Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (5): 921-932.doi: 10.3864/j.issn.0578-1752.2021.05.005
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
JianZhao TANG1,2(),Jing WANG1(),DengPan XIAO2,XueBiao PAN1
[1] | FAO. Data of FAOSTAT. http://www.fao.org/faostat/en/#data/QC. |
[2] | HAVERKORT A J, STRUIK P C. Yield levels of potato crops: Recent achievements and future prospects. Field Crops Research, 2015,182:76-85. |
[3] | KOOMAN P L, HAVERKORT A J. Modeling development and growth of the potato crop influenced by temperature and daylenght: LINTUL-POTATO//HAVERKORT A J, MACKERRON D K L. Potato Ecology and Modeling Crops Under Conditions Limiting Growth. Kluwer Academic Publisher, Wageningen, The Netherlands, 1995: 41-59. |
[4] | BENOIT G R, GRANT W J. Excess and deficient water stress effects on 30 years of Aroostook County potato yields. American Potato Journal, 1985,62:49-55. |
[5] | EPSTEIN E, GRANT W J. Water stress relations of the potato plant under field conditions. Agronomy Journal, 1973,65:400-404. |
[6] | HAVERKORT A J. The canon of potato: 36, potato ontology. Potato Research, 2007,50:357-361. |
[7] | YUAN F M, BLAND W L. Comparison of light and temperature- based index models for potato growth and development. American Journal of Potato Research, 2005,82:345-352. |
[8] |
TANG J Z, WANG J, FANG Q X, WANG E L, YIN H, PAN X B. Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. European Journal of Agronomy, 2018,98:82-94.
doi: 10.1016/j.eja.2018.05.008 |
[9] | TANG J Z, WANG J, FANG Q X, DAYANANDA B, YU Q, ZHAO P Y, YIN H, , PAN X B. Identifying agronomic options for better potato production and conserving water resources in the agro-pastoral ecotone in North China. Agricultural and Forest Meteorology, 2019,272/273:91-101. |
[10] | 梁淑敏, 张磊, 和生鼎, 杨群擎, 李燕山, 和平根, 王绍林, 王颖, 杨琼芬, 隋启君. 滇西北马铃薯不同栽培模式下产量及经济效益分析. 作物杂志, 2017(6):79-83. |
LIANG S M, ZHANG L, HE S D, YANG Q Q, LI Y S, HE P G, WANG S L, WANG Y, YANG Q F, SUI Q J. Yield and economic benefit of potato under the different cultivation patterns in Northwest Yunnan. Crops, 2017(6):79-83. (in Chinese) | |
[11] | 秦舒浩, 张俊莲, 王蒂, 刘震, 申鹏. 半干旱区雨养农业区补灌对马铃薯田水分运移的影响. 水土保持学报, 2011,25(4):179-182. |
QIN S H, ZHANG J L, WANG D, LIU Z, SHEN P. Effects of supplemental irrigation using catchment rainfall on water movement of potato field in semi-arid rainfed areas. Journal of Soil and Water Conservation, 2011,25(4):179-182. (in Chinese) | |
[12] | 周应友, 付梅. 不同起垄栽培方式对早熟马铃薯产量及经济性状的影响. 耕作与栽培, 2016(4):35-37. |
ZHOU Y Y, FU M. Influence of different ridging manners on yield and economic traits of early mature potato. Tillage and Cultivation, 2016(4):35-37. (in Chinese) | |
[13] | 朱江洪. 不同起垄方式对马铃薯生长的影响. 耕作与栽培, 2015(3):47-49. |
ZHU J H. Study on different ridge methods on growth of potato. Tillage and Cultivation, 2015(3):47-49. (in Chinese) | |
[14] | 冯志文, 康跃虎, 万书勤, 刘士平. 滴灌施肥对内蒙古沙地马铃薯生长和水肥利用的影响. 干旱地区农业研究, 2017,35(5):242-249. |
FENG Z W, KANG Y H, WAN S Q, LIU S P. Effects of drip fertigation levels on potato growth and the water and fertilizer efficiency on sandy soil in Inner Mongolia. Agricultural Research in the Arid Areas, 2017,35(5):242-249. (in Chinese) | |
[15] | 宋娜, 王凤新, 杨晨飞, 杨开静. 水氮耦合对膜下滴灌马铃薯产量、品质及水分利用的影响. 农业工程学报, 2013,29(13):98-105. |
SONG N, WANG F X, YANG C F, YANG K J. Coupling effects of water and nitrogen on yield, quality and water use of potato with drip irrigation under plastic film mulch. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(13):98-105. (in Chinese) | |
[16] | JONES J W, HOOGENBOOM G, PORTER C H. The DSSAT cropping system model. European Journal of Agronomy, 2003,18:235-265. |
[17] | BROWN H E, HUTH N, HOLZWORTH D. A potato model built using the APSIM Plant. NET framework//19th International Congress on Modeling and Simulation. Perth, Australia, 2011, 961-967. |
[18] | LISSON S N, COTCHING W E. Modeling the fate of water and nitrogen in the mixed vegetable farming systems of northern Tasmania, Australia. Agricultural Systems, 2011,104:600-608. |
[19] | TANG J Z, WANG J, WANG E L, YU Q, YIN H, HE D, PAN X B. Identifying key meteorological factors of yield variation of potato and the optimal planting date in the agro-pastoral ecotone in North China. Agricultural and Forest Meteorology, 2018,256/257:283-291. |
[20] | 李亚杰, 石强, 何建强, 张俊莲, 白江平, 王蒂. 马铃薯生长模型研究进展及其应用. 干旱地区农业研究, 2014,32(2):126-136. |
LI Y J, SHI Q, HE J Q, ZHANG J L, BAI J P, WANG D. Development and application of potato growth models. Agricultural Research in the Arid Areas, 2014,32(2):126-136. (in Chinese) | |
[21] | SANDS P J, HACKEET C, NIX H A. Model of the development and bulking of potatoes. 1. Derivation from well-managed field crops. Field Crops Research, 1979,2:309-331. |
[22] | NG E, LOOMIS R S. Simulations of Growth and Yield of the Potato Crop. Centre for Agricultural Publishing and Documentation. Wageningen, the Netherlands. 1984: 1-100. |
[23] | MACKERRON D K L. Advances in modeling the potato crop: Sufficiency and accuracy considering uses and users, data, and errors. Potato Research, 2008,51:411-427. |
[24] | 黄冲平. 马铃薯生长发育的动态模拟研究[D]. 杭州: 浙江大学, 2003. |
HUANG C P. Studies on the system simulation for potato growth and development[D]. Hangzhou: Zhejiang University, 2003. (in Chinese) | |
[25] | HAVERKORT A J, KOOMAN P. The use of systems analysis and modeling of growth and development in potato ideotyping under conditions affecting yields. Journal of Environment Quality, 1997,24:772-777. |
[26] | JAMIESON P D, ZYSKOWSKI R F, SINTON M, BROWN H E, BUTLER R C. The potato calculator: A tool for scheduling nitrogen fertilizer application//Proceedings of the Thirty-sixth Annual Conference, Agronomy Society of New Zealand. Atlantic City, New Jersey, 2006,36:49-53. |
[27] | VAN DELDEN A, SCHRODEER J J, KROPFF M I, GRASHOFF C, BOOIJ R. Simulated potato yield, and crop and soil nitrogen dynamics under different organic nitrogen management strategies in the Netherlands. Agriculture, Ecosystem & Environment, 2003,96:77-95. |
[28] | VAN ITTERSUM M, LEFFELAAR H, KROPFF M J, BASTIAANS L, GOUDRIAAN J. On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 2003,18:201-234. |
[29] | LENZ-WIEDEMANN V I S, KLAR C W, SCHNEIDER K. Development and test of a crop growth model for application within a global change decision support system. Ecological Modelling, 2010,221:314-329. |
[30] | FLEISHER D H, TOMLIN D J, YANG Y, REDDY V R. Simulation of potato gas exchange rate using SPUDSIM. Agricultural and Forest Meteorology, 2010,150:432-442. |
[31] | MACKEERON D K L, WAISTER P D. A simple-model of potato growth and yield. 1. Model development and sensitivity analysis. Agricultural and Forest Meteorology, 1985,34:241-252. |
[32] | FISHMAN S, TALPAZ H, WINOGRD R, DINAR M, ARAZI Y, ROSEMAN Y, VARSHAVSKI S. A model for simulation of potato growth on the plant community level. Agricultural Systems, 1985,18:115-128. |
[33] |
JACKSON S D. Multiple signaling pathways control tuber induction in potato. Plant Physiology, 1999,119:1-8.
pmid: 9880339 |
[34] | HAVERKORT A J, FRANKE A C, STEYN J M, PRONK A A, CALDIZ D O, KOOMAN P L. A robust potato model: LINTUL- POTATO-DSS. Potato Research, 2015,58:313-327. |
[35] | MCMASTER G S, WILHELM W W. Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology, 1997,87:291-300. |
[36] | GRIFFIN T S, BRADLEY S J, RITCHIE J T. A simulation model for potato growth and development: SUBSTOR-Potato version 2.0. IBSNAT Research Report Series, 1993,93(500):1-32. |
[37] | RAYMUNDO R, ASSENG S, CAMMARANO D, QUIROZ R. Potato, sweet potato, and yam models for climate change: A review. Field Crops Research, 2014,166:173-185. |
[38] |
VAN DER VEEKEN A J H, LOMMEN W J M. How planting density affects number and yield of potato minitubers in a commercial glasshouse production system. Potato Research, 2009,52:105-119.
doi: 10.1007/s11540-008-9124-z |
[39] | EWING E E, STRUIK P C. Tuber formation in potato: Induction, initiation, and growth. Horticultural Reviews, 1992,14:89-198. |
[40] | MASARIRAMBI M T, MANDISODZA F C, MASHINGAIDZE A B, BHEBHE E. Influence of plant population and tuber size on growth and yield components of potato. International Journal of Agriculture & Biology, 2012,14:545-549. |
[41] | JAMIESON P D, ZYSKOWSKI R F, LI F Y, SEMENOV M A. Water and nitrogen uptake and response in models of wheat, potato, and maize//MA L W, AHUJA L R, BRUULSEMA T. Quantifying and Understanding Plant Nitrogen Uptake for Systems Modeling. CRC Press, Taylor & Francis Group, America. 2009: 127-145. |
[42] | KIM Y U, SEO B S, CHOI D H, BAN H Y, LEE B W. Impacts of high temperature on the marketable tuber yield and related traits of potato. European Journal of Agronomy, 2017,89:46-52. |
[43] | GAYLER S, WANG E, PRIESACK E, SCHAAF T, MAIDL F X. Modeling biomass growth, N-uptake and phenological development of potato crop. Geoderma, 2002,105:367-383. |
[44] | SIBMA L. Maximization of arable crop yield in Netherlands. Netherlands Journal of Agricultural Science, 1977,25(4):278-287. |
[45] | 郑剑非, 周白, 陆龙泉, 杜尧东. 内蒙古武川县农业生产力探讨. 干旱地区农业研究, 1990,4:79-85. |
ZHENG J F, ZHOU B, LU L Q, DU Y D. A discussion on agricultural productivity in Wuchuan county of Inner Mongolia. Agricultural Research in the Arid Areas, 1990,4:79-85. (in Chinese) | |
[46] | TANG J Z, WANG J, HE D, HUANG M X, PAN Z H, PAN X B. Comparison of the impacts of climate change on potential productivity of different staple crops in the agro-pastoral ecotone of North China. Journal of Meteorological Research, 2016,30(6):983-997. |
[47] | GARCIA-VILA M, FERERES E. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. European Journal of Agronomy, 2012,36:21-31. |
[48] | VASHISHT B B, TIGON T, MULLA D J, ROSEN C, XU H, TWEINE, T, JALOTA S K. Adaptation of water and nitrogen management to future climates for sustaining potato yield in Minneasota: Field and simulation study. Agricultural Water Management, 2015,152:198-206. |
[49] | FEDDES R A. Modelling soil water dynamics in the unsaturated zone-state of the art. Journal of Hydrology, 1988,100(1/3):69-111. |
[50] | SPITTERS C J T, SCHAPENDONK A H C M. Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation. Plant and Soil, 1990,123:193-203. |
[51] | 张永成, 谢连美. 马铃薯丰产栽培综合农业措施数学模型的研究. 马铃薯杂志, 1989,3(2):79-87. |
ZHANG Y C, XIE L M. A study on the mathematical model of potato cultural practices for high tuber yield. Chinese Potato Journal, 1989,3(2):79-87. (in Chinese) | |
[52] | 陈俊珊, 徐福祥, 桑德福. 干旱阴湿地区渭薯1号综合农业措施数学模型及其优化方案的研究与应用. 马铃薯杂志, 1998,8(1):36-40. |
CHEN J S, XU F X, SANG D F. The research and application of comprehensive agricultural mathematical model and its optimum scheme for Weishu Ⅰ in dry and shady wet land area. Chinese Potato Journal, 1998,8(1):36-40. (in Chinese) | |
[53] | 龚学臣, 杨立廷, 牛瑞明, 高占旺. 冀西北旱地马铃薯肥料效应数学模型的研究. 马铃薯杂志, 1998,12(1):3-6. |
GONG X C, YANG L T, NIU R M, GAO Z W. Studies of the mathematics model of fertilizer effects on potato in Northwest Hebei. Chinese Potato Journal, 1998,12(1):3-6. (in Chinese) | |
[54] | HIJMANS R J. The effects of climate change on global potato production. American Journal of Potato Research, 2003,80:271-279. |
[55] |
FLEISHER D H, CONDORI B, QUIROZ R, ALVA A, ASSENG S, BARREDA C, BINDI M, BOOTE K J, FERRISE R, FRANKE A C, GOVINDAKRISHNAN P M, HARAHAGAZWE D, HOOGENBOOM G, KUMAR S N, MERANTE P, NENDEL C, OLESEN J E, PARKER P S, RAES D, RAYMUNDO R, RUANE A C, STOCKLE C, SUPIT I, VANUYTRECHT E, WOLF J, WOLI P. A potato model intercomparison across varying climates and productivity levels. Global Change Biology, 2017,23:1258-1281.
pmid: 27387228 |
[56] | 李剑萍, 杨侃, 曹宁, 韩颖娟, 张学艺. 气候变化情景下宁夏马铃薯单产变化模拟. 中国农业气象, 2009,30(3):407-412. |
LI J P, YANG K, CAO N, HAN Y J, ZHANG X Y. Simulation of changes of potato yields under different climate change scenarios in Ningxia. Chinese Journal of Agrometeorology, 2009,30(3):407-412. (in Chinese) | |
[57] | 孙芳, 林而达, 李剑萍, 熊伟. 基于DSSAT模型的宁夏马铃薯生产的适应对策. 中国农业气象, 2008,29(2):127-129. |
SUN F, LIN E D, LI J P, XIONG W. Study on adaptation measures of potato production by using DSSAT crop model. Chinese Journal of Agrometeorology, 2008,29(2):127-129. (in Chinese) | |
[58] | GOMEZ D, SALVADOR P, SANZ J, CASANOVA J L. Potato yield prediction using machine learning techniques and sentinel 2 data. Remote Sensing, 2019,11:1-17. |
[59] | KHAN M S, YIN X Y, VAN DER PUTTEN P E L, JANSEN H J, VAN ECK H J, VAN EEUWIJK F A, STRUIK P C. A model-based approach to analyze genetic variation in potato using standard cultivars and a segregating population. Ⅱ. Tuber bulking and resource use efficiency. Field Crops Research, 2019,242:1-15. |
[60] | MACHAKAIRE A T B, STEYN J M, CALDIZ D O, HAVERKORT A J. Forecasting yield and tuber size of processing potatoes in South Africa using the LINTUL-Potato-DSS model. Potato Research, 2016,59:195-206. |
[61] | RAYMUNDO R, ASSENG S, PRASSAD R, KLEINWECHTER U, CONCHA J, CONDORI B, BOWEN W, WOLF J, OLESEN J E, DONG Q X, ZOTARELL L, GASTELO M, ALVA A, TRAVASSO M, QUIROZ R, ARORA V, GRAHAM W, PORTER C. Performance of the SUBSTOR-Potato model across contrasting growing conditions. Field Crops Research, 2017,202:57-76. |
[62] |
CHEN C T, SETTER T L. Response of potato dry matter assimilation and partitioning to elevated CO2 at various stages of tuber initiation and growth. Environmental and Experimental Botany, 2012,80:27-34.
doi: 10.1016/j.envexpbot.2012.02.003 |
[63] |
SPARKS A H, FORBES G A, HIJMANS R J, GARRETT K A. Climate change may have limited effects on global risk of potato late blight. Global Change Biology, 2014,20:3621-3631.
doi: 10.1111/gcb.12587 pmid: 24687916 |
[64] |
ANDRADE P J L, HIJMANS R J, FORBES G A, FRY W E, NELSON R J. Simulation of potato late blight in the Andes. Ⅰ. Modification and parameterization of the LATEBLIGHT model. Phytopathology, 2005,95:1191-1199.
doi: 10.1094/PHYTO-95-1191 pmid: 18943472 |
[65] | HUANG J X, GOMEZ-DANS J L, HUANG H, MA H Y, WU Q L, LEWIS P E, LIANG S L, CHEN Z X, XUE J H, WI Y T, ZHAO F, WANG J, XIE X H Assimilation of remote sensing into crop growth models: current status and perspectives. Agricultural and Forest Meteorology, 2019,276/277:1-16. |
[66] |
YIN X Y, VAN DER LINDEN C G, STRUIK P G. Bringing genetics and biochemistry to crop modeling, and vice versa. European Journal of Agronomy, 2018,100:132-140.
doi: 10.1016/j.eja.2018.02.005 |
[67] |
IP R H L, ANG L M, SENG K P, BROSTER J C, PRATLEY J E. Big data and machine learning for crop protection. Computers and Electronics in Agriculture, 2018,151:376-383.
doi: 10.1016/j.compag.2018.06.008 |
[1] | LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235. |
[2] | ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117. |
[3] | GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780. |
[4] | PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432. |
[5] | PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784. |
[6] | REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525. |
[7] | CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840. |
[8] | XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500. |
[9] | BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628. |
[10] | ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288. |
[11] | HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122. |
[12] | LI WenLi, YUAN JianLong, DUAN HuiMin, JIANG TongHui, LIU LingLing, ZHANG Feng. Comprehensive Evaluation of Potato Tuber Texture [J]. Scientia Agricultura Sinica, 2022, 55(12): 2278-2293. |
[13] | FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902. |
[14] | FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760. |
[15] | YuXin LIANG,JianXiang WU,XiaoYu LI,ChunYu ZHANG,JiChao HOU,XuePing ZHOU,YongZhi WANG. Mapping of Epitopes and Establishment of Rapid DAS-ELISA for Potato Virus Y Coat Protein [J]. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162. |
|