Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (7): 1335-1349.doi: 10.3864/j.issn.0578-1752.2024.07.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut

YANG QiRui(), LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun*()   

  1. College of Resource and Environment, Henan Agricultural University, Zhengzhou 450046
  • Received:2023-05-26 Accepted:2023-06-21 Online:2024-04-01 Published:2024-04-09
  • Contact: WANG YiLun

Abstract:

【Objective】The effects of different potassium levels on the yield and quality of summer peanuts at the maturity stage, the dynamics of potassium accumulation at the growth stage, physiological characteristics of light and temperature, and root morphology were explored to provide a scientific basis for rational application of potassium in peanut. 【Method】A field experiment was conducted in Wen County, Henan Province, from 2021 to 2022. The peanut cultivar of Yuhua 22 was used as test material, and 5 potassium fertilizer treatments was set, including 0 (K0), 45 (K45), 90 (K90), 135 (K135) and 180 (K180) kg·hm-2. The yield and quality indexes of summer peanut pods were determined at the maturity stage. Leaf SPAD value, canopy photosynthetically active radiation and canopy temperature were measured at the seedling stage, flowering-pegging stage, pod-setting stage and pod-filling stage, respectively. The potassium accumulation in plants and root morphology were analyzed too. 【Result】With the increase of potassium application rate, the pod yield of peanut in 2 years could be fitted by “linear + platforms trends” and “quadratic equation with one variable”, respectively, and the appropriate potassium application rate was 164 and 135 kg·hm-2, respectively. Potassium application increased yield by 17% on average. The content of crude protein, oil and amino acid in grain at maturity showed a trend of “first increasing and then stabilizing” with the increase of potassium application. Compared with no potassium application, the average increase of crude protein, oil and amino acid contents in grain under potassium application was 7.85%, 3.98% and 13.97%, respectively. The Logistic equation was applied to the nonlinear regression fitting of potassium accumulation in summer peanuts. The results showed that potassium application mainly increased the maximum accumulation rate (Vmax) and average accumulation rate (Vmean), delayed the occurrence of peak absorption (Tmax), and prolonged the rapid accumulation period (Δt) and active accumulation period (Taas) to promote the sustainable and rapid growth of summer peanuts. In addition, the maximum, minimum and mean canopy temperatures decreased significantly with increasing potassium application at all fertility stages. Compared with K0, 135 kg hm-2 treatment significantly increased the leaf SPAD value and canopy photosynthetically active radiation (APAR) and component (FPAR) of peanut and had a positive effect on root morphology. The utilization efficiency of potassium fertilizer decreased gradually with the increase of potassium application. 【Conclusion】Reasonable application of potassium could significantly improve the yield and quality of summer peanut, promote the accumulation and utilization of potassium, and significantly improve the physiological properties of light and temperature during the growth period. The recommended potassium application amount of summer peanuts under this test condition was 135-160 kg·hm-2.

Key words: summer peanut, potassium application rate, yield, quality, canopy temperature

Table 1

Soil fertility of the experimental sites"

地点
Site
年份
Year
pH 有机质
Organic matter (g·kg-1)
碱解氮
Available N (mg·kg-1)
有效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
武德镇 Wude town 2021 7.45 18.79 98.2 15.6 130.5
赵堡镇 Zhaobao town 2022 7.24 16.80 74.1 14.2 132.6

Fig. 1

Yield of summer peanut pods in mature stage under different amounts of potassium fertilizer Different letters on the bar chart indicate significant differences between treatments at the 0.05 level"

Table 2

Effect of potassium fertilizer dosage on main quality of summer peanut kernel"

年份 Year 施钾量 K2O rate (kg·hm-2) 粗蛋白含量 Protein content (%) 含油量 Oil content (%) 氨基酸含量 Amino content (%)
2021



0 20.57±2.28a 43.35±0.90b 16.96±1.71b
45 20.91±2.15a 45.91±1.21a 18.67±2.03b
90 22.28±0.59a 46.18±0.26a 19.98±0.60a
135 22.64±1.15a 46.26±0.17a 20.48±1.10a
180 22.24±1.85a 45.93±1.29a 20.20±1.50a
2022



0 18.81±0.09b 53.51±0.12b 16.26±0.78b
45 18.98±0.65ab 53.66±0.05ab 16.69±0.65ab
90 18.92±0.31ab 53.68±0.25ab 16.77±0.93ab
135 19.53±0.78ab 54.18±0.47a 17.43±0.58ab
180 19.77±0.24a 53.61±0.29b 17.74±0.37a

Table 3

Fatty acid components content (%) of summer peanut under different potassium fertilizer dosage"

年份
Year
施钾量
K2O rate
(kg·hm-2)
油酸含量
Oleic content (%)
亚油酸含量
Linoleic content (%)
油酸/
亚油酸含量
O/L
棕榈酸含量
Palmitic content (%)
山嵛酸含量
Behenic content (%)
硬脂酸含量
Stearic content (%)
花生酸含量
Arachidonic content (%)
木蜡酸含量
Lignoceric content (%)
2021



0 33.71±0.82a 43.46±0.77bc 0.78±0.02ab 12.62±0.42b 2.44±0.08ab 2.41±0.24a 1.07±0.02bc 1.26±0.03a
45 33.51±1.49a 44.81±1.97c 0.75±0.08a 12.42±0.45b 2.28±0.14b 2.33±0.40a 1.02±0.06c 1.20±0.04b
90 33.41±0.81a 45.48±1.34bc 0.74±0.04a 12.71±0.25b 2.42±0.07ab 2.71±0.16a 1.06±0.02bc 1.22±0.01ab
135 33.43±0.64a 45.92±2.25ab 0.73±0.05a 12.78±0.48ab 2.47±0.08a 2.73±0.12a 1.13±0.07ab 1.20±0.01b
180 32.87±0.93a 46.43±0.96a 0.71±0.02b 13.43±0.07a 2.52±0.05a 2.75±0.04a 1.17±0.06a 1.25±0.04ab
2022



0 32.87±0.90a 45.23±0.68c 0.73±0.03a 12.09±0.24a 2.26±0.12a 2.08±0.05b 1.09±0.03b 1.22±0.01ab
45 32.39±0.68a 45.33±0.23bc 0.71±0.02ab 12.28±0.28a 2.37±0.16a 2.28±0.17ab 1.12±0.03b 1.24±0.01a
90 32.62±0.17a 45.40±0.46bc 0.72±0.01ab 12.19±0.21a 2.26±0.14a 2.12±0.11b 1.09±0.02b 1.22±0.01ab
135 32.14±0.44a 46.23±0.45ab 0.70±0.02ab 12.36±0.32a 2.38±0.12a 2.34±0.14ab 1.17±0.03a 1.21±0.01b
180 32.07±0.75a 46.53±0.47a 0.69±0.02b 12.55±0.26a 2.45±0.06a 2.49±0.20a 1.13±0.01ab 1.24±0.02a

Table 4

Amino acid content of summer peanut under different potassium fertilizer dosage"

年份
Year
组分
Component
施钾量 K2O rate (kg·hm-2)
0 45 90 135 180
2021








苯丙氨酸Phenylalanine 1.11±0.05a 1.06±0.10a 1.12±0.03a 1.15±0.05a 1.14±0.07a
蛋氨酸Methionine 0.23±0.02a 0.20±0.02b 0.22±0.01ab 0.24±0.01a 0.23±0.01a
赖氨酸Lysine 0.95±0.03a 0.93±0.05a 0.95±0.04a 0.96±0.02a 0.98±0.04a
亮氨酸Leucine 1.30±0.04a 1.19±0.03b 1.34±0.04a 1.32±0.07a 1.30±0.05a
异亮氨酸Isoleucine 0.59±0.03a 0.62±0.01a 0.63±0.02a 0.63±0.03a 0.60±0.03a
组氨酸Histidine 0.70±0.03b 0.70±0.02ab 0.69±0.01b 0.73±0.02ab 0.73±0.01a
苏氨酸Threonine 0.75±0.06a 0.75±0.07a 0.78±0.04a 0.77±0.05a 0.74±0.07a
缬氨酸Valine 0.77±0.03a 0.77±0.06a 0.81±0.02a 0.80±0.03a 0.79±0.03a
脯氨酸Proline 0.93±0.04b 0.96±0.03ab 0.92±0.02b 1.00±0.04a 0.97±0.05ab
精氨酸Arginine 2.25±0.07a 2.28±0.07a 2.37±0.13a 2.39±0.05a 2.36±0.05a
2022
苯丙氨酸Phenylalanine 0.91±0.07a 0.95±0.07a 0.90±0.06a 0.96±0.04a 0.99±0.02a
蛋氨酸Methionine 0.16±0.01ab 0.17±0.01ab 0.16±0.01b 0.16±0.01ab 0.18±0.01a
赖氨酸Lysine 0.79±0.03a 0.79±0.04a 0.77±0.02a 0.79±0.02a 0.81±0.03a
亮氨酸Leucine 1.13±0.04b 1.16±0.01ab 1.11±0.03b 1.20±0.04a 1.22±0.03a
异亮氨酸Isoleucine 0.53±0.02bc 0.55±0.02ab 0.52±0.01c 0.56±0.02a 0.57±0.01a
组氨酸Histidine 0.61±0.01a 0.62±0.01a 0.61±0.01a 0.62±0.01a 0.63±0.01a
苏氨酸Threonine 0.68±0.01a 0.69±0.02a 0.68±0.01a 0.68±0.03a 0.68±0.03a
缬氨酸Valine 0.71±0.02a 0.73±0.03a 0.70±0.04a 0.74±0.03a 0.75±0.01a
脯氨酸Proline 0.85±0.02a 0.85±0.03a 0.87±0.02a 0.87±0.05a 0.88±0.02a
精氨酸Arginine 1.90±0.03b 1.94±0.07ab 1.90±0.03b 1.96±0.03ab 2.00±0.04a

Fig. 2

Correlation analysis between peanut pod yield and grain quality component content under different potassium fertilizer dosage"

Fig. 3

Dynamic changes of potassium accumulation in peanuts K0, K45, K90, K135 and K180 indicate the treatment with K2O rate at 0, 45, 90, 135 and 180 kg·hm-2, respectively. The same as below. The scatters represent the measured values and the curves represent the fitted values"

Table 5

Dynamic model and parameters of potassium accumulation in summer peanut under different potassium fertilizer dosage"

施钾量
K2O rate
(kg·hm-2)
回归方程
Regression equation
Ym
(kg·hm-2)
Vmax
(kg·hm-2·d-1)
Vmean
(kg·hm-2·d-1)
t1
(d)
t2
(d)
Δt
(d)
Taas
(d)
Tmax
(d)
R2
0 y=52.0281/(1+286.919e-0.115364x) 52.03 1.50 1.00 37.64 60.47 22.83 52.01 49.06 0.97
45 y=65.147/(1+174.269e-0.103568x) 65.15 1.69 1.12 37.11 62.54 25.43 57.93 49.83 0.99
90 y=80.5914/(1+107.1254e-0.09606x) 80.59 1.94 1.29 34.95 62.37 27.42 62.46 48.66 0.99
135 y=93.2295/(1+112.6066e-0.098113x) 93.23 2.29 1.52 34.72 61.57 26.85 61.15 48.15 0.99
180 y=83.1302/(1+135.2466e-0.103454x) 83.13 2.15 1.43 34.70 60.16 25.46 58.00 47.43 0.99

Fig. 4

Effect of different potassium application dosage on summer peanut canopy temperature Warm colors (red and yellow) represent high temperatures, while cool colors (blue) represent low temperatures. The numerical unit is ℃"

Table 6

Characteristics of summer peanut canopy temperature under different potassium fertilizer dosages"

施钾量
K2O rate
(kg·hm-2)
苗期 SS

花针期 FP

结荚期 PS 饱果期 PF
最高温
Tmax
最低温
Tmin
平均温
Tmean
最高温
Tmax
最低温
Tmin
平均温
Tmean
最高温
Tmax
最低温
Tmin
平均温
Tmean
最高温
Tmax
最低温
Tmin
平均温
Tmean
0 32.95a 27.13a 29.15a 32.88a 28.27a 30.07a 35.15a 28.82a 31.82a 28.72a 20.92a 23.77a
45 32.25ab 26.8ab 28.83a 32.48ab 27.97b 29.63ab 34.12ab 28.22b 31.10a 28.17ab 20.38ab 23.33ab
90 31.20bc 26.53bc 28.38b 32.17ab 27.72bc 29.43bc 32.52c 27.43c 30.17b 27.02b 20.05b 22.88bc
135 30.43c 25.92d 27.88c 31.75b 27.23d 29.07c 31.50c 26.45d 28.90c 26.92b 19.30c 22.32c
180 31.08bc 26.33c 28.07bc 32.17ab 27.52c 29.27bc 32.83bc 27.43c 30.08b 27.82ab 20.18b 23.25ab

Fig. 5

SPAD value and photosynthetic active radiation characteristics of summer peanuts under different potassium fertilizer dosages Different letters on the bar chart indicate significant differences between treatments at the 0.05 level"

Fig. 6

Root morphological characteristics of summer peanut under different potassium fertilizer dosages"

Table 7

Potassium fertilizer utilization efficiency of summer peanut under different potassium fertilizer dosage"

年份 Year 处理 Treatment 钾肥利用率 KUE (%) 农学效率 KAE (kg·kg-1) 偏生产力 KPFE (kg·kg-1)
2021 K45 42.9 5.0 71.7
K90 32.9 4.0 37.3
K135 29.9 4.7 26.9
K180 26.9 3.4 20.0
2022 K45 43.8 8.2 98.5
K90 40.6 6.7 53.3
K135 38.3 7.5 37.3
K180 22.0 6.1 31.7
[1]
中华人民共和国国家统计局. 中国统计年鉴. 2002(总第21期). 北京: 中国统计出版社, 2002.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. 2002 (No.21). Beijing: China Statistics Press, 2002. (in Chinese)
[2]
廖伯寿, 殷艳, 马霓. 中国油料作物产业发展回顾与展望. 农学学报, 2018, 8(1): 107-112.
LIAO B S, YIN Y, MA N. Review and future prospects of oil crops industry development in China. Journal of Agriculture, 2018, 8(1): 107-112. (in Chinese)
[3]
金华丽, 李琳琳. 近红外光谱技术测定花生蛋白质含量研究. 河南工业大学学报(自然科学版), 2014, 35(1): 26-29.
JIN H L, LI L L. Determination of peanut protein content by near-infrared spectroscopy. Journal of Henan University of Technology (Natural Science Edition), 2014, 35(1): 26-29. (in Chinese)
[4]
房元瑾, 孙子淇, 齐飞艳, 刘华, 黄冰艳, 董文召, 张新友. 花生分子标记辅助育种研究进展与展望[J/OL]. 中国油料作物学报. https://doi.org/10.19802/j.issn.1007-9084.2022333.
FANG Y J, SUN Z Q, QI F Y, LIU H, HUANG B Y, DONG W Z, ZHANG X Y. Advances of marker-assisted selection in peanut breeding[J/OL]. Chinese Journal of Oil Crop Sciences. https://doi.org/10.19802/j.issn.1007-9084.2022333. (in Chinese)
[5]
TRÄNKNER M, TAVAKOL E, JÁKLI B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 2018, 163(3): 414-431.

doi: 10.1111/ppl.2018.163.issue-3
[6]
WANG M, ZHENG Q S, SHEN Q R, GUO S W. The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 2013, 14(4): 7370-7390.

doi: 10.3390/ijms14047370 pmid: 23549270
[7]
WANG Y, WU W H. Regulation of potassium transport and signaling in plants. Current Opinion in Plant Biology, 2017, 39: 123-128.

doi: S1369-5266(17)30031-6 pmid: 28710919
[8]
万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003.
WAN S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific & Technical Publishers, 2003. (in Chinese)
[9]
黄海云. 低钾胁迫对花生生长发育和养分吸收利用的影响[D]. 沈阳: 沈阳农业大学, 2020.
HUANG H Y. Effects of low potassium stress on peanut growth and nutrient uptake utilization in peanut[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese)
[10]
刘娜, 谢畅, 黄海云, 姚瑞, 徐爽, 宋海玲, 于海秋, 赵新华, 王婧, 蒋春姬, 王晓光. 施钾量对花生根系和根瘤特性、养分吸收及产量的影响. 中国农业科学, 2023, 56(4): 635-648. doi: 10.3864/j.issn.0578-1752.2023.04.004.
LIU N, XIE C, HUANG H Y, YAO R, XU S, SONG H L, YU H Q, ZHAO X H, WANG J, JIANG C J, WANG X G. Effects of potassium application on root and nodule characteristics, nutrient uptake and yield of peanut. Scientia Agricultura Sinica, 2023, 56(4): 635-648. doi: 10.3864/j.issn.0578-1752.2023.04.004. (in Chinese)
[11]
刘娜. 钾素对花生生育特性及产量品质的影响[D]. 沈阳: 沈阳农业大学, 2020.
LIU N. The effect of potassium on growth characteristics, yield and quality of peanut[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese)
[12]
JADAV J K, UMRANIA V, RATHOD K, SODHA K H, GONDALIYA R P, ANUJ S A, GOLAKIYA B. Effects of induced potassium deficiency in groundnut and its estimation by flame photometry. International Journal of Chemical Studies, 2017, 5: 1757-1763.
[13]
武庆慧, 汪洋, 赵亚南, 李瑞珂, 司玉坤, 黄玉芳, 叶优良, 张福锁. 氮磷钾配比对潮土区高产夏播花生产量、养分吸收和经济效益的影响. 中国土壤与肥料, 2019(2): 98-104.
WU Q H, WANG Y, ZHAO Y N, LI R K, SI Y K, HUANG Y F, YE Y L, ZHANG F S. Effects of NPK ratio on yield, nutrient absorption and economic benefit of high-yielding summer peanut in a fluvo-aquic soil. Soil and Fertilizer Sciences in China, 2019(2): 98-104. (in Chinese)
[14]
康玉洁, 王月福, 赵长星, 王铭伦, 徐亮, 程曦. 不同施钾水平对花生衰老特性及产量的影响. 中国农学通报, 2010, 26(4): 117-122.
KANG Y J, WANG Y F, ZHAO C X, WANG M L, XU L, CHENG X. Effects of different potassium application on senescence and yield in peanut. Chinese Agricultural Science Bulletin, 2010, 26(4): 117-122. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2009-2587
[15]
周录英, 李向东, 王丽丽. 氮、磷、钾、钙肥不同用量对花生光合性能及产量品质的影响. 花生学报, 2006, 35(2): 11-16.
ZHOU L Y, LI X D, WANG L L. Effects of different application rates of N, P, K, Ca fertilizer on photosynthesis properties, yield and kernel quality of peanut. Journal of Peanut Science, 2006, 35(2): 11-16. (in Chinese)
[16]
高飞, 翟志席, 王铭伦. 施钾量对夏直播花生光合特性及产量的影响. 花生学报, 2011, 40(1): 13-17.
GAO F, ZHAI Z X, WANG M L. Effects of potassium application rate on photosynthetic characteristics and yield of summer-planted peanut. Journal of Peanut Science, 2011, 40(1): 13-17. (in Chinese)
[17]
潘有良, 费光春, 张钟华, 杨恩林, 王小洪, 刘浩, 肖波, 吴鹏, 肖玉. 贵州省桐梓县耕地表层土壤钾元素分布特征及生态环境评价. 中国地质, 2022: 1-19. (2022-08-22). https://kns.cnki.net/kcms/detail/11.1167.p.20220822.1544.024.html.
PAN Y L, FEI G C, ZHANG Z H, YANG E L, WANG X H, LIU H, XIAO B, WU P, XIAO Y. Distribution characteristics and ecological environment assessment of potassium in topsoil of cultivated land in Tongzi County, Guizhou Province. Geology in China, 2022: 1-19. (2022-08-22). https://kns.cnki.net/kcms/detail/11.1167.p.20220822.1544.024.html. in Chinese)
[18]
LOBELL D B, ASNER G P, ORTIZ-MONASTERIO J I, BENNING T L. Remote sensing of regional crop production in the Yaqui Valley, Mexico: Estimates and uncertainties. Agriculture, Ecosystems & Environment, 2003, 94(2): 205-220.

doi: 10.1016/S0167-8809(02)00021-X
[19]
陈雪洋, 蒙继华, 吴炳方, 朱建军, 杜鑫, 张飞飞, 纽立明. 基于HJ-1 CCD的夏玉米FPAR遥感监测模型. 农业工程学报, 2010, 26(S1): 241-245.
CHEN X Y, MENG J H, WU B F, ZHU J J, DU X, ZHANG F F, NIU L M. Monitoring corn FPAR based on HJ-1 CCD. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(S1): 241-245. (in Chinese)
[20]
王丹丹, 李岚涛, 韩本高, 张倩, 盛开, 王宜伦. 养分专家系统推荐施肥对夏玉米生理特性及产量的影响. 农业资源与环境学报, 2022, 39(1): 107-117.
WANG D D, LI L T, HAN B G, ZHANG Q, SHENG K, WANG Y L. Effects of nutrient expert recommended fertilization on the physiological characteristics and yield of summer maize. Journal of Agricultural Resources and Environment, 2022, 39(1): 107-117. (in Chinese)
[21]
刘一佳, 任学敏, 朱雅, 张乃群. 施氮水平对花生冠层温度和产量性状的影响及其相互关系. 江苏农业科学, 2015, 43(12): 101-104.
LIU Y J, REN X M, ZHU Y, ZHANG N Q. Effects of nitrogen application level on canopy temperature and yield characteristics of peanut and their relationship. Jiangsu Agricultural Sciences, 2015, 43(12): 101-104. (in Chinese)
[22]
于春阳, 王长发, 邵晓蕾. 冷型花生光合生理特性研究. 西北农业学报, 2010, 19(5): 94-99.
YU C Y, WANG C F, SHAO X L. Study on the photosynthetic characteristics of cold type peanuts. Acta Agriculturae Boreali- Occidentalis Sinica, 2010, 19(5): 94-99. (in Chinese)
[23]
GUO J X, TIAN G L, ZHOU Y, WANG M, LING N, SHEN Q R, GUO S W. Evaluation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging. Field Crops Research, 2016, 196: 463-472.

doi: 10.1016/j.fcr.2016.08.008
[24]
任学敏, 朱雅, 王小立, 王长发. 花生产量性状与冠层温度的关系. 西北农林科技大学学报(自然科学版), 2014, 42(12): 39-45.
REN X M, ZHU Y, WANG X L, WANG C F. Relationships between yield characteristics and canopy temperature of peanut. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(12): 39-45. (in Chinese)
[25]
王瑾, 李玉荣, 张嘉楠, 程增书, 陈四龙, 宋亚辉, 张朋娟. 中国花生主栽品种抗旱性鉴定及其遗传多样性分析. 中国农业科技导报, 2015, 17(1): 57-64.
WANG J, LI Y R, ZHANG J N, CHENG Z S, CHEN S L, SONG Y H, ZHANG P J. Identification of drought resistance in peanut(Arachis hypogaea L.) main cultivar in China and analysis of its genetic diversity. Journal of Agricultural Science and Technology, 2015, 17(1): 57-64. (in Chinese)
[26]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[27]
王启柏, 张高英, 万勇善, 李向东. 花生根系在土壤中垂直分布特性的研究. 中国油料, 1995, 17(4): 18-22.
WANG Q B, ZHANG G Y, WAN Y S, LI X D. Studies on distribution characteristics of root system in peanut along soil profile. Chinese Journal of Oil Crop Sciences, 1995, 17(4): 18-22. (in Chinese)
[28]
景鹏成, 王树林, 陈乙实, 鲁为华, 马春晖. 不同剂量连作障碍调控肥对土壤物理性质和制种玉米经济效益的影响. 新疆农业科学, 2017, 54(2): 234-242.
JING P C, WANG S L, CHEN Y S, LU W H, MA C H. Effects of different doses of control fertilizer for continuous cropping obstacle on soil physical properties and economic benefits of corn seed. Xinjiang Agricultural Sciences, 2017, 54(2): 234-242. (in Chinese)
[29]
YIN S Y, LI P C, XU Y, XUE L, HAO D R, LIU J, YANG T T, YANG Z F, XU C W. Logistic model-based genetic analysis for kernel filling in a maize RIL population. Euphytica, 2018, 214(5): 86.
[30]
LI L, DU Y M, TANG Y, XIN X Z, ZHANG H L, WEN J G, LIU Q H. A new algorithm of the FPAR product in the Heihe River Basin considering the contributions of direct and diffuse solar radiation separately. Remote Sensing, 2015, 7(5): 6414-6432.

doi: 10.3390/rs70506414
[31]
李银水, 鲁剑巍, 廖星, 邹娟, 李小坤, 余常兵, 马常宝, 高祥照. 钾肥用量对油菜产量及钾素利用效率的影响. 中国油料作物学报, 2011, 33(2): 152-156.
LI Y S, LU J W, LIAO X, ZOU J, LI X K, YU C B, MA C B, GAO X Z. Effect of potassium application rate on yield and fertilizer- potassium utilization efficiency in rapeseed. Chinese Journal of Oil Crop Sciences, 2011, 33(2): 152-156. (in Chinese)
[32]
CLARKSON D T, HANSON J B. The mineral nutrition of higher plants. Annual Review of Plant Physiology, 1980, 31: 239-298.

doi: 10.1146/arplant.1980.31.issue-1
[33]
PETTIGREW W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia Plantarum, 2008, 133(4): 670-681.

doi: 10.1111/ppl.2008.133.issue-4
[34]
田博文. 钾肥施用对菜用大豆和普通大豆籽粒氨基酸积累代谢的影响[D]. 哈尔滨: 东北农业大学, 2017.
TIAN B W. Effects of potassium nutrition on amino acid accumulation and metabolism in vegetable soybean and grain soybean[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese)
[35]
谷贺贺, 李静, 张洋洋, 李小坤, 丛日环, 任涛, 鲁剑巍. 钾肥与我国主要作物品质关系的整合分析. 植物营养与肥料学报, 2020, 26(10): 1749-1757.
GU H H, LI J, ZHANG Y Y, LI X K, CONG R H, REN T, LU J W. Meta-analysis of the relationship between potassium fertilizer and the quality of main crops in China. Journal of Plant Nutrition and Fertilizers, 2020, 26(10): 1749-1757. (in Chinese)
[36]
彭智平, 吴雪娜, 于俊红, 黄继川, 徐培智. 施钾量对花生养分吸收及产量品质的影响. 花生学报, 2013, 42(3): 27-31.
PENG Z P, WU X N, YU J H, HUANG J C, XU P Z. Effects of potassium application on nutrient absorption, yield and quality of peanut. Journal of Peanut Science, 2013, 42(3): 27-31. (in Chinese)
[37]
DANNOWSKI M, BLOCK A. Fractal geometry and root system structures of heterogeneous plant communities. Plant and Soil, 2005, 272(1): 61-76.

doi: 10.1007/s11104-004-3981-2
[38]
张鹏, 张玉龙, 邹洪涛, 张玉玲, 廖常建, 虞娜. 水钾耦合对花生根系形态及产量的影响. 干旱地区农业研究, 2016, 34(4): 170-174.
ZHANG P, ZHANG Y L, ZOU H T, ZHANG Y L, LIAO C J, YU N. Coupling effects of irrigation and potassium fertilization on root morphological characters and yield of peanut. Agricultural Research in the Arid Areas, 2016, 34(4): 170-174. (in Chinese)
[39]
侯云鹏, 孔丽丽, 蔡红光, 刘慧涛, 高玉山, 王永军, 王立春. 东北半干旱区滴灌施肥条件下高产玉米干物质与养分的积累分配特性. 中国农业科学, 2019, 52(20): 3559-3572. doi: 10.3864/j.issn.0578-1752.2019.20.007.
HOU Y P, KONG L L, CAI H G, LIU H T, GAO Y S, WANG Y J, WANG L C. The accumulation and distribution characteristics on dry matter and nutrients of high-yielding maize under drip irrigation and fertilization conditions in semi-arid region of northeastern China. Scientia Agricultura Sinica, 2019, 52(20): 3559-3572. doi: 10.3864/j.issn.0578-1752.2019.20.007. (in Chinese)
[40]
孙存华, 贺鸿雁, 杜伟, 潘伟琴, 孙元华. 钙对小麦高钾毒害作用的影响. 西北农业学报, 2005, 14(5): 6-9.
SUN C H, HE H Y, DU W, PAN W Q, SUN Y H. Effect of calcium on high potassium poison to wheat seedlings. Acta Agriculturae Boreali-Occidentalis Sinica, 2005, 14(5): 6-9. (in Chinese)
[41]
张丽, 王寅, 鲁剑巍, 任涛, 李小坤, 丛日环. 施钾对直播油菜产量及钾钙镁养分吸收的影响. 中国油料作物学报, 2015, 37(3): 336-343.

doi: 10.7505/j.issn.1007-9084.2015.03.012
ZHANG L, WANG Y, LU J W, REN T, LI X K, CONG R H. Effect of potassium application on absorption of potassium, calcium and magnesium for direct-sowing winter rapeseed. Chinese Journal of Oil Crop Sciences, 2015, 37(3): 336-343. (in Chinese)

doi: 10.7505/j.issn.1007-9084.2015.03.012
[42]
RÖMHELD V, KIRKBY E A. Research on potassium in agriculture: needs and prospects. Plant and Soil, 2010, 335(1): 155-180.

doi: 10.1007/s11104-010-0520-1
[43]
PANDA B B, SHARMA S, MOHAPATRA P K, DAS A. Application of excess nitrogen, phosphorus, and potassium fertilizers leads to lowering of grain iron content in high-yielding tropical rice. Communications in Soil Science and Plant Analysis, 2012, 43(20): 2590-2602.

doi: 10.1080/00103624.2012.716122
[44]
司贤宗, 张翔, 索炎炎, 李亮, 李亚飞, 余琼, 邱岭军, 余辉. 不同花生品种氮磷钾钙硫吸收、分配和利用的差异. 中国农学通报, 2021, 37(16): 1-7.

doi: 10.11924/j.issn.1000-6850.casb2020-0028
SI X Z, ZHANG X, SUO Y Y, LI L, LI Y F, YU Q, QIU L J, YU H. Differences in absorption, distribution and utilization of nitrogen, phosphorus, potassium, calcium and sulfur among peanut varieties. Chinese Agricultural Science Bulletin, 2021, 37(16): 1-7. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2020-0028
[45]
郑亚萍, 吴正锋, 王春晓, 王才斌, 沈浦, 赵红军, 冯昊, 孙秀山. 棕壤花生镁营养特性对不同耕作措施的响应. 核农学报, 2018, 32(12): 2406-2413.

doi: 10.11869/j.issn.100-8551.2018.12.2406
ZHENG Y P, WU Z F, WANG C X, WANG C B, SHEN P, ZHAO H J, FENG H, SUN X S. Response of peanut magnesium nutrition characteristics to various tillage measures in brown soils. Journal of Nuclear Agricultural Sciences, 2018, 32(12): 2406-2413. (in Chinese)

doi: 10.11869/j.issn.100-8551.2018.12.2406
[46]
贾红霞, 刘风珍, 张秀荣, 朱素青, 张昆, 万勇善. 不同类型铁肥改善花生缺铁效果研究. 花生学报, 2021, 50(2): 38-43, 63.
JIA H X, LIU F Z, ZHANG X R, ZHU S Q, ZHANG K, WAN Y S. Effect of different types of iron fertilizer on alleviating iron deficiency of peanut. Journal of Peanut Science, 2021, 50(2): 38-43, 63. (in Chinese)
[1] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[2] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[3] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[4] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[5] YANG Yang, JIA MengHan, CHEN Can, ZHANG YiHan, TONG YuXin. Effects of Different Ratios of Green-Blue Light on Basil Growth and Its Energy Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(6): 1167-1179.
[6] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[7] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[8] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[9] HUANG Hao, WU QingHong, ZHANG Yu, WANG Ye, LIU QingE, FANG YiDa, LUO ZiSheng. Effects of Novel Phase Change Coolant on the Postharvest Quality of Shiitake Mushrooms [J]. Scientia Agricultura Sinica, 2024, 57(5): 989-999.
[10] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[11] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[12] JIANG Wen, LIANG WenXin, PEI Fei, SU AnXiang, MA GaoXing, FANG Donglu, HU QiuHui, MA Ning. Effect of Pleurotus eryngii Powder on Quality Characteristics of Extruded Rice [J]. Scientia Agricultura Sinica, 2024, 57(4): 779-796.
[13] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[14] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[15] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!