Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (16): 3110-3122.doi: 10.3864/j.issn.0578-1752.2022.16.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province

HAN ShouWei1,2(),SI JiSheng1,YU WeiBao1,2,KONG LingAn1,ZHANG Bin1,WANG FaHong1,ZHANG HaiLin2,ZHAO Xin2,LI HuaWei1(),MENG Yu1   

  1. 1Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan 250100
    2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193
  • Received:2022-01-20 Accepted:2022-04-14 Online:2022-08-16 Published:2022-08-11
  • Contact: HuaWei LI E-mail:sy20203010235@cau.edu.cn;lily984411@126.com

Abstract:

【Objective】 Four planting patterns were designed based on survey data to simulate four different yield levels of winter wheat to quantify the yield gap and nitrogen use efficiency gap in Shandong province, to analyze the relationship between yield gap and nitrogen use efficiency gap, and to clarify the contribution of the environment, cultivation conditions and physiological parameters to the yield gap, so as to explore possible ways to synergistically narrow yield gap and increase resource utilization efficiency. 【Method】 This experiment was carried out in Jining, Dezhou, Yantai and Zibo in Shandong from 2016 to 2020. Four treatments were set through comprehensive management measures, such as selection of varieties, fertilizer input, planting density, and irrigation level, which were super-high yield level (SH), high-yield and high-efficiency level (HH), farmer level (FP), and basic yield level (ISP). The yield gap and nitrogen use efficiency gap between different yield levels were analyzed quantitatively to explore the influencing factors of yield gap and nitrogen use efficiency gap and the way to narrow yield gap and increase nitrogen use efficiency. 【Result】 The yield gap between the current high-yield record of wheat in Shandong and SH, SH and HH, HH and FP, FP and ISP were 2 729.1, 674.3, 1 042.9 and 4 349.8 kg·hm-2, respectively. The partial production efficiency gap of nitrogen between SH and HH, HH and FP were -13.54 and 15.67 kg·kg-1, respectively. There was a quadratic equation between the yield and the partial production efficiency of nitrogen. The contribution rate of the current uncontrollable factors (precipitation, temperature, etc.) and controllable factors (resource input, etc.) to the yield gap were 31.16% and 68.84%, respectively. The results showed that the gap of mean leaf area index (MLAI), mean net assimilation rate (MNAR), ear number per unit area (EN) and grain weight (GW) were significantly positively correlated with the yield gap between SH and HH (YG). The gap of harvest index (HI), grain number per spike (GN) and grain weight (GW) were positively correlated with the yield gap between HH and FP (YG). SH and HH treatments had higher aboveground biomass, number of ears per plant and percentage of earring-tillers than FP treatment. 【Conclusion】 At present, the yield level of winter wheat of farmers in Shandong had only achieved 64.34% of the highest recorded yield. Cultivation measures, such as optimizing fertilizer and water input, increasing the proportion of topdressing, and increasing the application of organic fertilizer and zinc fertilizer, could reduce the yield gap by 23.46%, and increase the partial production efficiency of nitrogen by 56.99%. The post-anthesis material production capacity was still the limiting factor for wheat yield improvement. However, when ensuring the light contract after anthesis, increasing the re-transportation of pre-anthesis stored dry matter to improve the harvest index was an effective measure to synergistically improve yield and nitrogen use efficiency.

Key words: winter wheat, yield gap, nitrogen fertilizer partial productivity gap, yield performance analysis

Table 1

The planting density and fertilizer management of wheat in different planting patterns"

管理措施
Management pattern
种植模式 Planting pattern
SH
Super-high yield level
HH
High-yield and high-efficiency level
FP
Farmer level
ISP
Basic yield level
基本苗Basic seedlings (×104 plant·hm-2) 375 300 450 450
肥料运筹
Fertilizer
management
氮肥 N (kg·hm-2) 270 210 360 0
磷肥 P (kg·hm-2) 150 120 120 0
钾肥 K (kg·hm-2) 150 120 120 0
基追比Dressing ratio 5﹕5 4﹕6 6﹕4 0
锌肥ZnSO4(kg·hm-2) 30 30 0 0
有机肥 Organic fertilizer (kg·hm-2) 7500 3000 0 0

Table 2

Soil physicochemical properties of 0-20 cm soil in the experimental sites in 2016 and some investigated super-high yield sites"

类别
Class
年份
Year
地点
Site
全氮
Total nitrogen (g·kg-1)
碱解氮
Available nitrogen
(mg·kg-1)
速效磷
Available phosphorus
(mg·kg-1)
速效钾
Available potassium (mg·kg-1)
有机质
Organic matter (g·kg-1)
试验地块
Test plot
2016 济宁 Jining 1.45 89.09 54.42 117.85 11.02
德州 Dezhou 1.36 81.29 49.88 127.44 10.61
烟台 Yantai 1.29 75.66 62.51 102.31 11.82
淄博 Zibo 1.40 78.99 53.44 109.81 10.29
最高产量地块
Highest yield plot
2018 烟台 Yantai 1.53 92.33 61.19 139.98 20.81
2019 济宁 Jining 1.61 90.88 58.88 137.71 21.93
2019 淄博 Zibo 1.49 95.42 59.34 145.98 23.22

Fig. 1

Grain yield of winter wheat under different planting patterns ISP: Basic yield level; FP: Farmer level; HH: High-yield and high-efficiency level; SH: Super-high yield level; HR: Highest yield level. The same as below"

Table 3

Contribution rate of different factors to yield gap"

年份
Year
地点
Site
贡献率 Contribution rate (%)
当前不可控因素 Uncontrolled factor 可控因素 Controllable factor
大量资源投入
Excess nutrients input
优化栽培措施
Optimized cultivation measure
当前农艺水平
Current crop management
2016-2017 济宁 Jining 26.38 10.87 9.66 53.09
德州 Dezhou 34.16 10.81 12.31 42.73
烟台 Yantai 31.68 1.73 38.71 27.88
淄博 Zibo 37.31 4.32 14.82 43.56
2017-2018 济宁 Jining 37.29 8.61 21.58 32.52
德州 Dezhou 39.27 4.26 7.88 48.59
烟台 Yantai 43.78 3.20 4.42 48.59
淄博 Zibo 41.84 7.69 7.93 42.54
2018-2019 济宁 Jining 38.54 7.31 9.41 44.74
德州 Dezhou 29.67 8.88 16.06 45.39
烟台 Yantai 21.55 14.90 4.26 59.30
淄博 Zibo 26.19 11.32 4.37 58.12
2019-2020 济宁 Jining 19.47 7.80 13.83 58.91
德州 Dezhou 18.16 7.79 12.21 61.85
烟台 Yantai 25.96 3.26 11.74 59.04
淄博 Zibo 27.41 10.25 5.43 56.92
平均 Average 31.16 7.69 12.16 48.99

Table 4

The correlation between yield gap and yield performance parameters gap"

光合性能参数差
Photosynthetic performance parameter gap (x)
产量差
Yield gap
(y)
相关方程
Correlation equation
相关系数
Correlation coefficient
产量构成参数差
Yield composition parameter gap (x)
产量差
Yield gap
(y)
相关方程
Correlation equation
相关系数
Correlation coefficient
MLAIFP-ISP YGIV y=0.647x+0.102 0.4825 ** ENFP-ISP YGIV y=0.568x+0.166 0.3828 **
MLAIHH-FP YGIII y=0.077x+0.554 -0.0620 ENHH-FP YGIII y=-0.196x+0.388 -0.0149
MLAISH-HH YGII y=0.779x+0.023 0.4861 ** ENSH-HH YGII y=0.868x+0.192 0.8343 **
ENHR-SH YGI y=0.447x+0.354 0.1586
MNARFP-ISP YGIV y=0.888x-0.132 0.7237 ** GNFP-ISP YGIV y=0.715x+0.244 0.5825 **
MNARHH-FP YGIII y=-0.055x+0.437 -0.0676 GNHH-FP YGIII y=0.794x-0.001 0.7256 **
MNARSH-HH YGII y=0.890x+0.176 0.5283 ** GNSH-HH YGII y=0.543x+0.334 0.1322
GNHR-SH YGI y=-0.521x+0.963 0.2778
HIFP-ISP YGIV y=-0.295x+0.586 0.1028 GWFP-ISP YGIV y=0.365x+0.402 0.1051
HIHH-FP YGIII y=1.042x+0.141 0.6837 ** GWHH-FP YGIII y=0.755x+0.184 0.4593 **
HISH-HH YGII y=0.084x+0.496 -0.0645 GWSH-HH YGII y=0.592x+0.016 0.3585 **
GWHR-SH YGI y=0.843x+0.018 0.5874 **

Fig. 2

The correlation between winter wheat yield and its nitrogen fertilizer partial productivity PFP: Nitrogen fertilizer partial productivity. **, significant at P<0.01; *, significant at P<0.05. The same as below"

Fig. 3

The correlation of winter wheat yield and its nitrogen fertilizer partial productivity with the number of ears per plant and percentage of earring-tillers NEP: Number of ears per plant; ETP: Percentage of earring-tillers"

Fig. 4

The above-ground biomass accumulation and transportation for winter wheat plants under different yield levels Different lowercase letters indicate significant differences among treatments (P<0.05)"

Fig. 5

The correlation of winter wheat yield and its nitrogen fertilizer partial productivity with contribution of pre-flowering and post-anthesis material to grain yield"

[1] BARRETT C B. Measuring food insecurity. Science, 2010, 327(5967): 825-828.
doi: 10.1126/science.1182768
[2] GODFRAY H C J, BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C. Food security: The challenge of feeding 9 billion people. Science, 2010, 327(5967): 812-818.
[3] LIU Y Y, YU J, ZHANG L, WANG X K, YIN G D, ZUO W G, BAI Y C, HUO Z Y. Effects of fertilization on yield and nitrogen use efficiency of wheat and rice with straw return. Communications in Soil Science and Plant Analysis, 2021, 52(10): 1161-1170.
doi: 10.1080/00103624.2021.1879115
[4] RAY D K, MUELLER N D, WEST P C, FOLEY J A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 2013, 8(6): e66428.
doi: 10.1371/journal.pone.0066428
[5] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2021. (in Chinese)
[6] FAN M S, SHEN J B, YUAN L X, JIANG R F, CHEN X P, DAVIES W J, ZHANG F S. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of Experimental Botany, 2012, 63(1): 13-24.
doi: 10.1093/jxb/err248
[7] SHAO J J, ZHAO W Q, ZHOU Z G, DU K, KONG L J, WANG Y H. A new feasible method for yield gap analysis in regions dominanted by smallholder farmers, with a case study of Jiangsu province, China. Journal of Integrative Agriculture, 2021, 20(2): 460-469..
doi: 10.1016/S2095-3119(20)63384-6
[8] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese)
[9] 张光辉, 刘中培, 费宇红, 连英立, 严明疆, 王金哲. 华北平原区域水资源特征与作物布局结构适应性研究. 地球学报, 2010, 31(1): 17-22.
ZHANG G H, LIU Z P, FEI Y H, LIAN Y L, YAN M J, WANG J Z. The relationship between the distribution of irrigated crops and the supply capability of regional water resources in North China Plain. Acta Geoscientica Sinica, 2010, 31(1): 17-22. (in Chinese)
[10] 李玉伦, 吴建军, 王法宏. 山东省小麦生产效益低的成因及其技术对策. 山东农业科学, 2014, 46(9): 131-134.
LI Y L, WU J J, WANG F H. Causes and technical countermeasures of wheat production efficiency low in Shandong province. Shandong Agricultural Sciences, 2014, 46(9): 131-134. (in Chinese)
[11] CASSMAN K G, DOBERMANN A R, WALTERS D T, YANG H S. Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources, 2003, 28(1): 315-358.
[12] CUI Z G, WANG G L, YUE S C, WU L, ZHANG W F, ZHANG F S, CHEN X P. Closing the N-use efficiency gap to achieve food and environmental security. Environmental Science & Technology, 2014, 48(10): 5780-5787.
doi: 10.1021/es5007127
[13] 王洪章, 刘鹏, 董树亭, 张吉旺, 赵斌, 任佰朝. 夏玉米产量与光温生产效率差异分析—以山东省为例. 中国农业科学, 2019, 52(8): 1355-1367.
WANG H Z, LIU P, DONG S T, ZHANG J W, ZHAO B, REN B C. Analysis of gap between yield and radiation production efficiency and temperature production efficiency in summer maize: Taking Shandong province as an example. Scientia Agricultura Sinica, 2019, 52(8): 1355-1367. (in Chinese)
[14] HOCHMAN Z, HORAN H. Causes of wheat yield gaps and opportunities to advance the water-limited yield frontier in Australia. Field Crops Research, 2018, 228: 20-30.
doi: 10.1016/j.fcr.2018.08.023
[15] SCHILS R, OLESEN J E, KERSEBAUM K, RIJK B, OBERFOSTER M, KALYADA V, KHITRYKAU M, GOBIN A, KIRCHEV H, MANOLOVA V. Cereal yield gaps across Europe. European Journal of Agronomy, 2018, 101: 109-120.
doi: 10.1016/j.eja.2018.09.003
[16] 吴兆苏, 魏燮中. 长江下游地区小麦品种更替中产量及有关性状的演变与发展方向. 中国农业科学, 1984, 17(3): 14-22.
WU Z S, WEI X Z. Evolution and development direction of yield and related traits in wheat variety replacement in the lower reaches of the Yangtze River. Scientia Agricultura Sinica, 1984, 17(3): 14-22. (in Chinese)
[17] DONMEZ E, SEARS R G, SHROYER J P, PAULSEN G M. Genetic gain in yield attributes of winter wheat in the Great Plains. Crop Science, 2001, 41(5): 1412-1419.
doi: 10.2135/cropsci2001.4151412x
[18] LU D J, LU F F, YAN P, CUI Z L, CHEN X P. Elucidating population establishment associated with N management and cultivars for wheat production in China. Field Crops Research, 2014, 163: 81-89.
doi: 10.1016/j.fcr.2014.03.022
[19] 杨晓光, 刘志娟. 作物产量差研究进展. 中国农业科学, 2014, 47(14): 2731-2741.
YANG X G, LIU Z J. Advance in research on crop yield gaps. Scientia Agricultura Sinica, 2014, 47(14): 2731-2741. (in Chinese)
[20] 刘保花, 陈新平, 崔振岭, 孟庆锋, 赵明. 三大粮食作物产量潜力与产量差研究进展. 中国生态农业学报, 2015, 23(5): 525-534.
LIU B H, CHEN X P, CUI Z L, MENG Q F, ZHAO M. Research advance in yield potential and yield gap of three major cereal crops. Chinese Journal of Eco-agriculture, 2015, 23(5): 525-534. (in Chinese)
[21] CHEN X P, CUI Z L, FAN M S, PETER V, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486-489.
doi: 10.1038/nature13609
[22] LADHA J K, PATHAK H, KRUPNIK T J, SIX J, KESSEL C V. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy, 2005, 87: 85-156.
[23] RONG L B, GONG K Y, DUAN S F Y, LI S K, ZHAO M, HE J Q, ZHOU W B, YU Q. Yield gap and resource utilization efficiency of three major food crops in the world-A review. Journal of Integrative Agriculture, 2021, 20(2): 349-362.
doi: 10.1016/S2095-3119(20)63555-9
[24] CAO H Z, LI Y N, CHEN G F, CHEN D D, QU H R, MA W Q. Identifying the limiting factors driving the winter wheat yield gap on smallholder farms by agronomic diagnosis in North China Plain. Journal of Integrative Agriculture, 2019, 18(8): 1701-1713.
doi: 10.1016/S2095-3119(19)62574-8
[25] BAI H Q, WANG J, FANG Q X, HUANG B X. Does a trade-off between yield and efficiency reduce water and nitrogen inputs of winter wheat in the North China Plain? Agricultural Water Management, 2020, 233: 106095.
doi: 10.1016/j.agwat.2020.106095
[26] 陈欢. 黄淮不同年代年代小麦品种氮素利用和麦田温室气体排放的差异[D]. 北京: 中国农业大学, 2018.
CHEN H. Differences in nitrogen use and greenhouse gas emissions among wheat varieties released in different eras in Huanghuai area[D]. Beijing: Chinese Agricultural University, 2018. (in Chinese)
[27] 张宾, 赵明, 董志强, 陈传永, 孙锐. 作物产量 “三合结构” 定量表达及高产分析. 作物学报, 2007, 33(10): 1674-1681.
ZHANG B, ZHAO M, DONG Z Q, CHEN C Y, SUN R. “Three combination structure” quantitative expression and high yield analysis in crops. Acta Agronomica Sinica, 2007, 33(10): 1674-1681. (in Chinese)
[28] TAN W, LIU J, DAI T B, JING Q Z, CAO W X, JIANG D. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica, 2008, 46(1): 21-27.
doi: 10.1007/s11099-008-0005-0
[29] ZHANG S Y, ZHANG X H, QIU X L, TANG L, ZHU Y, CAO W X, LIU L L. Quantifying the spatial variation in the potential productivity and yield gap of winter wheat in China. Journal of Integrative Agriculture, 2016, 16(4): 845-857.
doi: 10.1016/S2095-3119(16)61467-3
[30] 刘甘霖, 王晨阳, 刘卫星, 马耕, 王强, 岳鹏莉, 谢旭东. 不同施肥模式对冬小麦干物质转运及产量的影响. 西北农业学报, 2016, 25(8): 1158-1164.
LIU G L, WANG C Y, LIU W X, MA G, WANG Q, YUE P L, XIE X D. Effects of different fertilization regimes on dry matter translocation and grain yield of winter wheat. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(8): 1158-1164. (in Chinese)
[31] 周宝元, 马玮, 孙雪芳, 丁在松, 李从锋, 赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究. 作物学报, 2019, 45(4): 589-600.
doi: 10.3724/SP.J.1006.2019.81067
ZHOU B Y, MA W, SUN X F, DING Z S, LI C F, ZHAO M. Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system. Acta Agronomica Sinica, 2019, 45(4): 589-600. (in Chinese)
doi: 10.3724/SP.J.1006.2019.81067
[32] HOFFMANN M P, HAAKANA M, ASSENG S, HOHN J G, PALOSUO T, RUIZ-RAMOS M, FRONZEK S, EWERT F, GAISER T, KASSIE B T, PAFF L, REZAEI E E, RODRIGUEZ A, SEMENOV M, SRIVASTAVA A K, STRAONOVITCH P, TAO F, CHEN Y, ROTTER R P. How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites. Agricultural Systems, 2018, 159: 199-208.
doi: 10.1016/j.agsy.2017.03.012
[33] SHEN J B, CUI Z L, MIAO Y X, MI G H, ZHANG H Y, FAN M S, ZHANG C C, JIANG R F, ZHANG W F, LI H G, CHEN X P, LI X L, ZHANG F S. Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency. Global Food Security, 2013, 2(1): 1-8.
doi: 10.1016/j.gfs.2012.12.004
[34] LIU Y J, ZHANG J, GE Q S. The optimization of wheat yield through adaptive crop management in a changing climate: Evidence from China. Journal of the Science of Food and Agriculture, 2020, 101(9): 3644-3653.
doi: 10.1002/jsfa.10993
[35] MUELLER N D, GERBER J S, JOHNSTON M, RAY D K, RAMANKUTTY N, FOLEY J A. Closing yield gaps through nutrient and water management. Nature, 2012, 490(7419): 254-257.
doi: 10.1038/nature11420
[36] NORSE D, POWLSON D, LU Y L. Climate Change Mitigation in Agriculture. London: Routledge Press, 2011.
[37] CUI Z L, CHEN X P, ZHANG F S. Current nitrogen management status and measures to improve the intensive wheat-maize system in China. Ambio, 2010, 39(5-6): 376-384.
doi: 10.1007/s13280-010-0076-6
[38] 赵明, 周宝元, 马玮, 李从锋, 丁在松, 孙雪芳. 粮食作物生产系统定量调控理论与技术模式. 作物学报, 2019, 45(4): 485-498.
doi: 10.3724/SP.J.1006.2019.83051
ZHAO M, ZHOU B Y, MA W, LI C F, DING Z S, SUN X F. Theoretical and technical models of quantitative regulation in food crop production system. Acta Agronomica Sinica, 2019, 45(4): 485-498. (in Chinese)
doi: 10.3724/SP.J.1006.2019.83051
[39] SCHNYDER H. The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling-a review. New Phytologist, 1993, 123(2): 233-245.
doi: 10.1111/j.1469-8137.1993.tb03731.x
[40] 凌启鸿, 张洪程, 蔡建中, 苏祖芳, 凌励. 水稻高产群体质量及其优化控制探讨. 中国农业科学, 1993, 26(6): 1-11.
LING Q H, ZHANG H C, CAI J Z, SU Z F, LING L. Discussion on quality of rice high-yield population and its optimization control. Scientia Agricultura Sinica, 1993, 26(6): 1-11. (in Chinese)
[41] LYNCH J P, DOYLE D, MCAULEY S, MCHARDY F, DANNEELS Q, BLACK L C, WHITE E M, SPINK J. The impact of variation in grain number and individual grain weight on winter wheat yield in the high yield potential environment of Ireland. European Journal of Agronomy, 2017, 87: 40-49.
doi: 10.1016/j.eja.2017.05.001
[42] AUSTIN R B, BINGHAM J, BLACKWELL R D, EVANS L T, FORD M A, MORGAN C L, TAYLOR M. Genetic improvements in winter wheat yields since 1900 and associated physiological changes. The Journal of Agricultural Science, 1980, 94(3): 675-689.
doi: 10.1017/S0021859600028665
[43] FISCHER R A. Understanding the physiological basis of yield potential in wheat. The Journal of Agricultural Science, 2007, 145(2): 99.
doi: 10.1017/S0021859607006843
[44] GOODMAN R M. Encyclopedia of Plant and Crop Science. New York: CRC Press, 2004.
[45] 季书勤, 赵淑章, 吕凤荣, 刘媛媛. 多穗型小麦品种公顷产 9000kg 主要技术指标及关键技术. 麦类作物学报, 2001, 21(1): 55-59.
JI S Q, ZHAO S Z, LÜ F R, LIU Y Y. Main technical indices and key technique of multi-spike type of wheat at 9000 kg/hm2. Journal of Triticeae Crops, 2001, 21(1): 55-59. (in Chinese)
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[3] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[4] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[5] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[6] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[7] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[8] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[9] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
[10] XIANG XiaoLing,CHEN SongHe,YANG HongKun,YANG YongHeng,FAN GaoQiong. Effects of Straw Mulching and Phosphorus Application on Wheat Yield, Phosphorus Absorption and Utilization in Hilly Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5194-5205.
[11] GAO XingXiang,ZHANG YueLi,AN ChuanXin,LI Mei,LI Jian,FANG Feng,ZHANG ShuangYing. Investigation and Analysis of Weed Community Succession in Winter Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2021, 54(24): 5230-5239.
[12] ZONG YuZheng,ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu. Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4984-4995.
[13] WANG JinFeng,WANG ZhuangZhuang,GU FengXu,MOU HaiMeng,WANG Yu,DUAN JianZhao,FENG Wei,WANG YongHua,GUO TianCai. Effects of Nitrogen Fertilizer and Plant Density on Carbon Metabolism, Nitrogen Metabolism and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083.
[14] FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method [J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427.
[15] MA HongMei,CAO HanBing,XIE YingHe,LI TingLiang,LIU Kai,ZHANG QiRu,JIANG LiWei,CAO Jing,SHAO JingLin,WU WenYue,LI WenQi. Evaluation on Fertilizer Application and Its Economic-Environmental Benefits Associated with Fertilizer Reduction Potential for Dryland Wheat in Loess Plateau of Southern Shanxi Province [J]. Scientia Agricultura Sinica, 2021, 54(13): 2804-2817.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!