Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (10): 1857-1869.doi: 10.3864/j.issn.0578-1752.2024.10.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes

LI ShengYou(), WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang(), WANG WenBin(), SONG ShuHong   

  1. Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang 100161
  • Received:2023-12-19 Accepted:2024-01-08 Online:2024-05-16 Published:2024-05-23
  • Contact: CAO YongQiang, WANG WenBin

Abstract:

【Objective】 In order to provide theoretical basis for molecular breeding of soybean drought resistance, the different evaluation indexes of drought resistance were comprehensively used to screen soybean germplasm with drought-resistance, and the candidate drought-tolerant genes were identified. 【Method】 In 2018, 2019, 2020 and 2021, a total of 188 soybean germplasm were used to determine pod number per plant, biomass per plant and yield per plant under well-watered and drought stressed conditions. Drought resistance index (DI), improved drought resistance index (IDI), weighted drought resistance coefficient (WDC) and weighted drought resistance index (WDI) were used to identify drought resistance of soybean germplasm. The single nucleotide polymorphisms (SNP) loci significantly associated with these parameters were detected by genome-wide association study (GWAS), and the candidate genes for drought resistance were screened by RNA-seq and qRT-PCR analysis of soybean seedling leaves under drought stress. 【Result】 The DI, IDI, WDC and WDI of 188 soybean germplasm varied widely, and five classification criteria for each drought resistance parameter were determined by hierarchical classification method. Among them, Liaodou 15, Liaodou 69, Liaodou 14, Jinzhangzi Huangdou, Zhonghuang 606, Kexin 3 and Koreane 4 were identified as first-grade drought resistant by all evaluation methods. By using GWAS for DI, IDI, WDC and WDI, a total of 15 significantly SNP loci were detected under multiple environments, and the contribution rate of these loci to phenotypic variation ranged from 12.46% to 25.60%. There are 226 annotated genes within 200 kb intervals of upstream and downstream for the significant SNP loci. According to RNA-seq and qRT-PCR analysis of drought-resistant cultivar Liaodou 14 and drought-sensitive cultivar Liaodou 21 under drought stress, a total of 32 annotated genes were significantly differentially expressed by drought stress. Among them, eight genes including Glyma.02G182900, Glyma.04G012400, Glyma.06G258900, Glyma.15G100900, Glyma.01G172600, Glyma.04G012300, Glyma.01G172200 and Glyma.04G010300, encodes calcium-dependent protein kinase, universal stress protein A-like protein, G-type lectin S-receptor-like serine/threonine-protein kinase, protein phosphatase 2C, isoflavone reductase, isoflavone reductase homolog, auxin-like protein, and bZIP transcription factor, respectively. 【Conclusion】 Seven germplasm were identified from 188 soybean germplasm by comprehensive application of different drought tolerance parameters. A total of 15 SNP loci significantly associated with drought tolerance parameters were identified by GWAS, and eight candidate genes were identified.

Key words: soybean, germplasm, drought resistance evaluation, genome-wide association analysis, candidate genes

Table 1

Primers of qRT-PCR for the candidate genes"

基因 Gene 正向引物 Forward primers (5′-3′) 反向引物 Reverse primers (5′-3′)
Glyma.02G182900 ATGGGTAACTGTTGCGTTTT ACTTCGACGATGGTTCTG
Glyma.04G012400 TTGTCTCTTATTGTGGAA ACAATACTTGTGGCCAAATT
Glyma.06G258900 TTCACTCTCATACTTGCTAT AGAAGGATCATCCCAGTTCT
Glyma.15G100900 AAGCACATTCTCACTCAGA TCAGGAATGCAGAAGTGTA
Glyma.01G172600 ACTTTGCTCCCTTTTATTGTA CACTTGGGATTAATTACCTTT
Glyma.04G012300 TATGACCGTATGATTATTT AACCAGCAAAGAAGTTGCTT
Glyma.01G172200 AATGACTTTGATTTGAGGGA TAGCTGAGTCATGTGAGTTTT
Glyma.04G010300 ATGTATTCAATTCTGAGTGAAAT TCATGAAACGTAGTAGAGCCA
18S TGATTAGACCGAAACCAATGC GGCAGAAACTTGAATGAAACG

Fig. 1

Pearson's correlation coefficients describing associations of drought resistance index (DI), improved drought resistance index (IDI), weighted drought resistance coefficient (WDC), and weighted drought resistance index (WDI) for 188 soybean germplasm under different environments The diagonal shows the distribution of four parameters in different environments. The scatter plot shows below the diagonal. Above the diagonal is the correlation coefficient, *** represents significant difference at P<0.001"

Table 2

Grading standards of drought resistance for soybean germplasm and the number of germplasm at each level"

抗旱等级
Drought grade
抗旱指数
DI
改进抗旱指数
IDI
加权抗旱系数
WDC
加权抗旱指数
WDI
一级Grade1 ≥1.503 (26) ≥2.132 (30) ≥0.764 (31) ≥1.947 (27)
二级Grade2 ≥1.011<1.503 (28) ≥1.568<2.132 (29) ≥0.746<0.764 (26) ≥1.453<1.947 (26)
三级Grade3 ≥0.193<1.011 (97) ≥0.216<1.568 (97) ≥0.530<0.746 (71) ≥0.617<1.453 (86)
四级Grade4 ≥0.074<0.193 (29) ≥0.125<0.216 (25) ≥0.475<0.530 (27) ≥0.417<0.617 (27)
五级Grade5 <0.074 (8) <0.125 (7) <0.475 (38) <0.417 (22)

Table 3

A total of 39 soybean accessions showing the same drought grade in different drought parameter methods"

抗旱等级
Drought grade
种质名称
Germplasm name
抗旱指数
DI
改进抗旱指数
IDI
加权抗旱系数
WDC
加权抗旱指数
WDI
一级Grade1 辽豆15 LD15 3.05 4.32 0.79 3.55
辽豆69 LD69 2.96 6.48 0.83 3.33
金杖子黄豆JZZHD 2.76 3.32 0.80 3.11
辽豆14 LD14 2.40 5.59 0.82 3.13
科新3号KX3 1.73 2.92 0.80 2.40
Koreane 4 1.60 2.42 0.83 2.39
中黄606 ZH606 1.55 2.23 0.82 2.60
二级Grade2 Conrad 1.33 2.12 0.74 1.77
三级Grade3 铁丰33 TF33 0.88 0.91 0.66 1.14
郑92116 Z92116 0.87 0.93 0.68 1.16
白脐大豌豆BQDWD 0.85 1.17 0.65 1.08
IOA2020 0.79 0.85 0.68 1.09
沈农6号SN6 0.76 1.23 0.69 1.17
Son won 0.65 0.63 0.68 1.29
蒙豆13 MD13 0.64 0.51 0.69 0.81
平顶黄PDX 0.61 0.46 0.61 0.75
伊通满仓金YTMCJ 0.58 0.49 0.64 0.74
辽豆21 LD21 0.55 1.04 0.65 1.09
北水泉乡黄豆BSQXHD 0.53 0.56 0.66 0.77
百日熟BRS 0.51 0.48 0.65 0.89
Corsoy 0.49 1.00 0.59 1.04
吉育86 JY86 0.48 0.79 0.58 0.77
黑农26 HN26 0.47 0.40 0.64 0.65
吉林36 JL36 0.46 0.47 0.70 1.03
满仓金MCJ 0.46 0.54 0.61 0.70
绥农6号SuiN6 0.44 0.58 0.65 0.68
吉原引3号JYY3 0.41 0.54 0.65 0.92
克山1号KS1 0.40 0.85 0.56 0.73
吉育67 JY67 0.37 0.39 0.63 0.62
压破车YPC 0.37 0.43 0.57 0.69
PI196160 0.37 1.05 0.61 1.11
吉林3号JL3 0.36 0.48 0.62 0.64
垦丰16 KF16 0.30 0.51 0.67 0.78
PSB543 0.27 0.38 0.61 0.80
中黄13 ZH13 0.26 0.53 0.63 0.76
四级Grade4 龙品10-217 LP10-217 0.15 0.32 0.51 0.60
五级Grade5 龙垦330 LK330 0.05 0.11 0.36 0.17
AVELINE CH21715 0.03 0.04 0.43 0.34
黑河5号HH5 0.02 0.08 0.41 0.40

Fig. 2

Manhattan plot and QQ plot of soybean drought resistance index (A), improved drought resistance index (B), weighted drought resistance coefficient (C) and weighted drought resistance index (D) by genome-wide association analysis"

Fig. 3

Expression profiles of 32 annotated genes after drought treatment Selected candidate genes marked in red font"

Fig. 4

Expression analysis of 8 candidate drought-resistant genes after drought treatment by qRT-PCR"

Table 4

Significant SNP loci and candidate drought-resistant genes in soybean"

性状
Trait
位置
Position
基因
Gene
注释
Annotation
加权抗旱系数
WDC
Chr.1:50851116 Glyma.01G169000 锌指CCCH结构域含蛋白44 Zinc finger CCCH domain-containing protein 44
Glyma.01G169500 富亮氨酸重复受体丝氨酸/苏氨酸蛋白激酶At3g53590
Leucine-rich repeat receptor-like serine/threonine-protein kinase At3g53590
Glyma.01G169900 CDK5RAP1蛋白 CDK5RAP1-like protein
Glyma.01G170200 半乳糖苷酶3 Beta-galactosidase 3
Glyma.01G171400 AAA-ATP酶At5g17760 AAA-ATPase At5g17760
Glyma.01G171900 甘露聚糖内嵌体-1,4-甘露糖苷酶7 Mannanendo-1,4-beta-mannosidase 7
Glyma.01G172200 生长素蛋白1 Auxin-like protein 1
Glyma.01G172600 异黄酮还原酶Isoflavone reductase
Chr.6:44505365 Glyma.06G258900 G型凝集素S受体丝氨酸/苏氨酸蛋白激酶At4g27290
G-type lectin S-receptor-like serine/threonine-protein kinase At4g27290
Glyma.06G259400 TMV抗性蛋白N TMV resistance protein N
Glyma.06G260000 转录因子bHLH 123 Transcription factor bHLH 123
Glyma.06G260100 TMV抗性蛋白N TMV resistance protein N
抗旱指数DI Chr.2:31492269 Glyma.02G182900 钙依赖性蛋白激酶32 Calcium-dependent protein kinase 32
Chr.3:16108362 Glyma.03G070100 依赖于NADPH的醛酮还原酶,叶绿体
NADPH-dependentaldo-ketoreductase, chloroplastic
Chr.16:5063353 Glyma.16G050700 GEM蛋白5 GEM-like protein 5
Glyma.16G050900 锌指蛋白Constans-like14 Zinc finger protein Constans-like 14
Glyma.16G051300 酰基转移酶样蛋白,叶绿体 Acyltransferase-like protein At3g26840, chloroplastic
Glyma.16G052000 甘油磷酸二酯磷酸二酯酶GDPD 2
Glycero phosphodiester phosphodiesterase GDPD 2
改进抗旱指数
IDI
Chr.4:935137 Glyma.04G009400 脱氢蛋白ERD14 Dehydrin ERD 14
Glyma.04G009900 胚胎细胞蛋白40 Embryogenic cell protein 40
Glyma.04G010300 转录因子bZIP11 Transcription factor bZIP11
Glyma.04G012300 异黄酮还原酶同源物Isoflavone reductase homolog
Glyma.04G012400 通用应激蛋白A蛋白 Universal stress protein A-like protein
Glyma.04G013000 葡聚糖内切酶1,3-d-葡萄糖苷酶 Glucanendo-1,3-beta-D-glucosidase
Glyma.04G013400 器官特异性蛋白P4 Organ-specific protein P4
Glyma.04G013500 含BURP结构域蛋白3 BURP domain-containing protein 3
Chr.8:35316814 Glyma.08G270600 肉桂酰辅酶A还原酶SNL6 Cinnamoyl-CoA reductase-like SNL6
Chr.15:7739713 Glyma.15G097100 磷脂酶A1-Igamma 2,叶绿体 Phospholipase A1-Igamma 2, chloroplastic
Glyma.15G097700 二乙烯叶绿素一种8-乙烯还原酶,叶绿体
Divinyl chlorophyll idea8-vinyl-reductase, chloroplastic
Glyma.15G100700 肽蛋氨酸亚砜还原酶B5 Peptide methionine sulfoxide reductase B5
Glyma.15G100900 蛋白磷酸酶2C 35 Protein phosphatase 2C 35
加权抗旱指数WDI Chr.17:38770868 Glyma.17G230700 液泡生产酶Vacuolar-processing enzyme
[1]
CEREZINI P, KUWANO B H, DOS SANTOS M B, TERASSI F, HUNGRIA M, NOGUEIRA M A. Strategies to promote early nodulation in soybean under drought. Field Crops Research, 2016, 196: 160-167.
[2]
YAHOUIAN S H, BEHEMATTA M R, BABAEI H, MOHAMMADI M. Study in effects of drought stress on yield, yield components and some important physiological traits in soybean genotypes. Iranian Journal of Field Crop Science, 2018, 49(3): 99-108.
[3]
JIN Z N, ZHUANG Q L, WANG J L, ARCHONTOULIS S V, ZOBEL Z, KOTAMARTHI V R. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2. Global Change Biology, 2017, 23(7): 2687-2704.
[4]
任洪雷, 张丰屹, 韩新春, 洪慧龙, 朱筱, 王广金, 邱丽娟. 大豆微核心种质资源抗旱性评价. 作物杂志, 2023(6): 94-100.
REN H L, ZHANG F Y, HAN X C, HONG H L, ZHU X, WANG G J, QIU L J. Drought tolerance evaluation of soybean mini core collections. Crops, 2023(6): 94-100. (in Chinese)
[5]
王兴荣, 刘章雄, 张彦军, 李玥, 李永生, 苟作旺, 祁旭升, 邱丽娟. 大豆种质资源不同生育时期抗旱性鉴定评价. 植物遗传资源学报, 2021, 22(6): 1582-1594.

doi: 10.13430/j.cnki.jpgr.20210430002
WANG X R, LIU Z X, ZHANG Y J, LI Y, LI Y S, GOU Z W, QI X S, QIU L J. Evaluation on drought resistance of soybean germplasm resources at multiple growth periods. Journal of Plant Genetic Resources, 2021, 22(6): 1582-1594. (in Chinese)
[6]
KALER A S, RAY J D, SCHAPAUGH W T, KING C A, PURCELL L C. Genome-wide association mapping of canopy wilting in diverse soybean genotypes. Theoretical and Applied Genetics, 2017, 130(10): 2203-2217.

doi: 10.1007/s00122-017-2951-z pmid: 28730464
[7]
闫春娟, 王文斌, 董钻, 王家宏, 宋书宏, 杜强, 刘丙臣, 石小翠. 大豆抗旱种质的鉴定及其与根系的关系. 大豆科学, 2011, 30(5): 790-794.
YAN C J, WANG W B, DONG Z, WANG J H, SONG S H, DU Q, LIU B C, SHI X C. Identification of drought stress tolerance in soybean [Glycine max (L.) Merr.] and related root traits. Soybean Science, 2011, 30(5): 790-794. (in Chinese)
[8]
王利彬, 刘丽君, 裴宇峰, 董守坤, 孙聪姝, 祖伟, 阮英慧. 大豆种质资源芽期抗旱性鉴定. 东北农业大学学报, 2012, 43(1): 36-43.
WANG L B, LIU L J, PEI Y F, DONG S K, SUN C S, ZU W, RUAN Y H. Drought resistance identification of soybean germplasm resources at bud stage. Journal of Northeast Agricultural University, 2012, 43(1): 36-43. (in Chinese)
[9]
谢甫绨, 王文和, 王海英, 姚峰, 杨辉. 大豆品种耐旱性的评价. 沈阳农业大学学报, 2000, 31(3): 238-241.
XIE F T, WANG W H, WANG H Y, YAO F, YANG H. Drought tolerance evaluation of soybeans. Journal of Shenyang Agricultural University, 2000, 31(3): 238-241. (in Chinese)
[10]
祁旭升, 刘章雄, 关荣霞, 王兴荣, 苟作旺, 常汝镇, 邱丽娟. 大豆成株期抗旱性鉴定评价方法研究. 作物学报, 2012, 38(4): 665-674.
QI X S, LIU Z X, GUAN R X, WANG X R, GOU Z W, CHANG R Z, QIU L J. Comparison of evaluation methods for drought-resistance at soybean adult stage. Acta Agronomica Sinica, 2012, 38(4): 665-674. (in Chinese)
[11]
张彦军, 王兴荣, 张金福, 李玥, 苟作旺, 祁旭升, 何正奎. 大豆抗旱种质资源筛选及利用. 甘肃农业科技, 2018(8): 54-60.
ZHANG Y J, WANG X R, ZHANG J F, LI Y, GOU Z W, QI X S, HE Z K. Screening and utilization of drought resistant germplasm resources of soybean. Gansu Agricultural Science and Technology, 2018(8): 54-60. (in Chinese)
[12]
STEKETEE C J, SCHAPAUGH W T, CARTER T E, LI Z L. Genome-wide association analyses reveal genomic regions controlling canopy wilting in soybean. G3, 2020, 10(4): 1413-1425.
[13]
ZHANG Y J, LIU Z X, WANG X R, LI Y, LI Y S, GOU Z W, ZHAO X Z, HONG H L, REN H L, QI X S, QIU L J. Identification of genes for drought resistance and prediction of gene candidates in soybean seedlings based on linkage and association mapping. The Crop Journal, 2022, 10(3): 830-839.
[14]
LI S Y, WANG C L, YAN C J, SUN X G, ZHANG L J, CAO Y Q, WANG W B, SONG S H. Identification and fine mapping of qSW2 for leaf slow wilting in soybean. The Crop Journal, 2024, 12(1): 244-251.
[15]
LIU Z Z, LI H H, GOU Z W, ZHANG Y J, WANG X R, REN H L, WEN Z X, KANG B K, LI Y H, GAO H W, WANG D C, QI X S, QIU L J. Genome-wide association study of soybean seed germination under drought stress. Molecular Genetics and Genomics, 2020, 295(3): 661-673.

doi: 10.1007/s00438-020-01646-0 pmid: 32008123
[16]
LI S Y, CAO Y Q, WANG C L, YAN C J, SUN X G, ZHANG L J, WANG W B, SONG S H. Genome-wide association mapping for yield-related traits in soybean (Glycine max) under well-watered and drought-stressed conditions. Frontiers in Plant Science, 2023, 14: 1265574.
[17]
路贵和, 戴景瑞, 张书奎, 李文明, 陈绍江, 鄂立柱, 张义荣. 不同干旱胁迫条件下我国玉米骨干自交系的抗旱性比较研究. 作物学报, 2005, 31(10): 1284-1288.
LU G H, DAI J R, ZHANG S K, LI W M, CHEN S J, E L Z, ZHANG Y R. Drought resistance of elite maize inbred lines in different water stress conditions. Acta Agronomica Sinica, 2005, 31(10): 1284-1288. (in Chinese)
[18]
LI S Y, YAN C J, CAO Y Q, WANG C L, SUN X G, ZHANG L J, WANG W B, SONG S H. Comparative physiological and transcriptomic analysis of two contrasting soybean genotypes reveal complex mechanisms involved in drought avoidance. Crop Science, 2024, 64(2): 788-802.
[19]
ABDEL-HALEEM H, CARTER T E, PURCELL L C, KING C A, RIES L L, CHEN P Y, SCHAPAUGH JR W, SINCLAIR T R, BOERMA H R. Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr). Theoretical and Applied Genetics, 2012, 125(5): 837-846.
[20]
LUDWIG A A, ROMEIS T, JONES J D G. CDPK-mediated signalling pathways: Specificity and cross‐talk. Journal of Experimental Botany, 2004, 55(395): 181-188.
[21]
SHOKRY A M, AL-KARIM S, RAMADAN A, GADALLAH N, AL ATTAS S G, SABIR J S M, HASSAN S M, MADKOUR M A, BRESSAN R, MAHFOUZ M, BAHIELDIN A. Detection of a Usp-like gene in Calotropis procera plant from the de novo assembled genome contigs of the high-throughput sequencing dataset. Comptes Rendus Biologies, 2014, 337(2): 86-94.
[22]
UDAWAT P, JHA R K, SINHA D, MISHRA A, JHA B. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants. Frontiers in Plant Science, 2016, 7: 518.

doi: 10.3389/fpls.2016.00518 pmid: 27148338
[23]
SUN X L, YU Q Y, TANG L L, JI W, BAI X, CAI H, LIU X F, DING X D, ZHU Y M. GsSRK, a G-type lectin S-receptor-like serine/ threonine protein kinase, is a positive regulator of plant tolerance to salt stress. Journal of Plant Physiology, 2013, 170(5): 505-515.
[24]
ZHANG Y Z, FANG Q W, ZHENG J Q, LI Z Y, LI Y, FENG Y, HAN Y P, LI Y G. GmLecRlk, a lectin receptor-like protein kinase, contributes to salt stress tolerance by regulating salt-responsive genes in soybean. International Journal of Molecular Sciences, 2022, 23(3): 1030.
[25]
RUBIO S, RODRIGUES A, SAEZ A, DIZON M B, GALLE A, KIM T H, SANTIAGO J, FLEXAS J, SCHROEDER J I, RODRIGUEZ P L. Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiology, 2009, 150(3): 1345-1355.

doi: 10.1104/pp.109.137174 pmid: 19458118
[26]
GUI Y T, FU G Z, LI X L, DAI Y H. Identification and analysis of isoflavone reductase gene family in Gossypium hirsutum L.. Scientific Reports, 2023, 13(1): 5703.
[27]
JIAO C F, GU Z X. iTRAQ-based analysis of proteins involved in secondary metabolism in response to ABA in soybean sprouts. Food Research International, 2019, 116: 878-882.

doi: S0963-9969(18)30740-3 pmid: 30717018
[28]
KIM S G, KIM S T, WANG Y M, KIM S K, LEE C H, KIM K K, KIM J K, LEE S Y, KANG K Y. Overexpression of rice isoflavone reductase‐like gene (OsIRL) confers tolerance to reactive oxygen species. Physiologia Plantarum, 2010, 138(1): 1-9.
[29]
KAZAN K. Auxin and the integration of environmental signals into plant root development. Annals of Botany, 2013, 112(9): 1655-1665.

doi: 10.1093/aob/mct229 pmid: 24136877
[30]
SHARMA E, SHARMA R, BORAH P, JAIN M, KHURANA J P. Emerging roles of auxin in abiotic stress responses//PANDEY G. Elucidation of Abiotic Stress Signaling in Plants. New York: Springer, 2015: 299-328.
[31]
LIU C T, MAO B G, OU S J, WANG W, LIU L C, WU Y B, CHU C C, WANG X P. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Molecular Biology, 2014, 84(1): 19-36.
[32]
ZHANG M, LIU Y H, CAI H Y, GUO M L, CHAI M N, SHE Z Y, YE L, CHENG Y, WANG B R, QIN Y. The bZIP transcription factor GmbZIP15 negatively regulates salt- and drought-stress responses in soybean. International Journal of Molecular Sciences, 2020, 21(20): 7778.
[1] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[2] YANG YaHeng, JIA PeiLong, NIE LanChun, ZHAO WenSheng, ZHAO JiaTeng, WANG JinXiang, LIU Jie. Evaluation of Fruit Texture Quality in Melon [J]. Scientia Agricultura Sinica, 2024, 57(8): 1560-1574.
[3] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[4] WEI NaiCui, TAO JinBo, YUAN MingYang, ZHANG Yu, KAI MengXiang, QIAO Ling, WU BangBang, HAO YuQiong, ZHENG XingWei, WANG JuanLing, ZHAO JiaJia, ZHENG Jun. Seedling Characterization and Genetic Analysis of Low Phosphorus Tolerance in Shanxi Varieties [J]. Scientia Agricultura Sinica, 2024, 57(5): 831-845.
[5] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[6] WU ChuanLei, HU XiaoYu, WANG Wei, MIAO Long, BAI PengYu, WANG GuoJi, LI Na, SHU Kuo, QIU LiJuan, WANG XiaoBo. Development and Identification of Molecular Markers for Oil-Related Functional Genes and Polymerization Analysis of Excellent Alleles in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(22): 4402-4415.
[7] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[8] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[9] SHAO JiaZhu, LÜ Wen, LIAO XinLin, YUAN XinYu, SONG Zhen, JIANG DongHua. Isolation and Identification of Soybean Rhizosphere Growth-Promoting Bacteria and Their Salt Tolerance and Growth-Promoting Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4248-4263.
[10] ZHAO HaiJuan, ZHANG YuPing, ZHANG YuJun, LIU Ning, XU Ming, LIU JiaCheng, WANG BiJun, LIU WeiSheng, LIU Shuo. Evaluation of Fruit Aroma in Chinese Plum Germplasm Based on Electronic Nose Technology [J]. Scientia Agricultura Sinica, 2024, 57(21): 4328-4341.
[11] XIA Yang, HAN GuangJie, LI ChuanMing, LIU Qin, ZHANG Nan, HUANG LiXin, LU YuRong, XU Bin, XU Jian. Survival Adaptability and Damage Potential of Spodoptera frugiperda in the Soybean-Maize Strip Intercropping [J]. Scientia Agricultura Sinica, 2024, 57(20): 4035-4044.
[12] ZHANG MingQi, WANG Rui, ZHANG ChunXiao, SUN Bo, REN Jie, LI ShuFang, WANG Lu, ZHU ShaoXi, ZHANG JiangBin, SHI XinChen, WANG HaiJie, ZHANG YunLong, TIAN HongLi, ZHAO YiKun, KUANG Meng, WANG YuanDong, YI HongMei, LI XiaoHui, WANG FengGe. The Construction and Application of SSR and SNP Molecular ID for Maize Germplasm Resources of Jilin Province [J]. Scientia Agricultura Sinica, 2024, 57(2): 236-249.
[13] SHANG Hang, CHENG YuKun, REN Yi, GENG HongWei. Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(18): 3507-3521.
[14] LIU DeLong, LI ShiRu, WANG ChuanXing, GUO ShuQing, MA ZhiXiu, WU YongJiang, HAN HuiBing, LI YuJie, ZHANG PanPan, YANG Pu. Phenotypical Variation and Dynamic QTL Mapping of Plant Height in Foxtail Millet at Different Developmental Stages [J]. Scientia Agricultura Sinica, 2024, 57(18): 3533-3550.
[15] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!