance//Plant Signaling Molecules. Amsterdam: Elsevier, 2019: 157-168.
[30]
TAÏBI K, TAÏBI F, AIT ABDERRAHIM L, ENNAJAH A, BELKHODJA M, MULET J M. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L.. South African Journal of Botany, 2016, 105: 306-312.

doi: 10.1016/j.sajb.2016.03.011
[31]
SMIRNOV O E, KOSYAN A M, KOSYK O I, TARAN N Y. Response of phenolic metabolism induced by aluminium toxicity in Fagopyrum esculentum moench. plants. Ukrainian Biochemical Journal, 2015, 87(6): 129-135.
[32]
WANG L Z, HU W, TIE W W, DING Z H, DING X P, LIU Y, YAN Y, WU C L, PENG M, XU B Y, JIN Z Q. The MAPKKK and MAPKK gene families in banana: identification, phylogeny and expression during development, ripening and abiotic stress. Scientific Reports, 2017, 7(1): 1159.

doi: 10.1038/s41598-017-01357-4 pmid: 28442729
[33]
SEUNG D. Amylose in starch: Towards an understanding of biosynthesis, structure and function. The New Phytologist, 2020, 228(5): 1490-1504.

doi: 10.1111/nph.v228.5
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[4] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[5] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[6] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[7] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[8] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[9] WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing. Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153.
[10] PENG JiaWei, ZHANG Ye, KOU DanDan, YANG Li, LIU XiaoFei, ZHANG XueYing, CHEN HaiJiang, TIAN Yi. Transcriptome Analysis of Peach Fruits at Different Developmental Stages in Peach Kurakato Wase and Early-Ripening Mutant [J]. Scientia Agricultura Sinica, 2023, 56(5): 964-980.
[11] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[12] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[13] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[14] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[15] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!