Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (19): 3758-3769.doi: 10.3864/j.issn.0578-1752.2024.19.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Coordinated Effects of Maize Ear Type and Planting Density on Interspecific Competition in Maize-Peanut Intercropping System

LIU Han1(), DING Di1, WANG JiangTao1, ZHENG Bin1, WANG XiaoXiao1, ZHU ChenXu1, LIU Juan2, LIU Ling1, FU GuoZhan1, JIAO NianYuan1()   

  1. 1 College of Agriculture, Henan University of Science and Technology/Henan Dryland Agricultural Engineering Technology Research Center, Luoyang 471023, Henan
    2 Institute of Peanut, Henan Academy of Agricultural Sciences, Zhengzhou 450002
  • Received:2024-03-11 Accepted:2024-08-26 Online:2024-10-01 Published:2024-10-09
  • Contact: JIAO NianYuan

Abstract:

【Objective】The interspecific competition during the late coexisting period of maize (Zea mays L.) intercropping with peanut (Arachis hypogaea L.) (maize||peanut) is the main problem of inhibition to further the intercropping advantage. The aim of this study was to investigate coordinated effects and mechanism of maize ear type and planting density on interspecific competition in maize||peanut, and to determine the reasonably variety and planting density of intercropped maize, so as to provide a theoretical basis and technical support for achieving high yield of maize||peanut production. 【Method】The experiment was conducted on the farm of Henan University of Science and Technology from 2022 to 2023, utilizing a field randomized block design. The selected maize varieties were ‘Zhengdan 958’ for medium-ear type and ‘MC4520’ for large-ear type, with two planting densities of 5.00×104 plants/hm2 (D1) and 4.55×104 plants/hm2 (D2) for intercropping. The effects of maize ear type and planting density on interspecific competition and intercropping advantage of maize||peanut were studied. 【Result】The results of the 2-year experiment showed that compared with D1 density medium-ear type ‘Zhengdan 958’ intercropped with peanut (MD1ZD||P), D2 density medium-ear type ‘Zhengdan 958’ intercropped with peanut (MD2ZD||P) and D2 density large-ear type ‘MC4520’ intercropped with peanut (MD2MC||P) could enhance the canopy daily light intensity of peanut during the late coexisting period, and increase the leaf area index and maximum growth rate of peanut. MD2MC||P increased dry matter accumulation in maize and peanut populations, especially in maize grains and peanut pods by 26.41%-30.11% and 8.06%-8.25%, respectively. MD2ZD||P and MD2MC||P could improve the interspecific competitiveness of peanut, and the interspecific competitiveness index Ap, CRp and Kp were increased by 7.55%-19.10%, 4.23%-9.12% and 9.05%-9.60%, respectively, during MD2MC||P later coexistence. MD2ZD||P decreased maize yield by 8.09%-8.19%, decreased the yield of intercropping system and intercropping advantage by 2.23%-2.58% and 7.55%-13.29%, respectively. MD2MC||P could increase the yield of maize and peanut, and the yield of intercropping system and intercropping advantage were significantly increased by 6.28%-7.45% and 11.85%-27.18%, respectively (P<0.05). 【Conclusion】In this experimental area, compared with the medium-ear type ‘Zhengdan 958’ with a density of 5.00×104 plants/hm2 intercropping with peanut, the large-ear type ‘MC4520’ with a density of 4.55×104 plants/hm2 intercropping with peanut could exert the individual production potential of maize and ensure that the yield of maize was not reduced. Simultaneously, it was more conducive to the coordination of interspecific light competition during the latter coexisting period of maize||peanut, which improved the interspecific competitiveness of peanut, and increased the yield of peanut. Therefore, this planting pattern was conductive to increase the yield of intercropping system and intercropping advantages.

Key words: maize-peanut intercropping, maize ear type, planting density, interspecific competition, intercropping advantages

Fig. 1

Planting diagram of maize intercropping with peanut in the field"

Fig. 2

Effects of maize ear type and planting density on canopy light intensity of maize||peanut during maize pollination in 2023"

Fig. 3

Effects of maize ear type and planting density on leaf area index of intercropping maize"

Fig. 4

Effects of maize ear type and planting density on leaf area index of intercropping peanut Sole-cropping peanut"

Fig. 5

Effects of maize ear type and planting density on dry matter accumulation of intercropping maize population"

Fig. 6

Effects of maize ear type and planting density on dry matter accumulation of intercropping peanut population"

Table 1

Effects of maize ear type and planting density on dry matter distribution of intercropping maize"

年份
Year
处理
Treatment
干物质 Dry matter (g/plant) 干物质分配 Dry matter distribution (%)

Stem

Leaf
苞叶
Bract
穗轴
Cob
籽粒
Grain

Stem

Leaf
苞叶
Bract
穗轴
Cob
籽粒
Grain
2022 SMZD 49.05c 23.81c 12.43b 13.34c 87.82e 26.31a 12.77a 6.67a 7.14b 47.10c
SMMC 54.09b 26.87a 13.15b 19.34b 102.09d 25.09ab 12.46a 6.10a 8.98a 47.37c
IMD1ZD 55.34ab 25.05bc 15.04a 16.92b 114.53c 24.39b 11.05b 6.62a 7.46b 50.48b
IMD1MC 57.95ab 26.49ab 15.55a 19.52b 126.90b 23.53bc 10.75bc 6.31a 7.92ab 51.50ab
IMD2ZD 55.31ab 25.72ab 16.27a 18.51b 119.52bc 23.50bc 10.93b 6.93a 7.86ab 50.78b
IMD2MC 59.36a 27.22a 16.77a 22.41a 144.78a 21.94c 10.07c 6.20a 8.28ab 53.51a
2023 SMZD 46.39d 25.00b 13.83b 15.65c 111.35c 21.89a 11.78a 6.52ab 7.38b 52.43b
SMMC 53.85bc 29.07a 14.24b 21.80b 135.74b 21.13ab 11.43ab 5.59b 8.56a 53.28ab
IMD1ZD 48.76cd 28.61a 15.19b 15.94c 133.56b 20.14ab 11.83a 6.28ab 6.58b 55.18a
IMD1MC 56.94ab 30.82a 17.49a 25.86a 163.23a 19.34b 10.47ab 5.94ab 8.78a 55.46a
IMD2ZD 53.85bc 28.71a 17.20a 17.72c 139.45b 20.96ab 11.17ab 6.70a 6.90b 54.28ab
IMD2MC 60.10a 31.49a 18.61a 26.79a 173.78a 19.35b 10.14b 6.01ab 8.64a 55.87a

Table 2

Effects of maize ear type and planting density on dry matter distribution of intercropping peanut"

年份
Year
处理
Treatment
干物质 Dry matter (g/plant) 干物质分配 Dry matter distribution (%)
Stem Leaf 荚果 Pod Stem Leaf 荚果 Pod
2022 SP 23.79a 16.50a 26.74a 35.49b 24.60b 39.91a
IPD1ZD 16.83c 12.64c 16.70d 36.45ab 27.38a 36.17bc
IPD1MC 16.33c 11.06d 15.02e 38.51a 26.08a 35.41c
IPD2ZD 19.52b 14.17b 20.19b 36.22ab 26.28a 37.50b
IPD2MC 17.79bc 13.37bc 18.05c 36.16ab 27.16a 36.68bc
2023 SP 33.21a 20.07a 28.40a 40.65a 24.58b 34.76a
IPD1ZD 26.01c 16.22bc 19.58cd 42.08a 26.23ab 31.69b
IPD1MC 23.61d 15.24c 17.52d 41.88a 27.05a 31.07b
IPD2ZD 29.04b 17.53b 23.46b 41.48a 25.03b 33.49ab
IPD2MC 27.30bc 16.86b 21.20c 41.78a 25.80ab 32.42ab

Table 3

Effects of maize ear type and planting density on interspecific competitiveness index of maize||peanut"

年份
Year
共处天数
Days of coexistence (d)
处理
Treatment
侵占力A 竞争比率CR 相对拥挤系数K
Am Ap CRm CRp Km Kp
2022 43 MD1ZD||P 0.07ab -0.07ab 1.07ab 0.93ab 1.31a 1.08ab
MD1MC||P 0.09a -0.09b 1.09a 0.92b 1.35a 1.05b
MD2ZD||P 0.04b -0.04a 1.04b 0.96a 1.29a 1.14a
MD2MC||P 0.06ab -0.06ab 1.05b 0.95a 1.34a 1.14a
55 MD1ZD||P 0.18ab -0.18bc 1.18ab 0.85bc 1.50a 0.99bc
MD1MC||P 0.23a -0.23c 1.24a 0.81c 1.51a 0.90c
MD2ZD||P 0.09c -0.09a 1.08c 0.93a 1.38b 1.13a
MD2MC||P 0.14bc -0.14ab 1.13bc 0.88ab 1.49a 1.07ab
72 MD1ZD||P 0.52a -0.52b 1.56a 0.64b 3.36a 0.88bc
MD1MC||P 0.54a -0.54b 1.60a 0.62b 3.42a 0.83c
MD2ZD||P 0.37b -0.37a 1.36b 0.73a 2.60b 1.06a
MD2MC||P 0.42b -0.42a 1.43b 0.70a 2.79b 0.97ab
2023 34 MD1ZD||P 0.06a -0.06a 1.05a 0.95a 1.82a 1.40a
MD1MC||P 0.07a -0.07a 1.06a 0.94a 1.94a 1.38a
MD2ZD||P 0.03a -0.03a 1.03a 0.97a 1.73a 1.49a
MD2MC||P 0.04a -0.04a 1.03a 0.97a 1.79a 1.45a
56 MD1ZD||P 0.27b -0.27b 1.26b 0.80b 2.15b 1.08ab
MD1MC||P 0.36a -0.36c 1.37a 0.73c 2.39a 0.95b
MD2ZD||P 0.19c -0.19a 1.18b 0.85a 1.99b 1.23a
MD2MC||P 0.22bc -0.22ab 1.21b 0.83ab 2.10b 1.16a
74 MD1ZD||P 0.55b -0.55c 1.54b 0.65b 5.63b 1.04bc
MD1MC||P 0.63a -0.63d 1.65a 0.61c 8.78a 0.95c
MD2ZD||P 0.42d -0.42a 1.39d 0.72a 3.81c 1.21a
MD2MC||P 0.51c -0.51b 1.47c 0.68b 5.44b 1.14ab

Table 4

Effects of maize ear type and planting density on intercropping advantages of maize||peanut"

年份
Year
处理
Treatment
单作产量
Sole-cropping yield (kg·hm-2)
间作产量
Intercropping yield (kg·hm-2)
间作优势
Intercropping
advantage
(kg·hm-2)
PLERM PLERP LER
玉米
Maize
花生
Peanut
玉米
Maize
花生
Peanut
间作体系
Intercropping system
2022 MD1ZD||P 7431a 5403a 5358b 2300bc 7658b 1129b 0.72 0.43 1.15
MD1MC||P 7764a 5403a 5658ab 2137c 7795ab 1036b 0.73 0.40 1.12
MD2ZD||P 7431a 5403a 4925c 2535a 7460b 979b 0.66 0.47 1.13
MD2MC||P 7764a 5403a 5750a 2389ab 8139a 1435a 0.74 0.44 1.18
2023 MD1ZD||P 8561b 6759a 7188b 3028ab 10216b 2456b 0.84 0.45 1.29
MD1MC||P 9429a 6759a 8112a 2806b 10918a 2625a 0.86 0.42 1.28
MD2ZD||P 8561b 6759a 6599c 3389a 9988b 2271c 0.77 0.50 1.27
MD2MC||P 9429a 6759a 7810a 3167ab 10977a 2747a 0.83 0.47 1.30
[1]
FENG C, SUN Z X, ZHANG L Z, FENG L S, ZHENG J M, BAI W, GU C F, WANG Q, XU Z, VAN DER WERF W. Maize/peanut intercropping increases land productivity: A meta-analysis. Field Crops Research, 2021, 270: 108208.
[2]
林松明, 孟维伟, 南镇武, 徐杰, 李林, 张正, 李新国, 郭峰, 万书波. 玉米间作花生冠层微环境变化及其与荚果产量的相关性研究. 中国生态农业学报(中英文), 2020, 28(1): 31-41.
LIN S M, MENG W W, NAN Z W, XU J, LI L, ZHANG Z, LI X G, GUO F, WAN S B. Canopy microenvironment change of peanut intercropped with maize and its correlation with pod yield. Chinese Journal of Eco-Agriculture, 2020, 28(1): 31-41. (in Chinese)
[3]
ZHOU T, WANG L, YANG H, GAO Y, LIU W G, YANG W Y. Ameliorated light conditions increase the P uptake capability of soybean in a relay-strip intercropping system by altering root morphology and physiology in the areas with low solar radiation. Science of the Total Environment, 2019, 688: 1069-1080.
[4]
YAO X D, ZHOU H L, ZHU Q, LI C H, ZHANG H J, WU J J, XIE F T. Photosynthetic response of soybean leaf to wide light-fluctuation in maize-soybean intercropping system. Frontiers in Plant Science, 2017, 8: 1695.

doi: 10.3389/fpls.2017.01695 pmid: 29033967
[5]
ZHANG F S, LI L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 2003, 248(1): 305-312.
[6]
焦念元, 宁堂原, 赵春, 王芸, 史忠强, 侯连涛, 付国占, 江晓东, 李增嘉. 玉米花生间作复合体系光合特性的研究. 作物学报, 2006, 32(6): 917-923.
JIAO N Y, NING T Y, ZHAO C, WANG Y, SHI Z Q, HOU L T, FU G Z, JIANG X D, LI Z J. Characters of photosynthesis in intercropping system of maize and peanut. Acta Agronomica Sinica, 2006, 32(6): 917-923. (in Chinese)
[7]
王飞, 刘领, 武岩岩, 李雪, 孙增光, 尹飞, 焦念元, 付国占. 玉米花生间作改善花生铁营养提高其光合特性的机理. 植物营养与肥料学报, 2020, 26(5): 901-913.
WANG F, LIU L, WU Y Y, LI X, SUN Z G, YIN F, JIAO N Y, FU G Z. Mechanism of maize intercropping peanut improving iron nutrition to increase photosynthetic performance of peanut. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 901-913. (in Chinese)
[8]
JIAO N Y, WANG F, MA C, ZHANG F S, JENSEN E S. Interspecific interactions of iron and nitrogen use in peanut (Arachis hypogaea L.)-maize (Zea mays L.) intercropping on a calcareous soil. European Journal of Agronomy, 2021, 128: 126303.
[9]
JIAO N Y, WANG J T, MA C, ZHANG C C, GUO D Y, ZHANG F S, JENSEN E S. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping. The Crop Journal, 2021, 9(6): 1460-1469.
[10]
CHENG B, RAZA A, WANG L, XU M, LU J J, GAO Y, QIN S S, ZHANG Y, AHMAD I, ZHOU T, WEN B X, YANG W Y, LIU W G. Effects of multiple planting densities on lignin metabolism and lodging resistance of the strip intercropped soybean stem. Agronomy, 2020, 10(8): 1177.
[11]
范虹, 殷文, 柴强. 间作优势的光合生理机制及其冠层微环境特征. 中国生态农业学报(中英文), 2022, 30(11): 1750-1761.
FAN H, YIN W, CHAI Q. Research progress on photo-physiological mechanisms and characteristics of canopy microenvironment in the formation of intercropping advantages. Chinese Journal of Eco- Agriculture, 2022, 30(11): 1750-1761. (in Chinese)
[12]
BROOKER R W, BENNETT A E, CONG W F, DANIELL T J, GEORGE T S, HALLETT P D, HAWES C, IANNETTA P P M, JONES H G, KARLEY A J, LI L, MCKENZIE B M, PAKEMAN R J, PATERSON E, SCHÖB C, SHEN J B, SQUIRE G, WATSON C A, ZHANG C C, ZHANG F S, ZHANG J L, WHITE P J. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206(1): 107-117.

pmid: 25866856
[13]
YANG G Z, LUO X J, NIE Y C, ZHANG X L. Effects of plant density on yield and canopy micro environment in hybrid cotton. Journal of Integrative Agriculture, 2014, 13(10): 2154-2163.
[14]
赵建华, 孙建好, 陈亮之, 李伟绮. 玉米行距对大豆/玉米间作作物生长及种间竞争力的影响. 大豆科学, 2019, 38(2): 229-235.
ZHAO J H, SUN J H, CHEN L Z, LI W Q. Growth and interspecific competition of crops as affected by maize row spacing in soybean/maize intercropping system. Soybean Science, 2019, 38(2): 229-235. (in Chinese)
[15]
刘涵, 昝志曼, 汪江涛, 孙增光, 陈俊南, 姜文洋, 尹飞, 刘领, 焦念元, 付国占. 大穗型玉米对玉米||花生种间竞争与间作优势的影响. 中国生态农业学报(中英文), 2023, 31(9): 1368-1378.
LIU H, ZAN Z M, WANG J T, SUN Z G, CHEN J N, JIANG W Y, YIN F, LIU L, JIAO N Y, FU G Z. Effects of large-spike type maize on interspecific competition and intercropping advantage in maize- peanut intercropping system. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1368-1378. (in Chinese)
[16]
焦念元, 陈明灿, 付国占, 宁堂原, 王黎明, 李增嘉. 玉米花生间作复合群体的光合物质积累与叶面积指数变化. 作物杂志, 2007(1): 34-35.
JIAO N Y, CHEN M C, FU G Z, NING T Y, WANG L M, LI Z J. Photosynthetic matter accumulation and leaf area index change in compound population of maize intercropping peanut. Crops, 2007(1): 34-35. (in Chinese)
[17]
DHIMA K V, LITHOURGIDIS A S, VASILAKOGLOU I B, DORDAS C A. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research, 2007, 100(2/3): 249-256.
[18]
MEAD R, WILLEY R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Experimental Agriculture, 1980, 16(3): 217-228.
[19]
RUIZ R A, BERTERO H D. Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd.) cultivars. European Journal of Agronomy, 2008, 29(2/3): 144-152.
[20]
LUO C S, GUO Z P, XIAO J X, DONG K, DONG Y. Effects of applied ratio of nitrogen on the light environment in the canopy and growth, development and yield of wheat when intercropped. Frontiers in Plant Science, 2021, 12: 719850.
[21]
程彬, 刘卫国, 王莉, 许梅, 覃思思, 卢俊吉, 高阳, 李淑贤, Ali RAZA, 张熠, Irshan AHMAD, 敬树忠, 刘然金, 杨文钰. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响. 中国农业科学, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021.19.005.
CHENG B, LIU W G, WANG L, XU M, QIN S S, LU J J, GAO Y, LI S X, RAZA A, ZHANG Y, AHMAD I, JING S Z, LIU R J, YANG W Y. Effects of planting density on photosynthetic characteristics, yield and stem lodging resistance of soybean in maize-soybean strip intercropping system. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021.19.005. (in Chinese)
[22]
SU B Y, SONG Y X, SONG C, CUI L, YONG T W, YANG W Y. Growth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest China. Photosynthetica, 2014, 52(3): 332-340.
[23]
SIJA P, SUGITO Y, SURYANTO A, HARIYONO D. Radiation use efficiency of maize (Zea mays L.) on different varieties and intercropping with mungbean in the rainy season. AGRIVITA: Journal of Agricultural Science, 2020, 42(3): 462-471.
[24]
FENG L Y, ALI RAZA M, LI Z C, CHEN Y K, KHALID M H B, DU J B, LIU W G, WU X L, SONG C, YU L, ZHANG Z W, YUAN S, YANG W Y, YANG F. The influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of soybean. Frontiers in Plant Science, 2019, 9: 1952.
[25]
林松明, 孟维伟, 南镇武, 徐杰, 张正, 李林, 郭峰, 李新国, 万书波. 施钙对间作遮荫条件下花生生育后期光合特性、糖代谢及产量的影响. 中国油料作物学报, 2020, 42(2): 277-284.
LIN S M, MENG W W, NAN Z W, XU J, ZHANG Z, LI L, GUO F, LI X G, WAN S B. Effects of calcium application on photosynthetic characteristics, sugar metabolism in late growth stage and yield of peanut under inter-cropping and shading. Chinese Journal of Oil Crop Sciences, 2020, 42(2): 277-284. (in Chinese)
[26]
崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014, 47(8): 1489-1501. doi: 10.3864/j.issn.0578-1752.2014.08.005.
CUI L, SU B Y, YANG F, YANG W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Scientia Agricultura Sinica, 2014, 47(8): 1489-1501. doi: 10.3864/j.issn.0578-1752.2014.08.005. (in Chinese)
[27]
ZHOU T, WANG L, SUN X, WANG X C, PU T, YANG H, RENGEL Z, LIU W G, YANG W Y. Improved post-silking light interception increases yield and P-use efficiency of maize in maize/soybean relay strip intercropping. Field Crops Research, 2021, 262: 108054.
[28]
LIU X, RAHMAN T, SONG C, YANG F, SU B Y, CUI L, BU W Z, YANG W Y. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Research, 2018, 224: 91-101.
[29]
李美, 孙智明, 李朦朦, 于海秋, 蒋春姬, 赵新华, 赵淑丽, 王晓光, 曹敏建. 不同比例玉米花生间作对花生生长及产量品质的影响. 核农学报, 2013, 27(3): 391-397.

doi: 10.11869/hnxb.2013.03.0391
LI M, SUN Z M, LI M M, YU H Q, JIANG C J, ZHAO X H, ZHAO S L, WANG X G, CAO M J. Effect of maize-peanut intercropping on peanut growth, yield and quality. Journal of Nuclear Agricultural Sciences, 2013, 27(3): 391-397. (in Chinese)

doi: 10.11869/hnxb.2013.03.0391
[30]
王贝贝, 廖敦平, 范元芳, 王仲林, 张佳伟, 雍太文, 王小春, 刘卫国, 杨文钰, 杨峰. 玉米大豆套作窄行距对作物竞争效应及物质分配的影响. 中国油料作物学报, 2020, 42(5): 734-742.
WANG B B, LIAO D P, FAN Y F, WANG Z L, ZHANG J W, YONG T W, WANG X C, LIU W G, YANG W Y, YANG F. Effects of narrow row spacing on crop competition and substance distribution under maize-soybean relay strip intercropping. Chinese Journal of Oil Crop Sciences, 2020, 42(5): 734-742. (in Chinese)

doi: 10.19802/j.issn.1007-9084.2019203
[31]
武晶, 陈梦, 汪直华, 杨继芝, 李燕丽, 吴雨珊, 杨文钰. 带状间作不同带间距对玉米光能利用的影响. 中国农业科学, 2023, 56(23): 4648-4659. doi: 10.3864/j.issn.0578-1752.2023.23.007.
WU J, CHEN M, WANG Z H, YANG J Z, LI Y L, WU Y S, YANG W Y. Effect of different strip distances on light energy utilization in strip intercropping maize. Scientia Agricultura Sinica, 2023, 56(23): 4648-4659. doi: 10.3864/j.issn.0578-1752.2023.23.007. (in Chinese)
[32]
YANG F, LIAO D P, WU X L, GAO R C, FAN Y F, ALI RAZA M, WANG X C, YONG T W, LIU W G, LIU J, DU J B, SHU K, YANG W Y. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017, 203: 16-23.
[1] TIAN LongBing, SHEN ZhaoYin, ZHAO XiaoTian, ZHANG Fang, HOU WenFeng, GAO Qiang, WANG Yin. Interactive Effects of Planting Density and Nitrogen Application Rate on Plant Grain Yield and Water Use Efficiency of Two Maize Cultivars [J]. Scientia Agricultura Sinica, 2024, 57(21): 4221-4237.
[2] LEI XinHui, WU YiXin, WANG JiaLe, TAO JinCai, WAN ChenXi, WANG Meng, GAO XiaoLi, FENG BaiLi, GAO JinFeng. Effects of Planting Density and Fertilization Level on Photosynthesis, Yield and Lodging Resistance of Common Buckwheat [J]. Scientia Agricultura Sinica, 2024, 57(2): 264-277.
[3] QIN Feng, WANG XiaoFei, WU Zhen, HU YiBo, WANG XiaoQin, ZHANG JiaWei, CAI Tie. Effects of Planting Density and Row Spacing Configuration on Sugar Accumulation and Lodging Performance of Wheat Stem Under Rainfall Harvesting Planting Mode [J]. Scientia Agricultura Sinica, 2024, 57(1): 65-79.
[4] JIANG WenYang, CHEN JunNan, ZAN ZhiMan, WANG JiangTao, ZHENG Bin, LIU Ling, LIU Juan, JIAO NianYuan. Regulation of Single-Seed Sowing and Phosphorus Application on Interspecific Competition and Growth of Intercropping Peanut [J]. Scientia Agricultura Sinica, 2023, 56(23): 4660-4670.
[5] JIAO ZhiHui, CHEN GuiPing, FAN Hong, ZHANG JinDan, YIN Wen, LI HanTing, WANG QiMing, HU FaLong, CHAI Qiang. Water Use Characteristics of Increased Plant Density and Reduced Nitrogen Application Maize in Oasis Irrigated Area [J]. Scientia Agricultura Sinica, 2023, 56(16): 3088-3099.
[6] GENG WenJie, LI Bin, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[7] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[8] YUAN Yuan,WANG Bo,ZHOU GuangSheng,LIU Fang,HUANG JunSheng,KUAI Jie. Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626.
[9] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[10] ZHANG ZhanJun,YANG HongWei,FAN ZhiLong,YU AiZhong,HU FaLong,YIN Wen,FAN Hong,GUO Yao,CHAI Qiang,ZHAO Cai. Water-Carrying Potential of No-Tillage with Plastic Film Mulching for 2-Year Coupled with Maize High-Density Planting in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2021, 54(16): 3406-3416.
[11] HOU JiaMin,LUO Ning,WANG Su,MENG QingFeng,WANG Pu. Effects of Increasing Planting Density on Grain Yield, Leaf Area Index and Photosynthetic Rate of Maize in China [J]. Scientia Agricultura Sinica, 2021, 54(12): 2538-2546.
[12] ZHOU YiFan,YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan. Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas [J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-2388.
[13] DING XiangPeng,BAI Jing,ZHANG ChunYu,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin. Effects of Line-Spacing Expansion and Row-Spacing Shrinkage on Population Structure and Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2020, 53(19): 3915-3927.
[14] XU TianJun,LÜ TianFang,CHEN ChuanYong,LIU YueE,ZHANG YiTian,LIU XiuZhi,ZHAO JiuRan,WANG RongHuan. Effects of Plant Density and Plant Growth Regulator on Stalk Traits of Maize and Their Regulation [J]. Scientia Agricultura Sinica, 2019, 52(4): 629-638.
[15] WEI TingBang, CHAI Qiang, WANG WeiMin, WANG JunQiang. Effects of Coupling of Irrigation and Nitrogen Application as well as Planting Density on Photosynthesis and Dry Matter Accumulation Characteristics of Maize in Oasis Irrigated Areas [J]. Scientia Agricultura Sinica, 2019, 52(3): 428-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!