Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (7): 1537-1552.doi: 10.3864/j.issn.0578-1752.2021.07.017

• CULTIVATION METHOD • Previous Articles     Next Articles

Effects of Elevated Temperature on Rice Yield and Assimilate Translocation Under Different Planting Patterns

ZHANG MingJing,HAN Xiao,HU Xue,ZANG Qian,XU Ke,JIANG Min,ZHUANG HengYang,HUANG LiFen()   

  1. Yangzhou University/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu
  • Received:2020-07-23 Accepted:2020-09-27 Online:2021-04-01 Published:2021-04-22
  • Contact: LiFen HUANG E-mail:lfhuang@yzu.edu.cn

Abstract:

【Objective】The effect of global warming on rice production has attracted much attention, leading to changes on planting area, cultivated practices and rice varieties. Thus, it is necessary to clarify the responses of rice yield and its formation to warming under different planting patterns.【Method】During 2017 to 2018, we selected two varieties (Nanjing 9108 and Nanjing 46), two planting patterns (simulating machine transplanting and mechanized direct sowing), and three temperature treatments, including normal temperature (NT) as control, moderate temperature (average increase 2℃, MT) and extreme high temperature stress (average increase 5℃, HT), to study the effects of elevated temperature on rice yield, yield composition, assimilation transport and the characteristics of photosynthesis production.【Result】Under MT and HT treatments, the decreasing yields of Nanjing 9108 and Nanjing 46 under transplanting were less than that under direct sowing, while the yield of the long-growth variety Nanjing 46 had smaller decline. The growth rate of the spike dry material showed the trend of NT>MT>HT. The amount and rate of dry matter translocation from rice stem and leaves to spike decreased with the increase of temperature, and the decreasing effects on Nanjing 9108 was greater than that for Nanjing 46. Moreover, after 21 days of heading to maturity, the SPAD of flag leaf increased with elevated temperatures significantly. And the lowest net photosynthetic rate of flag leaf was found under HT at 14-21 days after heading period, while the highest was found at 35 days after heading period. In addition, The stomatal conductance and transpiration rate of flag leaf showed the increasing trend of NT>MT>HT, and the difference was more significant in the later growth stage. The path analysis indicated that the importance of yield components on yield was in the order of filled grain percentage>1000-grain weight>number of panicles>spikelet number per panicle, and all the elevated temperature treatments had negative impacts on yield components, with the greatest effect (-0.819) on filled grain percentage. The relevant analysis showed that the total weight of dry matter at maturity, the amount of translocation were significantly positively correlated to the yield composition factor (except the number of spikes) and the filled grain percentage of primary and secondary branches under MT and HT. 【Conclusion】Increasing 2℃ to 5℃ at the initial heading stage significantly reduced the filled grain percentage of rice, which led to the decrease of rice yield. From the perspective of photosynthetic characteristics, temperature rising reduced the rate of dry matter transported to spikes and declined dry matter accumulation in spikes, increasing SPAD of rice flag leaves in late growth period and thus prolonging the green holding time, which could inhibit the translocation from source to sink. Overall, we suggest that long-growth period varieties with proper plant patterns could have better resistance to elevated temperatures, which could be adaptive to the global warming.

Key words: high temperature stress, planting modes, yield, rice, assimilate translocation

Fig. 1

Daily mean temperature, sunshine duration, and precipitation during the rice growing season in 2017 and 2018"

Table 1

The temperature treatment of the artificial climate chamber (℃)"

温度处理Temperature treatment日期
Date
(M-D)
2:00-5:005:00-8:008:00-11:0011:00-14:0014:00-17:0017:00-20:0020:00-23:0023:00-2:00平均温度Average temperature
常温
NT
08-23—08-3127.027.028.031.033.031.028.027.029.0
09-01—09-0526.026.027.030.032.030.027.026.028.0
09-06—09-1024.024.025.028.030.028.025.024.027.0
09-11—09-1623.023.024.028.030.027.025.024.025.5
09-17—09-2023.023.024.028.029.026.025.024.025.3
09-21—09-2523.023.024.026.029.025.024.023.024.6
中度升温
MT
08-23—08-3129.029.030.033.035.033.030.029.031.0
09-01—09-0528.028.029.032.034.032.029.028.030.0
09-06—09-1026.026.027.030.032.030.027.026.029.0
09-11—09-1625.025.026.030.032.029.027.026.027.5
09-17—09-2025.025.026.030.031.028.027.026.027.3
09-21—09-2525.025.026.028.031.027.026.025.026.6
极端高温
HT
08-23—08-3132.032.033.036.038.036.033.032.034.0
09-01—09-0531.031.032.035.037.035.032.031.033.0
09-06—09-1029.029.030.033.035.033.030.029.032.0
09-11—09-1628.028.029.033.035.032.030.029.030.5
09-17—09-2028.028.029.032.034.032.030.029.030.3
09-21—09-2528.028.029.031.034.030.029.028.029.6

Table 2

Schedule of temperature treatment at initial heading stage under different planting modes"

8月份 August9月份 September
232425262728293031123456789101112131415161718192021222324
移栽南粳9108温度升高胁迫处理
Temperature rise stress treatment of TP NJ9108
直播南粳9108温度升高胁迫处理
Temperature rise stress treatment of DS NJ9108
移栽南粳46温度升高胁迫处理
Temperature rise stress treatment of TP NJ46
直播南粳46温度升高温胁迫处理
Temperature rise stress treatment of DS NJ46

Table 3

Analyisis of variance (F-value) for grain yield and its components among year, variety, planting modes and temperature treatment"

变异来源
Source of variation
穗数
No. of panicles per hole
每穗粒数
Spikelet number per panicle
千粒重
1000-grain weight (g)
结实率
Filled grain percentage (%)
实际产量
Actual yield per hole (g)
收获指数
Harvest index
干物质转运量
Dry matter translocation
amount (g·hole-1)
年度Y1.16ns0.32ns0.61ns1.32ns3.63ns0.13ns2.45ns
品种V1.11ns186.46**93.22**9296.25**7157.96**233.75**474.33**
种植方式P2.74ns70.91**10.30**24.80**63.37**5.23**13.18**
温度处理T0.91ns31.98**31.71**17056.86**9731.15**1336.83**4303.98**
Y×V0.97ns0.32ns0.02ns0.83ns0.01ns0.71ns0.01ns
Y×P0.91ns0.30ns1.38ns5.586ns0.05ns1.75ns0.01ns
Y×T1.00ns2.67ns2.21ns2.94ns2.28ns3.26ns0.35ns
V×P0.33ns7.20**25.41**67.39**136.46**0.71ns56.03**
V×T0.91ns49.97**1.36ns3346.24**270.61**221.41**84.07**
P×T0.66ns11.47**0.68**16.03**200.42**6.97**26.29**
V×P×T0.77ns44.74**2.61ns134.66**49.01**31.15**169.53**
Y×V×P0.87ns2.67ns3.96ns0.47*0.59ns1.93ns1.07ns
Y×V×T1.04ns0.08ns0.41ns0.20ns0.49ns0.71ns1.36ns
Y×P×T1.06ns0.30ns3.30ns0.28ns2.26ns0.71ns4.76ns
Y×V×P×T1.00ns0.08ns0.91ns2.73ns4.12ns0.19ns3.12ns

Table 4

Effects of high temperature stress on rice yield and its components under different planting modes"

品种
Variety
种植方式
Planting
modes
温度处理
Temperature treatment
穗数
No. of panicles per hole
每穗粒数
Spikelet number per panicle
千粒重
1000-grain weight (g)
结实率
Filled grain percentage (%)
实际产量
Actual yield per hole (g)
收获指数
Harvest index
南粳9108 NJ9108移栽 TP常温 NT10.89±0.29Aa118.24±0.61Aa25.85±0.16Aa88.26±0.07Aa24.50±0.03Aa0.52±0.01Aa
中度升温 MT10.89±0.11Aa116.10±0.64Aa24.66±0.13Ab47.51±0.32Bb19.38±0.12Bb0.45±0.02Ab
极端高温 HT10.56±0.29Aa109.41±0.17Bb25.01±0.26Aab7.32±0.17Cc11.01±0.03Cc0.27±0.01Bc
直播 DS常温 NT12.78±0.11Aa122.99±0.23Aa25.63±0.06Aa87.32±0.71Aa28.65±0.09Aa0.56±0.01Aa
中度升温 MT12.33±0.19Aa115.81±1.12ABb24.95±0.08Ab52.45±0.68Bb22.32±0.14Bb0.47±0.01Ab
极端高温 HT12.11±0.29Aa111.47±0.67Bb25.25±0.15Aab5.04±0.11Cc9.33±0.09Cc0.22±0.02Bc
南粳46
NJ46
移栽 TP常温 NT11.56±0.11Aa123.54±1.21Aa26.89±0.02Aa87.32±0.45Aa32.11±0.18Aa0.53±0.00Aa
中度升温 MT11.67±0.33Aa120.41±0.45Aa26.36±0.54Aa76.64±0.63Bb27.26±0.03Bb0.48±0.00Bb
极端高温 HT11.22±0.22Aa117.80±1.40Aa25.59±0.20Aa56.92±0.54Cc20.79±0.11Cc0.38±0.00Cc
直播 DS常温 NT13.33±0.19Aa121.55±0.36Aa26.27±0.08Aa88.39±0.62Aa33.89±0.16Aa0.51±0.01Aa
中度升温 MT11.33±0.38Bb126.99±1.72Aa25.82±0.06ABb65.47±0.19Bb25.28±0.11Bb0.48±0.01ABa
极端高温 HT11.22±0.29Bb125.50±1.16Aa25.36±0.02Bc55.02±1.35Cc19.58±0.16Cc0.41±0.01Bb
南粳9108
NJ9108
种植方式 Planting modes74.54**16.69*0.6661.91**64.20**0.17
温度处理 Temperature treatments2.33122.07**19.73**19670.00**1831.00**338.68**
种植方式×温度处理
Planting modes×Temperature treatments
0.517.49*1.7428.23**62.60**8.08*
南粳46
NJ46
种植方式 Planting modes4.6818.81**5.6442.78**2.040.29
温度处理 Temperature treatments11.07**1.5810.86*940.85**514.37**232.72**
种植方式×温度处理
Planting modes×Temperature treatments
8.68**10.49*0.3836.24**12.35**8.21*

Table 5

Effects of high temperature stress on 1000-grain weight and filled grain percentage of primary and secondary branches of rice under different planting modes"

品种
Variety
种植方式
Planting modes
温度处理
Temperature treatments
一次枝梗千粒重
1000-grain weight of primary branch (g)
二次枝梗千粒重
1000-grain weight of secondary branch (g)
一次枝梗结实率
Filled grain percentage of primary branch (%)
二次枝梗结实率
Filled grain percentage of secondary branch (%)
南粳9108
NJ9108
移栽 TP常温 NT27.71±0.33Aa25.52±0.09Aa90.82±0.28Aa84.88±0.09Aa
中度升温MT25.35±0.14ABb24.03±0.216Bb55.27±0.72Bb36.30±0.43Bb
极端高温HT25.24±0.16Bb23.96±0.05Bb7.95±0.40Cc7.13±0.12Cc
直播 DS常温 NT26.47±0.50Aa25.23±0.03Aa89.48±0.44Aa85.11±0.81Aa
中度升温MT26.53±0.22Aa24.07±0.00Bb60.64±1.12Bb43.93±2.05Bb
极端高温HT25.57±0.17Aa23.78±0.16Bb5.52±0.07Cc4.35±0.09Cc
南粳46
NJ46
移栽 TP常温 NT27.95±0.64Aa26.62±0.39Aa90.00±0.83Aa83.17±0.18Aa
中度升温MT26.79±0.11Aa26.34±0.56Aa81.16±2.13Aa72.60±0.52Bb
极端高温HT26.26±0.11Aa25.23±0.23Aa60.11±1.32Bb53.47±0.52Cc
直播 DS常温 NT28.68±0.02Aa26.70±0.23Aa90.44±0.43Aa85.65±0.92Aa
中度升温MT27.50±0.01Bb25.25±0.02Aab73.69±1.27Bb54.80±0.09Bb
极端高温HT27.06±0.17Bb24.78±0.40Ab63.97±0.84Cc44.29±1.99Bc
南粳9108
NJ9108
种植方式 Planting modes0.162.261.225.1
温度处理 Temperature treatments18.52**97.08**10160.00**3748.00**
种植方式×温度处理
Planting modes×Temperature treatments
9.39*0.9925.60**17.02**
南粳46
NJ46
种植方式 Planting modes11.05*2.991.06111.92**
温度处理 Temperature treatments18.99**11.53**252.87**712.90**
种植方式×温度处理
Planting modes×Temperature treatments
0.021.4310.71**57.97**

Fig. 2

Effects of high temperature stress on growth rate of the dry weight of spike under different planting modes TP: Transplanting; DS: Direct sowing; NT: Normal temperature; MT: Moderate temperature; HT: Extreme high temperature; NJ9108: Nanjing 9108;NJ46: Nanjing 46. The same as below"

Table 6

Effects of high temperature stress on dry matter transport characteristics under different planting modes"

品种
Variety
种植方式
Planting modes
温度处理
Temperature treatments
始穗期
Initial heading stage (g·hole-1)
成熟期
Mature stage (g·hole-1)
转运量
Translocation
amount (g·hole-1)
转运率
Translocation rate (%)
贡献率
Contribution
rate (%)
茎叶
Stem and leaf

Panicle
茎叶
Stem and leaf

Panicle
南粳9108
NJ9108
移栽 TP常温 NT40.75±0.932.48±0.0630.73±0.80Bc29.95±1.12Aa10.02±0.46Aa24.6033.46
中度升温MT32.71±0.85Bb21.32±0.55Bb8.04±0.21Bb19.7337.71
极端高温 HT35.71±0.93Aa12.11±1.31Cc5.04±0.15Cc12.3741.63
直播 DS常温 NT39.89±1.043.15±0.0828.86±0.75Bc31.52±0.82Aa11.03±0.29Aa27.6535.00
中度升温 MT30.09±0.78Bb25.55±0.56Bb9.80±0.27Bb24.5638.34
极端高温 HT36.19±0.94Aa9.39±0.34Cc3.70±0.18Cc9.2839.40
南粳46
NJ46
移栽 TP常温 NT40.15±0.972.87±0.0727.74±0.72Cc35.32±0.92Aa12.41±0.32Aa30.9135.13
中度升温 MT30.95±0.80Bb29.99±1.08Bb9.20±0.24Bb22.9230.69
极端高温 HT34.25±0.89Aa22.87±0.59Cc5.90±0.17Cc14.6925.80
直播 DS常温 NT40.7±1.123.05±0.0528.89±0.75Cc35.28±1.32Aa11.81±0.31Aa29.0233.48
中度升温 MT31.75±0.83Bb29.81±0.78Bb8.95±0.13Bb21.9930.02
极端高温 HT34.25±0.72Aa21.58±0.57Cc6.46±0.09Cc15.8629.91

Fig. 3

Effects of high temperature stress on SPAD value of rice flag leaf"

Fig. 4

Effects of high temperature stress on net photosynthetic rate of flag leaf under different planting modes"

Fig. 5

Effects of high temperature stress on stomatal conductance of flag leaf under different planting modes"

Fig. 6

Effects of high temperature stress on transpiration rate of flag leaf under different planting modes"

Fig. 7

Path analysis of yield and its constituent factors under different treatments"

Table 7

Correlation analysis of photosynthetic matter production characteristics and yield components"

相关性
Correlation
穗数
No. of panicles
每穗粒数
Spikelet number per panicle
千粒重
1000-grain weight
结实率
Filled grain percentage
一次枝梗籽粒结实率
Filled grain percentage of primary branch
二次枝梗籽粒结实率
Filled grain percentage of secondary branch
产量
Yield
干物质重量 Dry matter weight0.3090.700*0.853**0.932**0.901**0.956**0.908**
转运量 Translocation amount0.4590.587*0.619*0.887**0.879**0.880**0.936**
SPAD值 SPAD value-0.1640.3520.146-0.217-0.183-0.257-0.153
剑叶净光合速率
Net photosynthetic rate of flag leaf
-0.194-0.743**-0.499-0.689*-0.729**-0.628*-0.676*
气孔导度 Stomatal conductance0.4520.5020.4270.742**0.731**0.740**0.801**
[1] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 1535.
[2] 秦大河. 气候变化与干旱. 科技导报, 2009, 27(11): 3.
QIN D H.Climate change and drought. Science & Technology Review, 2009, 27(11): 3. (in Chinese)
[3] 凌霄霞, 张作林, 翟景秋,叶树春,黄见良. 气候变化对中国水稻生产的影响研究进展. 作物学报, 2019, 45(3): 323-334.
LING X X, ZHANG Z L, ZHAI J Q, YE S C, HUANG J L.A review for impacts of climate change on rice production in China. Acta Agronomica Sinica, 2019, 45(3): 323-334. (in Chinese)
[4] LIU Z H, YANG P, TANG H J, WU W B, ZHANG L, YU Q Y, LI Z G.Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980-2010. Regional Environmental Change, 2015, 15(5): 919-929.
[5] WASSMANN R, JAGADISH S V K, SUMFLETH K, PATHAK H, HOWELL G, LSMAIL A, SERRAJ R, REDONA E, SINGH R K, HEUER S. Regional vulnerability of climate change impacts on asian rice production and scope for adaptation. Advances in Agronomy
2009, 102(9): 91-133.
[6] 张倩, 赵艳霞, 王春乙. 我国主要农业气象灾害指标研究进展. 自然灾害学报, 2010, 19(6): 40-54.
ZHANG Q, ZHAO Y X, WANG C Y.Advances in research on major agro-meteorological disaster indexes in China. Journal of Natural Disasters, 2010, 19(6): 40-54. (in Chinese)
[7] 谭中和, 蓝泰源, 任昌福, 方文. 杂交籼稻开花期高温胁迫危害及其对策的研究. 作物学报, 1985, 11(2): 103-108.
TAN Z H, LAN T Y, REN C F, FANG W.Study on high temperature damage at flowering stage of indica hybrid rice and its countermeasures. Acta Agronomica Sinica, 1985, 11(2): 103-108. (in Chinese)
[8] 汤昌本, 林迢, 简根梅, 裘鹏霄. 浙江早稻高温胁迫危害研究. 浙江气象科技, 2000, 21(2): 15-19.
TANG C B, LIN Y, JIAN G M, QIU P X.Study on high temperature damage of early rice in Zhejiang province. Journal of Zhejiang Meteorology, 2000, 21(2): 15-19. (in Chinese)
[9] ISHIGURO S, OGASAWARA K, FUJINO K, SATO Y, KISHIMA Y.Low temperature-responsive changes in the anther transcriptome’s repeat sequences are indicative of stress sensitivity and pollen sterility in rice strains. Plant Physiology, 2014, 164(2): 671-682.
[10] 谢晓金, 李秉柏, 李映雪, 李昊宇, 赵小艳, 杨沈斌, 王志明. 抽穗期高温胁迫对水稻产量构成要素和品质的影响. 中国农业气象, 2010, 31(3): 411-415.
XIE X J, LI B B, LI Y X, LI H Y, ZHAO X Y, YANG S B, WANG Z M.Effects of high temperature stress on yield components and grain quality during heading stage. Chinese Journal of Agrometeorology, 2010, 31(3): 411-415. (in Chinese)
[11] 盛婧, 陶红娟, 陈留根. 灌浆结实期不同时段温度对水稻结实与稻米品质的影响. 中国水稻科学, 2007, 21(4): 396-402.
SHENG J, TAO H J, CHEN L G.Response of seed-setting and grain quality of rice to temperature at different time during grain filling period. Chinese Journal of Rice Science, 2007, 21(4): 396-402. (in Chinese)
[12] 张祖建, 王晴晴, 郎有忠, 王春哥, 朱庆森, 杨建昌. 水稻抽穗期高温胁迫对不同品种受粉和受精作用的影响. 作物学报, 2014, 40(2): 273-282.
ZHANG Z J, WANG Q Q, LANG Y Z, WANG C G, ZHU Q S, YANG J C.Effects of high temperature stress at heading stage on pollination and fertilization of different types of rice variety. Acta Agronomica Sinica, 2014, 40(2): 273-282. (in Chinese)
[13] PENG S B, HUANG J L, JOHN E S, REBECCA C L, ROMEO M V, ZHONG X H, GRACE S C, GURDEY S K, KENNETH G C.Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the USA, 2004, 101(27): 9971-9975.
[14] 吴超, 崔克辉. 高温胁迫影响水稻产量形成研究进展. 中国农业科技导报, 2014, 16(3): 103-111.
WU C, CUI K H.Progress on effect of high temperature on rice yield formation. Journal of Agricultural Science and Technology, 2014, 16(3): 103-111. (in Chinese)
[15] MOHAMMED A R, TARPLEY L.High nighttime temperature affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology, 2009, 149(6/7): 999-1008.
[16] KIM J W, SHON J Y, LEE C K, YANG W H, YOON Y W, YANG W H, KIM Y G, LEE B W.Relationship between grain filling duration and leaf senescence of temperature rice under high temperature. Field Crop Research, 2011, 122(3): 207-213.
[17] MOHAMMED A R, TARPLEY L.Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Science, 2009, 49(1): 313-322.
[18] SCAFARO A P, YAMORI W, CARMO-SILVA A E, SALVUCCI M E, CAEMMERER S V, ATWELL B J. Rubisco activity is associated with photosynthetic thermotolerance in a wild rice (Oryza meridionalis). Physiologia Plantarum, 2012, 146(1): 99-109.
[19] ITO S, HARA T, KAWANAMI Y, WATANABE T, THIRAPORN K, OHTAKE N, SUEYOSHI K, MITSUI T, FUKUYAN T, TAKAHASHI Y, SATO A, OHYAMA T.Carbon and nitrogen transport during grain filling in rice under high-temperature conditions. Journal of Agronomy and Crop Science, 2009, 195(5): 368-376.
[20] 李杰, 张洪程, 董洋阳, 倪晓诚, 杨波, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕. 不同生态区栽培方式对水稻产量、生育期及温光利用的影响. 中国农业科学, 2011, 44(13): 2661-2672.
LI J, ZHANG H C, DONG Y Y, NI X C, YANG B, GONG J L, CHANG Y, DAI Q G, HUO Z Y, XU K, WEI H Y.Effects of cultivation methods on yield, growth stage and utilization of temperature and illumination of rice in different ecological regions. Scientia Agricultura Sinica, 2011, 44(13): 2661-2672. (in Chinese)
[21] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47(7): 1273-1289.
ZHANG H C, GONG J L.Research Status and development discussion on high-yielding agronomy of mechanized planting rice in China. Scientia Agricultura Sinica, 2014, 47(7): 1273-1289. (in Chinese)
[22] 陶龙兴, 谈惠娟, 王熹, 曹立勇, 宋建, 程式华. 高温胁迫对国稻6号开花结实习性的影响. 作物学报, 2008, 34(4): 669-674.
TAO L X, TAN H J, WANG X, CAO L Y, SONG J, CHENG S H.Effects of high temperature stress on flowering and grain-setting characteristics for Guodao 6. Acta Agronomica Sinica, 2008, 34(4): 669-674. (in Chinese)
[23] 石春林, 金庆之, 郑建初, 汤日圣. 减数分裂期高温胁迫对水稻颖花结实率影响的定量分析. 作物学报, 2008, 34(4): 627-631.
SHI C L, JIN Q Z, ZHENG J C, TANG R S.Quantitative analysis on the effects of high temperature at meiosis stage on seed-setting rate of rice florets. Acta Agronomica Sinica, 2008, 34(4): 627-631. (in Chinese)
[24] 杨陶陶, 解嘉鑫, 黄山, 谭雪明, 潘晓华, 曾勇军, 石庆华, 张俊, 曾研华. 花后增温胁迫对双季晚粳稻产量和稻米品质的影响. 中国农业科学, 2020, 53(7): 1338-1347.
YANG T T, XIE J X, HUANG S, TAN X M, PAN X H, ZENG Y J, SHI Q H, ZHANG J, ZENG Y H.The Impacts of post-anthesis warming on grain yield and quality of late japonica rice in a double rice cropping system. Scientia Agricultura Sinica, 2020, 53(7): 1338-1347. (in Chinese)
[25] 郑建初, 张彬, 陈留根, 杜群, 秦永生, 宋健, 张卫健. 抽穗期高温胁迫对水稻产量构成要素和稻米品质的影响及其基因型差异. 江苏农业学报, 2005, 21(4): 249-254.
ZHENG J C, ZHANG B, CHEN L G, DU Q, QIN Y S, SONG J, ZHANG W J.Genotype differences in effects of high air temperature in field on rice yield components and grain quality during heading stage. Jiangsu Journal of Agricultural Sciences, 2005, 21(4): 249-254. (in Chinese)
[26] 董文军, 邓艾兴, 张彬, 田云录, 陈金, 杨飞, 张卫健. 开放式昼夜不同增温胁迫对单季稻影响的试验研究. 生态学报, 2011, 31(8): 2169-2177.
DONG W J, DENG A X, ZHANG B, TIAN Y L, CHEN J, YANG F, ZHANG W J.An experimental study on the effects of different diurnal warming regimes on single cropping rice with Free Air Temperature Increased (FATI) facility. Acta Ecologica Sinica, 2011, 31(8): 2169-2177. (in Chinese)
[27] 张桂莲, 陈立云, 张顺堂, 刘国华, 唐文邦, 贺治洲, 王明. 抽穗开花期高温胁迫对水稻剑叶理化特性的影响. 中国农业科学, 2007, 40(7): 1345-1352.
ZHANG G L, CHEN L Y, ZHANG S T, LIU G H, TANG W B, HE Z Z, WANG M.Effects of high temperature on physiological and biochemical characteristics in flag leaf of rice during heading and flowering period. Scientia Agricultura Sinica, 2007, 40(7): 1345-1352. (in Chinese)
[28] 杜尧东, 李键陵, 王华, 唐湘如, 胡飞. 高温胁迫对水稻剑叶光合和叶绿素荧光特征的影响. 生态学杂志, 2012, 31(10): 2541-2548.
DU Y D, LI J L, WANG H, TANG X R, HU F.Effects of high temperature stress on the flag leaf photosynthesis and chlorophyll fluorescence parameters of rice. Chinese Journal of Ecology, 2012, 31(10): 2541-2548. (in Chinese)
[29] CHENG W, SAKAI H, YAGI K, HASEGAWA T.Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agricultural and Forest Meteorology, 2010, 150(9): 1174-1181.
[30] 李杰, 张洪程, 常勇, 龚金龙, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同种植方式水稻高产栽培条件下的光合物质生产特征研究. 作物学报, 2011, 37(7): 1235-1248.
LI J, ZHANG H C, CHANG Y, GONG J L, GUO Z H, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H.Characteristics of photosynthesis and matter production of rice with different planting methods under high-yielding cultivation condition. Acta Agronomica Sinica, 2011, 37(7): 1235-1248. (in Chinese)
[31] 马义虎, 杨祥田. 高温胁迫对水稻的影响及其对策的研究进展. 中国农学通报, 2015, 31(9): 1-8.
MA Y H, YANG X T.Research advances on the effects of high temperature stress on rice and its counter-measures. Chinese Agricultural Science Bulletin, 2015, 31(9): 1-8. (in Chinese)
[32] 刘维, 李祎君, 吕厚荃. 早稻抽穗开花至成熟期气候适宜度对气候变暖与提前移栽的响应. 中国农业科学, 2018, 51(1): 49-59.
LIU W, LI H J, LÜ H Q.Response of heading to flowering to maturity of early rice to climate change and different transplant periods. Scientia Agricultura Sinica, 2018, 51(1): 49-59. (in Chinese)
[33] 郭建茂, 吴越, 杨沈斌, 江晓东, 谢晓燕, 王锦杰, 申双和. 典型高温胁迫年不同播期一季稻产量差异及其原因分析. 中国农业气象, 2017, 38(2): 121-130.
GUO J M, WU Y, YANG S B, JIANG X D, XIE X Y, WANG J J, SHEN S H.Yield differences and its causes for one season rice under different sowing dates in typical high temperature year. Chinese Journal of Agrometeorology, 2017, 38(2): 121-130. (in Chinese)
[34] 段骅, 傅亮, 剧成欣, 刘立军, 杨建昌. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响. 中国水稻科学, 2013, 27(6): 591-602.
DUAN Y, FU L, JU C X, LIU L J, YANG J C.Effects of application of nitrogen as panicle promoting fertilizer on seed setting and grain quality of rice under high temperature stress. Chinese Journal of Rice Science, 2013, 27(6): 591-602. (in Chinese)
[35] 段骅, 俞正华, 徐云姬, 王志琴, 刘立军, 杨建昌. 灌溉方式对减轻水稻高温胁迫危害的作用. 作物学报, 2012, 38(1): 107-120.
DUAN Y, YU Z H, XU Y J, WANG Z Q, LIU L J, YANG J C.Role of irrigation patterns in reducing harms of high temperature to rice. Acta Agronomica Sinica, 2012, 38(1): 107-120. (in Chinese)
[36] 许轲, 孙圳, 霍中洋, 戴其根, 张洪程, 刘俊, 宋云生, 杨大柳, 魏海燕, 吴爱国, 王显, 吴冬冬. 播期、品种类型对水稻产量、生育期及温光利用的影响. 中国农业科学, 2013, 46(20): 4222-4233.
XU K, SUN Z, HUO Z Y, DAI Q G, ZHANG H C, LIU J, SONG Y S, YANG D L, WEI H Y, WU A G, WANG X, WU D D.Effects of seeding date and variety type on yield, growth stage and utilization of temperature and sunshine in rice. Scientia Agricultura Sinica, 2013, 46(20): 4222-4233. (in Chinese)
[37] 李飞, 卓壮, UDAWELA U A S, 高用明, 石英尧. 水稻高温胁迫热害发生机理与耐高温胁迫遗传基础研究. 植物遗传资源学报, 2013, 14(1): 97-103.
LI F, ZHUO Z, UDAWELA U A L S, GAO Y M, SHI Y Y. Damage mechanism of heat stress and genetic basis of heat tolerance in rice. Journal of Plant Genetic Resources, 2013, 14(1): 97-103. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[9] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[12] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[13] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[14] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[15] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!