Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (21): 4376-4390.doi: 10.3864/j.issn.0578-1752.2024.21.016

• RESEARCH NOTES • Previous Articles    

Screening of Interaction Proteins with AhSAP1 in Peanut Using the Yeast Two-Hybrid System

ZHU YanTing(), DANG Hao, NIU SiJie, LIN JingYi, YANG Hua, YANG Qiang, ZHANG Chong, CAI TieCheng, ZHUANG WeiJian, CHEN Hua()   

  1. College of Agriculture, Fujian Agriculture and Forestry University/Research Center of Leguminous Oil Plant Genetics and Systems Biology/Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University/Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002
  • Received:2024-07-18 Accepted:2024-08-29 Online:2024-11-01 Published:2024-11-10
  • Contact: CHEN Hua

Abstract:

【Objective】Seed size directly affects the yield of peanut. The key transcription factor AhSAP1, which regulates peanut seed size, was obtained by QTL mapping in the early stage, but the molecular mechanism of AHSAP1 regulating peanut seed size remains unclear. In this paper, a peanut embryo yeast two-hybrid cDNA library was constructed and AhSAP1 was used as bait to screen interacting proteins, and the spatial and temporal expression characteristics of candidate interacting protein genes were analyzed. It laid the foundation for further study on the molecular mechanism of AhSAP1 regulating peanut kernel development. 【Method】The peanut embryo Escherichia coli cDNA library was constructed and identified by SMART (switching mechanism at 5′ end of the RNA transcript) method. The decoy vector pGBKT7-AhSAP1 was constructed and its toxicity and self-activation to yeast cells were evaluated. The peanut embryo cDNA library plasmid and the bait plasmid pGBKT7-AhSAP1 were co-transformed into Y2H Gold yeast strains, and the positive colonies with good growth and blue color were screened and sequenced to obtain the candidate interacting protein gene sequences and predict the biological functions. The expression characteristics of candidate interacting protein genes in different tissues and organs of peanut, induced by exogenous plant hormones and induced by low calcium stress were determined by RNA-seq. According to the functional annotation results, the candidate factors that may be involved in plant seed development were selected, their CDS full-length sequences were amplified, and the target vector pGADT7 was constructed, and point-to-point yeast two-hybrid interaction was verified with pGBKT7-AhSAP1 co-transformed yeast cells. 【Result】The titer of peanut embryo Escherichia coli secondary cDNA library was 1.05×108 cfu/mL, the recombination rate was 98%, the average insert fragment size was more than 1 000 bp, and the library quality was high. The yeast two-hybrid decoy vector pGBKT7-AhSAP1 was successfully constructed, which had no self-activation in yeast cells and no toxicity to yeast. Sixty-eight yeast-positive clones were screened, and 60 candidate interacting proteins were obtained by sequence similarity comparison and removal of duplicating, which were mainly involved in energy production and metabolism, translation, ribosome structure and biological development, transcription, signal transduction mechanism, post-translational modification, inorganic ion transport and metabolism, chromatin structure, etc. Twelve candidate interacting proteins were selected for one-to-one yeast two-hybrid verification with AhSAP1, and 8 candidate interacting proteins were found to interact with AhSAP1. 【Conclusion】The mixed cDNA library of peanut embryo development at different stages was successfully constructed, and 60 candidate interacting proteins with AhSAP1 were screened. The candidate interacting proteins were mainly involved in energy production and metabolism, translation, ribosome structure and biogenesis, transcription, signal transduction mechanism, post-translational modification, inorganic ion transport and metabolism, chromatin structure, etc. These candidates interacting protein genes were expressed in root, stem, leaf, inflorescence, fruit needle, pericarp, seed coat and embryo, and the interaction between 8 candidate interacting proteins and AhSAP1 was confirmed.

Key words: peanuts, seed size, AhSAP1, yeast two-hybrid, interacting protein

Fig. 1

Construction and identification of a cDNA library for peanut embryo A: Agarose gel electrophoresis of total RNA of peanut embryo at the satge of 10DAP, 20DAP, 30DAP, 40DAP, 50DAP, 60DAP; B: Electrophoresis of normalized ds cDNA; C: PCR identification of inserts in the cDNA library, 1-23: Twenty-three clones of cDNA library picked randomly; M1: DL2000 DNA Marker, M2: DL15000 DNA Marker"

Fig. 2

Toxicity and autoactivation detection of pGBKT7-AhSAP1 bait protein A: Toxicity detection; B: Autoactivation detection"

Fig. 3

Screening of AhSAP1 interacting proteins by Y2H A: Yeast colonies co-transformed Y2H gold with pGBKT7-AhSAP1 and pGADT7-cDNA AD library growing on SD/-Ade/-His/-Leu/-Trp. +: Positive control (pGBKT7-p53+pGADT7-largeT); -: Negative control (pGBKT7-laminc+pGADT7-largeT); B: PCR detection of clones obtained by Y2H, 1-68: Yeast colonies in good growing condition. M1: DL2000 DNA Marker"

Table 1

Sequence analysis of partial interacting candidate proteins with AhSAP1 by yeast two-hybrid system"

克隆编号
ID
基因编号
Gene ID
功能描述
Function description
代谢途径
KEGG
G<BOLD>O</BOLD>注释
GO annotation
114 AH17G19530 原卟啉原氧化酶1,叶绿体Protoporphyrinogen oxidase 1, chloroplastic K00231:PPOX GO:0016491, GO:0055114
96 AH14G06790 胸苷激酶Thymidine kinase K00857:tdk GO:0004797, GO:0005524
103 AH05G16760 2-C-甲基-D-赤藓糖醇2,4-环二磷酸合酶,叶绿体型2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, chloroplastic K01770:ispF GO:0008685, GO:0016114
120 AH11G18540 ATP合成酶δ链,叶绿体型ATP synthase delta chain, chloroplastic K02113:ATPF1D GO:0015986, GO:0046933
107 AH09G34040 ATP合成酶亚基d,线粒体型ATP synthase subunit d, mitochondrial K02138:ATPeF0D GO:0000276, GO:0015078, GO:0015986
148,155 AH05G02620 SKP1同源蛋白1B SKP1-like protein 1B K03094:SKP1 GO:0006511
28 AH19G33100 延长因子1-α Elongation factor 1-alpha K03231:EEF1A GO:0003924, GO:0005525
87 AH02G05110 翻译起始因子eIF-2B亚基α
Translation initiation factor eIF-2B subunit alpha
K03239:EIF2B1 GO:0044237
54 AH17G22760 过氧化氢酶同工酶1 Catalase isozyme 1 K03781:katE GO:0004096, GO:0006979, GO:0020037, GO:0055114
30,31 AH13G07880 NADH脱氢酶[泛醌]1β亚复合体亚基9
NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9
K03965:NDUFB9 GO:0005747, GO:0006120
56,135 AH03G06830 NADH脱氢酶[泛醌]1β亚复合体亚基9
NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9
K03965:NDUFB9 GO:0005747, GO:0006120
321 AH13G07880 NADH脱氢酶[泛醌]1β亚复合体亚基9
NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9
K03965:NDUFB9 GO:0005747, GO:0006120
104 AH18G19590 核酮糖-1,5-二磷酸羧化酶/加氧酶大亚基结合蛋白β亚基,叶绿体型
RuBisCO large subunit-binding protein subunit beta, chloroplastic
K04077:groEL GO:0005524, GO:0005737, GO:0042026
123 AH14G35300 SNF1相关蛋白激酶催化亚基α KIN10
SNF1-related protein kinase catalytic subunit alpha KIN10
K07198:PRKAA GO:0004672, GO:0005524, GO:0006468
153 AH01G21220 核转录因子Y亚基A-3 Nuclear transcription factor Y subunit A-3 K08064:NFYA GO:0003700, GO:0006355
78 AH11G01650 类似AGAMOUS的MADS-box蛋白AGL5
Agamous-like MADS-box protein AGL5
K09264:K09264 GO:0003700, GO:0005634, GO:0006355, GO:0003677, GO:0046983, GO:0000977, GO:0045944
55 AH19G40840 F-box蛋白SKIP22 F-box protein SKIP22 K10293:FBXO7 GO:0005515
166 AH01G21740 含有WD-40重复序列的MSI4蛋白
WD-40 repeat-containing protein MSI4
K10752:RBBP4 GO:0005515
85 AH03G20510 Mec-8和Unc-52蛋白抑制子同源体2
Suppressor of mec-8 and unc-52 protein homolog 2
K13109:IK GO:0005634
13 AH18G00610 假组氨酸磷酸转移蛋白6
Pseudo histidine-containing phosphotransfer protein 6
K14490:AHP GO:0000160, GO:0004871
69 AH03G34280 核内前mRNA域包含蛋白1B的调控
Regulation of nuclear pre-mRNA domain-containing protein 1B
K15559:RTT103 NA
82 AH15G31710 葡糖醛酸激酶1 Glucuronokinase 1 K16190:GLCAK GO:0005524
65 AH03G22980 E3泛素-蛋白质连接酶RGLG2 E3 ubiquitin-protein ligase RGLG2 K16280:RGLG NA
24 AH13G04580 线粒体导入内膜转位酶亚基Tim9
Mitochondrial import inner membrane translocase subunit Tim9
K17777:TIM9 NA
102 AH03G33130 NAD(P)H依赖型6′-脱氧查尔酮合成酶
NAD(P)H-dependent 6′-deoxychalcone synthase
K22374:DMAS1 GO:0016491, GO:0055114
184 AH05G02930 叶绿体DNAJ-11伴侣蛋白 Chaperone protein dnaJ 11, chloroplastic NA NA
28 AH03G16330 含染色质结构域蛋白LHP1
Chromo domain-containing protein LHP1
NA GO:0005634
27 AH09G24080 多梳蛋白增强子同源物2 Enhancer of polycomb homolog 2 NA GO:0006357, GO:0032777, GO:0035267
131 AH16G06440 光依赖同源盒蛋白LUMINIDEPENDENS
Homeobox protein LUMINIDEPENDENS
NA GO:0003677
35 AH13G51890 MADS-box转录因子1
MADS-box transcription factor 1
NA GO:0003700, GO:0005634, GO:0006355, GO:0003677, GO:0046983, GO:0000977, GO:0045944
48 AH07G01050 OBERON类似蛋白(片段) OBERON-like protein (Fragment) NA NA
21 AH15G07140 含五肽重复序列的蛋白质At3g18110,叶绿体
Pentatricopeptide repeat-containing protein At3g18110, chloroplastic
NA NA
22 AH13G25080 WRKY转录因子11 Probable WRKY transcription factor 11 NA GO:0003700, GO:0006355, GO:0043565
93 AH08G23910 质体转录活性蛋白7
Protein PLASTID TRANSCRIPTIONALLY ACTIVE 7
NA NA
37 AH17G03830 SCAF11蛋白Protein SCAF11 NA NA
77 AH08G16900 转录因子bHLH115 Transcription factor bHLH115 NA GO:0046983
187 AH08G22230 转录因子bHLH130 Transcription factor bHLH130 NA GO:0046983
70 AH13G36200 转录因子TGA5 Transcription factor TGA5 NA GO:0006351, GO:0043565
75 AH07G05790 尿苷二磷酸糖基转移酶92A1 UDP-glycosyltransferase 92A1 NA GO:0008152, GO:0016758
108 AH03G40650 多聚半乳糖醛酸酶-1非催化亚基β
Polygalacturonase-1 non-catalytic subunit beta
NA NA
89 AH15G05570 VAN3结合蛋白VAN3-binding protein NA NA

Fig. 4

Functional annotation of candidate interacting proteins A: GO annotation; B: COG annotation"

Fig. 5

Analysis of gene expression of interacting candidate proteins A: Each tissue and organ; B: Different hormone treatments; C: Low and high calcium treatment"

Fig. 6

The interaction between AhSAP1 and interacting candidate proteins was verified by one-to-one verification assay of Y2H pGBKT7-p53+pGADT7-largeT: Positive control; pGBKT7-laminc+pGADT7-largeT: Negative control"

[1]
曹冲, 杨桔, 袁国军. 中国植物油料进口依赖及其进口安全研究. 中国油脂, 2023. doi: 10.19902/j.cnki.zgyz.1003-7969.230482.
CAO C, YANG J, YUAN G J. Study on import dependence and import safety of vegetable oil in China. China Oils and Fats, 2023. doi: 10.19902/j.cnki.zgyz.1003-7969.230482. (in Chinese)
[2]
张婧妤, 许本波, 郑家喜. 我国食用植物油消费变化分析及改革对策. 中国油脂, 2022, 47(3):5-10.
ZHANG J Y, XU B B, ZHENG J X. Analysis on consumption changes and reform countermeasures of edible vegetable oil in China. China Oils and Fats, 2022, 47(3): 5-10. (in Chinese)
[3]
万书波, 张佳蕾. 中国花生产业降本增效新途径探讨. 中国油料作物学报, 2019, 41(5): 657-662.

doi: 10.19802/j.issn.1007-9084.2019130
WAN S B, ZHANG J L. Discussion on new ways to reduce cost and increase efficiency of peanut industry in China. Chinese Journal of Oil Crop Sciences, 2019, 41(5): 657-662. (in Chinese)
[4]
MAO H L, SUN S Y, YAO J L, WANG C R, YU S B, XU C G, LI X H, ZHANG Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19579-19584.
[5]
LIU L C, TONG H N, XIAO Y H, CHE R H, XU F, HU B, LIANG C Z, CHU J F, LI J Y, CHU C C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(35): 11102-11107.
[6]
WANG S K, LI S, LIU Q, WU K, ZHANG J Q, WANG S S, WANG Y, CHEN X B, ZHANG Y, GAO C X, WANG F, HUANG H X, FU X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 2015, 47(8): 949-954.

doi: 10.1038/ng.3352 pmid: 26147620
[7]
ZHOU Y, MIAO J, GU H Y, PENG X R, LEBURU M, YUAN F H, GU H W, GAO Y, TAO Y J, ZHU J Y, GONG Z Y, YI C D, GU M H, YANG Z F, LIANG G H. Natural variations in SLG7 regulate grain shape in rice. Genetics, 2015, 201(4): 1591-1599.

doi: 10.1534/genetics.115.181115 pmid: 26434724
[8]
LI Y J, YU Y, LIU X Y, ZHANG X S, SU Y H. The Arabidopsis maternal effect embryo arrest 45 protein modulates maternal auxin biosynthesis and controls seed size by inducing integumenta. The Plant Cell, 2021, 33(6): 1907-1926.
[9]
YUAN H, XU Z Y, CHEN W L, DENG C Y, LIU Y, YUAN M, GAO P, SHI H, TU B, LI T, KANG L Z, MA B T, WANG Y P, WANG J, CHEN X W, LI S G, QIN P. OsBSK2, a putative brassinosteroid- signalling kinase, positively controls grain size in rice. Journal of Experimental Botany, 2022, 73(16): 5529-5542.
[10]
HU W L, WANG R, HAO X H, LI S Z, ZHAO X J, XIE Z J, WU S, HUANG L Q, TAN Y, TIAN L F, LI D P. OsLCD3 interacts with OsSAMS1 to regulate grain size via ethylene/polyamine homeostasis control. The Plant Journal: for Cell and Molecular Biology, 2024, 119(2): 705-719.
[11]
ZHAO B T, DAI A H, WEI H C, YANG S X, WANG B S, JIANG N, FENG X Z. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Molecular Biology, 2016, 90(1/2): 33-47.
[12]
GOETTEL W, ZHANG H Y, LI Y, QIAO Z Z, JIANG H, HOU D Y, SONG Q J, PANTALONE V R, SONG B H, YU D Y, AN Y Q C. POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean. Nature Communications, 2022, 13(1): 3051.

doi: 10.1038/s41467-022-30314-7 pmid: 35650185
[13]
WANG S D, LIU S L, WANG J, YOKOSHO K, ZHOU B, YU Y C, LIU Z, FROMMER W B, MA J F, CHEN L Q, GUAN Y F, SHOU H X, TIAN Z X. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. National Science Review, 2020, 7(11): 1776-1786.
[14]
DUAN Z B, ZHANG M, ZHANG Z F, LIANG S, FAN L, YANG X, YUAN Y Q, PAN Y, ZHOU G A, LIU S L, TIAN Z X. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnology Journal, 2022, 20(9): 1807-1818.

doi: 10.1111/pbi.13865 pmid: 35642379
[15]
LIU J, DENG M, GUO H, RAIHAN S, LUO J Y, XU Y C, DONG X F, YAN J B. Maize orthologs of rice GS5 and their trans-regulator are associated with kernel development. Journal of Integrative Plant Biology, 2015, 57(11): 943-953.
[16]
JI C, XU L N, LI Y J, FU Y X, LI S, WANG Q, ZENG X, ZHANG Z Q, ZHANG Z Y, WANG W Q, WANG J C, WU Y R. The O2-ZmGRAS11 transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling in maize. Molecular Plant, 2022, 15(3): 468-487.
[17]
薛盛祥. 玉米MATE基因参与调控植物叶片衰老、下胚轴伸长与种子大小[D]. 杨凌: 西北农林科技大学, 2017.
XUE S X. MATE gene in maize is involved in regulating leaf senescence, hypocotyl elongation and seed size[D]. Yangling: Northwest A & F University, 2017. (in Chinese)
[18]
LI N, LIU Z P, WANG Z B, RU L C, GONZALEZ N, BAEKELANDT A, PAUWELS L, GOOSSENS A, XU R, ZHU Z G, INZÉ D, LI Y H. STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana. PLoS Genetics, 2018, 14(2): e1007218.
[19]
WANG Z B, LI N, JIANG S, GONZALEZ N, HUANG X H, WANG Y C, INZÉ D, LI Y H. SCFSAP controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nature Communications, 2016, 7: 11192.
[20]
黄莉. 棉花GhSAP基因的克隆与功能验证[D]. 阿拉尔: 塔里木大学, 2022.
HUANG L. Cloning and functional verification of GhSAP gene in cotton[D]. Xinjiang: Tarim University, 2022. (in Chinese)
[21]
YIN P C, MA Q X, WANG H, FENG D, WANG X B, PEI Y X, WEN J Q, TADEGE M, NIU L F, LIN H. Small leaf and bushy1 controls organ size and lateral branching by modulating the stability of big seeds1 in Medicago truncatula. The New Phytologist, 2020, 226(5): 1399-1412.
[22]
YANG L M, LIU H Q, ZHAO J Y, PAN Y P, CHENG S Y, LIETZOW C D, WEN C L, ZHANG X L, WENG Y Q. LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. The Plant Journal, 2018, 95(5): 834-847.
[23]
夏杨, 周佳炜, 苏初连, 叶子, 蒲金基, 陈华蕊, 张贺. 菠萝AcSAP转录因子对非生物胁迫和生物胁迫的应答响应. 分子植物育种, 2019, 17(3): 739-745.
XIA Y, ZHOU J W, SU C L, YE Z, PU J J, CHEN H R, ZHANG H. Response of SAP transcription factor to abiotic and biotic stress in Ananas comosus. Molecular Plant Breeding, 2019, 17(3): 739-745. (in Chinese)
[24]
丁兰, 顾宝, 李培楹, 舒欣, 张剑侠. 葡萄SAP家族的鉴定与表达分析. 中国农业科学, 2019, 52(14): 2500-2514. doi: 10.3864/j.issn.0578-1752.2019.14.009.
DING L, GU B, LI P Y, SHU X, ZHANG J X. Genome-wide identification and expression analysis of SAP family in grape. Scientia Agricultura Sinica, 2019, 52(14): 2500-2514. doi: 10.3864/j.issn.0578-1752.2019.14.009. (in Chinese)
[25]
KANNEGANTI V, GUPTA A K. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Molecular Biology, 2008, 66(5): 445-462.

doi: 10.1007/s11103-007-9284-2 pmid: 18205020
[26]
WANG Y H, ZHANG L R, ZHANG L L, XING T, PENG J Z, SUN S L, CHEN G, WANG X J. A novel stress-associated protein SbSAP14 from Sorghum bicolor confers tolerance to salt stress in transgenic rice. Molecular Breeding, 2013, 32(2): 437-449.
[27]
GHNEIM-HERRERA T, SELVARAJ M G, MEYNARD D, FABRE D, PEÑA A, BEN ROMDHANE W, BEN SAAD R, OGAWA S, REBOLLEDO M C, ISHITANI M, TOHME J, AL-DOSS A, GUIDERDONI E, HASSAIRI A. Expression of the Aeluropus littoralis AlSAP gene enhances rice yield under field drought at the reproductive stage. Frontiers in Plant Science, 2017, 8: 994.
[28]
SHARMA G, GIRI J, TYAGI A K. Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water-deficit stress in Arabidopsis. Plant Science, 2015, 237: 80-92.
[29]
范延艮, 王域, 刘富浩, 赵秀秀, 向勤锃, 张丽霞. 茶树CsHIPP26.1互作蛋白的筛选与验证. 中国农业科学, 2022, 55(8): 1630-1641. doi: 10.3864/j.issn.0578-1752.2022.08.013.
FAN Y G, WANG Y, LIU F H, ZHAO X X, XIANG Q Z, ZHANG L X. Screening and verification of CsHIPP26.1 interaction protein in tea plant. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641. doi: 10.3864/j.issn.0578-1752.2022.08.013. (in Chinese)
[30]
宾羽, 张琦, 王春庆, 赵晓春, 宋震, 周常勇. 利用酵母双杂交系统筛选与柑橘黄化脉明病毒CP互作的寄主因子. 中国农业科学, 2023, 56(10): 1881-1892. doi: 10.3864/j.issn.0578-1752.2023.10.006.
BIN Y, ZHANG Q, WANG C Q, ZHAO X C, SONG Z, ZHOU C Y. Screening of the host factors interacting with CP of Citrus yellow vein clearing virus by yeast two-hybrid system. Scientia Agricultura Sinica, 2023, 56(10): 1881-1892. doi: 10.3864/j.issn.0578-1752.2023.10.006. (in Chinese)
[31]
李雨泽, 朱嘉伟, 林蔚, 蓝茉莹, 夏黎明, 张艺粒, 罗聪, 黄桂香, 何新华. 香水柠檬RHF2A的克隆与互作蛋白的筛选. 中国农业科学, 2022, 55(24): 4912-4926. doi: 10.3864/j.issn.0578-1752.2022.24.010.
LI Y Z, ZHU J W, LIN W, LAN M Y, XIA L M, ZHANG Y L, LUO C, HUANG G X, HE X H. Cloning and interaction protein screening of RHF2A gene from Xiangshui lemon. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926. doi: 10.3864/j.issn.0578-1752.2022.24.010. (in Chinese)
[32]
张洁, 姜长岳, 王跃进. 中国野生毛葡萄转录因子VqWRKY6与VqbZIP1互作调控抗白粉病功能分析. 中国农业科学, 2022, 55(23): 4626-4639. doi: 10.3864/j.issn.0578-1752.2022.23.005.
ZHANG J, JIANG C Y, WANG Y J. Functional analysis of the interaction between transcription factors VqWRKY6 and VqbZIP1 in regulating the resistance to powdery mildew in Chinese wild Vitis quinquangularis. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639. doi: 10.3864/j.issn.0578-1752.2022.23.005. (in Chinese)
[33]
陈玉婷, 刘露, 楚盼盼, 魏嘉贤, 钱慧娜, 陈华, 蔡铁城, 庄伟建, 张冲. 受青枯菌诱导的花生根酵母双杂交文库构建和AhRRS5互作蛋白的筛选. 作物学报, 2021, 47(11): 2134-2146.

doi: 10.3724/SP.J.1006.2021.04254
CHEN Y T, LIU L, CHU P P, WEI J X, QIAN H N, CHEN H, CAI T C, ZHUANG W J, ZHANG C. Construction of yeast two-hybrid cDNA library induced by Ralstonia solanacearum and interaction protein screening for AhRRS5 in peanut. Acta Agronomica Sinica, 2021, 47(11): 2134-2146. (in Chinese)
[34]
ZHUANG W J, CHEN H, YANG M, WANG J P, PANDEY M K, ZHANG C, CHANG W C, ZHANG L S, ZHANG X T, TANG R H, GARG V, WANG X J, TANG H B, CHOW C N, WANG J P, DENG Y, WANG D P, KHAN A W, YANG Q, CAI T C, BAJAJ P, WU K C, GUO B Z, ZHANG X Y, LI J J, LIANG F, HU J, LIAO B S, LIU S Y, CHITIKINENI A, YAN H S, ZHENG Y X, SHAN S H, LIU Q Z, XIE D Y, WANG Z Y, ALI KHAN S, ALI N, ZHAO C Z, LI X G, LUO Z L, ZHANG S B, ZHUANG R R, PENG Z, WANG S Y, MAMADOU G, ZHUANG Y H, ZHAO Z F, YU W C, XIONG F Q, QUAN W P, YUAN M, LI Y, ZOU H S, XIA H, ZHA L, FAN J P, YU J G, XIE W P, YUAN J Q, CHEN K, ZHAO S S, CHU W T, CHEN Y T, SUN P C, MENG F B, ZHUO T, ZHAO Y H, LI C J, HE G H, ZHAO Y L, WANG C C, KAVIKISHOR P B, PAN R L, PATERSON A H, WANG X Y, MING R, VARSHNEY R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 2019, 51(5): 865-876.

doi: 10.1038/s41588-019-0402-2 pmid: 31043757
[35]
CHEN H, ZHANG C, CAI T C, DENG Y, ZHOU S B, ZHENG Y X, MA S W, TANG R H, VARSHNEY R K, ZHUANG W J. Identification of low Ca(2+) stress-induced embryo apoptosis response genes in Arachis hypogaea by SSH-associated library lift (SSHaLL). Plant Biotechnology Journal, 2016, 14(2): 682-698.
[36]
SHANG S P, LIU G L, ZHANG S, LIANG X F, ZHANG R, SUN G Y. A fungal CFEM-containing effector targets NPR1 regulator NIMIN2 to suppress plant immunity. Plant Biotechnology Journal, 2024, 22(1): 82-97.
[37]
BYZOVA M V, FRANKEN J, AARTS M G, DE ALMEIDA- ENGLER J, ENGLER G, MARIANI C, VAN LOOKEREN CAMPAGNE M M, ANGENENT G C. Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development. Genes & Development, 1999, 13(8): 1002-1014.
[38]
WILLEMS A R, SCHWAB M, TYERS M. A hitchhiker’s guide to the cullin ubiquitin ligases: SCF and its kin. Biochimica et Biophysica Acta, 2004, 1695(1/2/3): 133-170.
[39]
ARQUINT C, CUBIZOLLES F, MORAND A, SCHMIDT A, NIGG E A. The SKP1-Cullin-F-box E3 ligase βTrCP and CDK2 cooperate to control STIL abundance and centriole number. Open Biology, 2018, 8(2): 170253.
[40]
宋瑜龙. 小麦雄性不育相关基因SKP1的克隆与表达分析[D]. 杨凌: 西北农林科技大学, 2011.
SONG Y L. Cloning and expression analysis of wheat male sterility related gene SKP1[D]. Yangling: Northwest A&F University, 2011. (in Chinese)
[41]
吴渊源, 韦鹏飞, 郭崇炎, 范锡麟, 熊佳旺, 王志龙, 陈秋红. 小粒野生稻OmSKP1基因的克隆与功能初探. 分子植物育种, 2019, 17(23): 7641-7648.
WU Y Y, WEI P F, GUO C Y, FAN X L, XIONG J W, WANG Z L, CHEN Q H. Cloning and functional analysis of OmSKP1 gene from Oryza minuta. Molecular Plant Breeding, 2019, 17(23): 7641-7648. (in Chinese)
[42]
CUI Z B, TONG A Z, HUO Y Q, YAN Z Q, YANG W Q, YANG X L, WANG X X. SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis. BMC Biology, 2017, 15(1): 80.
[43]
LI Y, YANG J, SHANG X D, LV W Z, XIA C C, WANG C, FENG J L, CAO Y, HE H, LI L G, MA L G. SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis. The New Phytologist, 2019, 224(1): 321-335.
[44]
LI R Q, WEI Z F, LI Y, SHANG X D, CAO Y, DUAN L S, MA L G. Ski-interacting protein interacts with shoot meristemless to regulate shoot apical meristem formation. Plant Physiology, 2022, 189(4): 2193-2209.
[45]
JIANG S, MENG B L, ZHANG Y L, LI N, ZHOU L X, ZHANG X, XU R, GUO S Y, SONG C P, LI Y H. An SNW/SKI-INTERACTING PROTEIN influences endoreduplication and cell growth in Arabidopsis. Plant Physiology, 2022, 190(4): 2217-2228.
[46]
VARSHNEY V, HAZRA A, RAO V, GHOSH S, KAMBLE N U, ACHARY R K, GAUTAM S, MAJEE M. The Arabidopsis F-box protein skp1-interacting partner 31 modulates seed maturation and seed vigor by targeting jasmonate zim domain proteins independently of jasmonic acid-isoleucine. The Plant Cell, 2023, 35(10): 3712-3738.
[47]
ZHANG H J, YIN L F, SONG F M, JIANG M. SKIP silencing decreased disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in tomato. Frontiers in Plant Science, 2020, 11: 593267.
[48]
HOU X, XIE K B, YAO J L, QI Z Y, XIONG L Z. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15): 6410-6415.
[49]
段红英, 丁笑生, 卢龙斗. WD-repeat蛋白及其在植物中的作用. 安徽农业科学, 2007, 35(4): 1007-1008.
DUAN H Y, DING X S, LU L D. WD-repeat protein and its function in plants. Journal of Anhui Agricultural Sciences, 2007, 35(4): 1007-1008. (in Chinese)
[50]
YAMAGISHI K, NAGATA N, YEE K M, BRAYBROOK S A, PELLETIER J, FUJIOKA S, YOSHIDA S, FISCHER R L, GOLDBERG R B, HARADA J J. TANMEI/EMB2757 encodes a WD repeat protein required for embryo development in Arabidopsis. Plant Physiology, 2005, 139(1): 163-173.
[51]
游晓慧, 李威, 陶启长, 孙小芬, 唐克轩. WD40重复蛋白家族基因At1g65030调控拟南芥种子的重量与体积. 植物生理学报, 2011, 47(7): 715-725.
YOU X H, LI W, TAO Q C, SUN X F, TANG K X. At1g65030, a WD40-repeat protein gene, regulates seed mass and size in Arabidopsis. Plant Physiology Journal, 2011, 47(7): 715-725. (in Chinese)
[52]
PAZHOUHANDEH M, MOLINIER J, BERR A, GENSCHIK P. MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(8): 3430-3435.
[53]
ZHENG Y S, LU Y Q, MENG Y Y, ZHANG R Z, ZHANG H, SUN J M, WANG M M, LI L H, LI R Y. Identification of interacting proteins of the TaFVE protein involved in spike development in bread wheat. Proteomics, 2017, 17(9): 1600331.
[54]
REN L F, LIU Y, GUO L D, WANG H B, MA L, ZENG M, SHAO X, YANG C L, TANG Y X, WANG L, LIU C, LI M Y. Loss of Smu1 function de-represses DNA replication and over-activates ATR-dependent replication checkpoint. Biochemical and Biophysical Research Communications, 2013, 436(2): 192-198.

doi: 10.1016/j.bbrc.2013.05.072 pmid: 23727573
[1] HE Yong, FAN XiaoZhu, CHEN XinYue, DUAN ShuJing, HU TingTing, XIE RuXue, WANG YuQing, CHEN Jing. Screening and Verification of Pepper Host Factors Interacting with the 126 kDa Protein of Pepper Mild Mottle Virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2024, 57(15): 2986-2996.
[2] BIN Yu, ZHANG Qi, WANG ChunQing, ZHAO XiaoChun, SONG Zhen, ZHOU ChangYong. Screening of the Host Factors Interacting with CP of Citrus Yellow Vein Clearing Virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2023, 56(10): 1881-1892.
[3] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[4] SUN YuChen,JIA RuiPu,FAN KuoHai,SUN Na,SUN YaoGui,SUN PanPan,LI HongQuan,YIN Wei. Detection of Interaction Between Porcine Type I Complement Receptor and C3b Active Fragment in Vitro [J]. Scientia Agricultura Sinica, 2021, 54(19): 4243-4254.
[5] DOU WanFu,QI JingJing,HU AnHua,CHEN ShanChun,PENG AiHong,XU LanZhen,LEI TianGang,YAO LiXiao,HE YongRui,LI Qiang. Screening of Interacting Proteins of Anti-Canker Transcription Factor CsBZIP40 in Citrus by GST Pull-Down Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2019, 52(13): 2243-2255.
[6] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[7] XU HaiFeng,YANG GuanXian,ZHANG Jing,ZOU Qi,WANG YiCheng,QU ChangZhi,JIANG ShengHui,WANG Nan,CHEN XueSen. Molecular Mechanism of Apple MdWRKY18 and MdWRKY40 Participating in Salt Stress [J]. Scientia Agricultura Sinica, 2018, 51(23): 4514-4521.
[8] WANG YuKui,BAI XiaoJing,LIAN XiaoPing,ZHANG HeCui,LUO ShaoLan,PU Min,ZUO TongHong,LIU QianYing,ZHU LiQuan. Cloning and Expression Analysis of BoSPx in Brassica oleracea [J]. Scientia Agricultura Sinica, 2018, 51(22): 4328-4338.
[9] ZHAO QingQing, LI JunPing, LIANG LiBin, HUANG ShanYu, ZHOU ChenChen, ZHAO YuHui, WANG Qian, ZHOU Yuan, JIANG Li, CHEN HuaLan, LI ChengJun. Interaction between Influenza Virus PA Protein and Host Protein PCBP1 [J]. Scientia Agricultura Sinica, 2018, 51(17): 3389-3396.
[10] LI Shuai, JIANG XiZi, LIANG WeiFang, CHEN SiHan, ZHANG XiangXiang, ZUO DengPan, HU YaHui, JIANG Tong. Screening of the Host Factors of Woodland Strawberry Interacting with P6 of Strawberry vein banding virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2017, 50(18): 3519-3528.
[11] RU JingNa, YU TaiFei, CHEN Jun, CHEN Ming, ZHOU YongBin, MA YouZhi, XU ZhaoShi, MIN DongHong. Response of Wheat Zinc-Finger Transcription Factor TaDi19A to Cold and Its Screening of Interacting Proteins [J]. Scientia Agricultura Sinica, 2017, 50(13): 2411-2422.
[12] ZHAO JuanYing, LIU JiaMing, FENG ZhiJuan, CHEN Ming, ZHOU YongBin, CHEN Jun, XU ZhaoShi, GUO ChangHong. The Response to Heat and Screening of the Interacting Proteins of Zinc Finger Protein GmDi19-5 in Soybean [J]. Scientia Agricultura Sinica, 2017, 50(12): 2389-2398.
[13] WANG Yu-qiu, LI Guo-bang, YANG Juan, LI Liang, ZHAO Zhi-xue, FAN Jing, WANG Wen-ming. Construction and Application of a Yeast Two-Hybrid cDNA Library from Rice Spikelets Infected with Ustilaginoidea virens [J]. Scientia Agricultura Sinica, 2016, 49(5): 865-873.
[14] ZHANG He-cui, LIU Jing, LIAN Xiao-ping, ZENG Jing, YANG Kun, ZHANG Xue-jie, YANG Dan, SHI Song-mei, GAO Qi-guo, ZHU Li-quan. Expression and Interaction Between ROH1 and EXO70A1 in Reproductive Development [J]. Scientia Agricultura Sinica, 2016, 49(4): 775-783.
[15] WANG Jia-feng, LIU Hao, WANG Hui, CHEN Zhi-qiang . Screening of Putative Proteins That are Interacted with NBS-LRR Protein Pik-h by the Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2016, 49(3): 482-490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!