Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1751-1760.doi: 10.3864/j.issn.0578-1752.2021.08.014

• HORTICULTURE • Previous Articles     Next Articles

Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers

FAN XiaoJing1(),YU WenTao2(),CAI ChunPing2,LIN Yi1,WANG ZeHan1,FANG WanPing3,ZHANG JianMing4,YE NaiXing1()   

  1. 1College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002
    2Technology Centre of Fuzhou Customs District/Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Fuzhou 350001
    3College of Horticulture, Nanjing Agricultural University, Nanjing 210095
    4Wuyi University, Wuyishan 354300, Fujian
  • Received:2020-08-28 Accepted:2020-09-27 Online:2021-04-16 Published:2021-04-25
  • Contact: WenTao YU,NaiXing YE E-mail:1187248076@qq.com;wtyu@foxmail.com;ynxtea@126.com

Abstract:

【Objective】In order to facilitate the protection and precise management of tea cultivars and avoid the phenomenon of homonyms and synonyms, single-nucleotide polymorphism (SNP) molecular marker database of tea cultivars was established, and the 28 digit molecular identities of tea cultivars were constructed by DNA fingerprinting of SNP loci and the basic information of tea cultivars. 【Method】By mining the expressed sequence tags (EST) of tea plants, a large number of high-quality ESTs were obtained. Then, the ESTs were assembled to develop candidate SNP loci. And, high-quality SNPs for tea plants were screened. Furthermore, the candidate SNP loci were compared with the whole genome of tea plant to confirm their positions on the chromosomes and specific genes. The genomic DNA was extracted from fresh leaves of 103 tea cultivars. Subsequently, the genotyping of accessions was carried out on microfluidic chips. Information index, observed heterozygosity and expected heterozygosity of the candidate SNPs were obtained. The SNP loci were further screened by their polymorphism, obtaining the optimal combination of SNP loci. The molecular identities of tea cultivars were finally constructed by combining the basic information of tea cultivars. 【Result】A total of 1 786 candidate SNP loci were selected from the EST database of Camellia sinensis. According to the sequence conservation, 96 SNP loci were selected. Compared with the latest tea plant genome, the candidate loci were evenly distributed on 15 chromosomes of the whole tea plant genome. The polymorphism information of candidate SNP loci of tea cultivars were analyzed, and 10 non-polymorphic loci were eliminated. The average values of information index, observed heterozygosity, expected heterozygosity, fixed index and minor allele frequency of the remaining 86 loci were 0.517, 0.370, 0.346, -0.036, 0.269, respectively. 24 SNPs, with high polymorphism, were screened out from 86 SNPs to distinguish all tea cultivars. Based on the fingerprint of 24 SNP markers and the basic information of tea cultivars, the tea molecular ID, which composed of 28 digits, was formed finally. 【Conclusion】According to the polymorphism information of SNP markers, the candidate SNP loci were screened. And all tea cultivars were accurately distinguished. Furthermore, The DNA fingerprints of 103 tea cultivars were constructed by the 24 SNP markers and the converted serial codes from information of the tea cultivars, each germplasm thus has a unique molecular identity code, and the bar codes and quick response (QR) codes are generated as the molecular ID card, which can be quickly identified by the code scanning equipment.

Key words: Camellia sinensis, cultivar, SNP, molecular ID, DNA fingerprint

Table 1

Molecular ID of 103 tea plant cultivars"

品种资源 Cultivars 分子身份证 Molecular ID 品种资源 Cultivars 分子身份证 Molecular ID
蕉城苦茶1号 Jiaocheng Kucha 1 1351232113232131123233232332 紫牡丹 Zimudan 1353112323322131312131212111
蕉城苦茶4号 Jiaocheng Kucha 4 1351232123232331223233232332 凤圆春 Fengyuanchun 1353111111111121311211112211
蕉城苦茶5号 Jiaocheng Kucha 5 1351132121112131123213212131 大叶乌龙 Dayewulong 1353112112313211113231111111
寿宁地洋1号 Shouning Diyang 1 1351321113222111121122111223 蜀永1号 Shuyong 1 1503323111113131121212111223
寿宁地洋2号 Shouning Diyang 1 1351311131323131112113111211 蜀永2号 Shuyong 2 1503321313212133222232312222
寿宁芎坑1号 Shouning Xiongkeng 1 1351121132321111233112213221 蜀永3号 Shuyong 2 1503113223211111211211122312
寿宁芎坑2号 Shouning Xiongkeng 2 1351113211321131113113213212 蜀永808 Shuyong 808 1503123223212131221131112322
凤凰苦茶 Fenghuangkucha 1441213233232111323233211111 蜀永703 Shuyong 703 1503123213221121132231121221
佛手 Foshou 1353211232221111311213311211 名山白毫131 Mingshanbaihao 131 1513111231313121112112313212
白鸡冠 Baijiguan 1352113111121111211121213113 安徽7号 Anhui 7 1343311131232121211111313113
慢奇兰 Manqilan 1352122113122111323311311121 蒙山9号 Mengshan 9 1343111131311111112122113212
金面奇兰 Jinmianqilan 1352111131122131331111312111 名山早311 Mingshanzao 311 1513131132311121332112313232
寿宁桃眉 Shouning Taomei 1352131121122111332131111232 川茶2号 Chuancha 2 1513123223121111111211312322
寿宁黄叶茶 Shouning Huangyecha 1352113331331111113211312213 川茶3号 Chuancha 2 1513121233221131112221311221
吴山清明茶 Wushanqingmingcha 1352321132333131321212311221 紫嫣 Ziyan 1513112211311131311211113212
水古茶 Shuigucha 1332323211323111312332112222 云抗10号 Yunkang 10 1533113123211131123211112332
夜来香单丛 Yelaixiang Dancong 1442232122121111311233113131 云茶1号 Yuncha 1 1533311332323121312331313211
芝兰香单丛 Zhilanxiang Dancong 1442132223232121223233211331 长叶白毫 Changyebaihao 1533223123232111223233212322
八仙香单丛 Baxianxiang Dancong 1442233123132121123233232131 紫娟 Zijuan 1533111111211231121211112132
老仙翁单丛 Langxianweng Dancong 1442232223212121111231232331 鄂茶11号 Echa 11 1423123131311121132113321123
红帝单丛 Hongdi Dancong 1442231123232221113232212331 千年雪 Qiannianxue 1333311212121131312311333113
城门单丛 Chengmen Dancong 1442113123211111312211112111 平阳特早 Pingyangtezao 1333123233121121132132112123
探春香单丛 Tanchunxiang Dancong 1442233123232121113231213331 中茶102 Zhongcha 102 1333121111321111332311113221
贡香单丛 Gongxiang Dancong 1442211211232111323212212111 碧云 Biyun 1333131231332131311322311233
棕榈香单丛 Zonglvxiang Dancong 1442111121211211121211111111 白叶1号 Baiye 1 1333113131113131112131111211
鸭屎香单丛 Yashaxiang Dancong 1442131133132311113232211331 龙井43 Longjing 43 1333113313213111331132312113
姜母香单丛 Jiangmuxiang Dancong 1442233331232321121233232331 中茶108 Zhongcha 108 1333311331313111112222311211
青心大冇 Qingxindamao 1712112121132111312213112311 嘉茗1号 Jiaming 1 1333322233111111332112113223
软枝乌龙 Ruanzhiwulong 1712112321312131312233112112 龙井长叶 Longjingchangye 1333313131123121211111313212
四季春 Sijichun 1712122231322111312223111223 黄金芽 Huangjinya 1333123111322111131212311122
福鼎大白茶 Fuding Dabaicha 1353131132311121332112313231 安徽3号 Anhui 3 1343111231313121112112313211
政和大白茶 Zhenghe Dabaicha 1353123111121111121212111221 凫早2号 Fuzao 2 1343122332123121331231313121
霞浦春波绿 Xiapu Chunbolv 1353321131321211122123311121 舒茶早 Shuchazao 1343121231311111322212313123
早逢春 Zaofengchun 1353111221212111223212211333 农抗早 Nongkangzao 1343313211121121132112311211
霞浦元宵茶 Xiapu Yuanxiaolv 1353313233121131211311311211 白毫早 Baihaozao 1433332232121111111312113232
福云6号 Fuyun 6 1353111111111111111231111111 槠叶齐 Chuyeqi 1433112123223111221222122112
福云7号 Fuyun 7 1353213211132111111111111131 桃源大叶 Taoyuandaye 1433121133223111111211311121
福云10号 Fuyun 10 1353113311131111111211311131 涟源奇曲 Lianyuanqiqu 1432121123211131111112112121
福云20号 Fuyun 20 1353133131231111332213131131 湘波绿 Xiangbolv 1433213111132211111111113112
福云595 Fuyun 595 1353211211112211111111113111 尖波黄 Jianbohuang 1433132111111111111212111232
大红袍 Dahongpao 1353322212313131322213112223 保靖黄金茶1号 Baojing Huangjincha 1 1433323212322131211211212221
铁观音 Tieguanyin 1353112131312111332211311112 乌叶单丛 Wuye Dancong 1443132121232121113233212331
黄棪 Huangdan 1353212221113111313231213111 金萱 Jinxuan 1713122222121111322212211122
肉桂 Rougui 1353211133312321333111212211 翠玉 Cuiyu 1713321321231111331213312321
本山 Benshan 1353212331312111331111311112 福云8号 Fuyun 8 1354213311111111111231111132
梅占 Meizhan 1353122122112111311112312121 福云591 Fuyun 591 1354111331311211311212111111
毛蟹 Maoxie 1353132331311121331321311131 寿宁凤阳种 Shouning Fengyangzhong 1354112332321121112112311111
白芽奇兰 Baiyaqilan 1353122321322331311231112221 金茗早 Jinmingzao 1354112222111121113232213111
九龙大白茶 Jiulongdabaicha 1353213311111111111231111131 长乐种 Changlezhong 1354213211132111111311111131
九龙袍 Jiulongpao 1353322212313131322213112123 玉绿 Yulv 1005112231111131231112111211
福建水仙 Fujian Shuixian 1353311131311311211111311211 格鲁吉亚1号 Gelujiya 1 1005221323212111212112312121
八仙茶 Baxiancha 1353111123232121222232213211

Fig. 1

Polymorphism plots of 24 SNP loci Blue: Heterozygote (XY); Red: Homozygote (XX); Green: Homozygote (YY)"

Fig. 2

SNP fingerprints of 103 tea germplasms Blue: Heterozygote (XY); Red: Homozygote (XX); Green: Homozygote (YY)"

Fig. 3

Molecular ID of Camellia sinensis Fuding Dabaicha"

[1] 陈暄. 茶树自交不亲和类型的鉴定及相关基因克隆与表达分析[D]. 南京: 南京农业大学, 2010.
CHEN X. Identification of self-incompatibility model, cloning and expression of correlative gene in Camellia sinensis (L.) O. Kuntze[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[2] 吴觉农. 略谈茶树原产地问题. 茶叶, 1981(4):1-7.
WU J N. Summarize the origin of tea plants. Journal of Tea, 1981(4):1-7. (in Chinese)
[3] 陈盛相. 茶树品种(系)亲缘关系与遗传多样性分析[D]. 雅安: 四川农业大学, 2013.
CHEN S X. Analysis of genetic relationship and diversity in tea cultivars[D]. Ya’an: Sichuan Agricultural University, 2013. (in Chinese)
[4] 姜燕华, 张成才, 成浩. 茶树良种场不同品种的SSR鉴定研究. 茶叶学报, 2016,57(3):105-112.
JIANG Y H, ZHANG C C, CHENG H. SSR identification of different cultivars of tea plant. Acta Tea Sinica, 2016,57(3):105-112. (in Chinese)
[5] 王松琳, 马春雷, 黄丹娟, 马建强, 金基强, 姚明哲, 陈亮. 基于SSR标记的白化和黄化茶树品种遗传多样性分析及指纹图谱构建. 茶叶科学, 2018,38(1):58-68.
WANG S L, MA C L, HUANG D J, MA J Q, JIN J Q, YAO M Z, CHEN L. Analysis of genetic diversity and construction of DNA fingerprints of chlorophyll-deficient tea cultivars by SSR markers. Journal of Tea Science, 2018,38(1):58-68. (in Chinese)
[6] 沈永宝, 施季森. 植物种或品种鉴定的展望. 江苏林业科学, 2004,31(5):41-45.
SHEN Y B, SHI J S. Tendency on the identification for plant species or varieties. Journal of Jiangsu Forestry Science & Technology, 2004,31(5):41-45. (in Chinese)
[7] 尚卫琼, 李友勇, 刘悦, 段志芬, 杨盛美, 李慧, 许燕, 刘本英. 基于EST-SSR标记的西双版纳苦茶资源遗传多样性分析. 山西农业科学, 2020,48(2):167-171.
SHANG W Q, LI Y Y, LIU Y, DUAN Z F, YANG S M, LI H, XU Y, LIU B Y. Genetic diversity analysis of bitter tea germplasm resource in Xishuangbanna based on EST-SSR markers. Journal of Shanxi Agricultural Sciences, 2020,48(2):167-171. (in Chinese)
[8] 丁洲, 李烨昕, 袁艺, 王海燕, 刘学诗, 江昌俊. 安徽茶区优良群体种的表型性状和遗传多样性分析. 茶叶科学, 2018,38(2):155-161.
DING Z, LI Y X, YUAN Y, WANG H Y, LIU X S, JIANG C J. Phenotypic traits and genetic diversity of elite tea population in Anhui (China). Journal of Tea Science, 2018(2):155-161. (in Chinese)
[9] TAN L Q, PENG M, XU L Y, WANG L Y, CHEN S X, ZOU Y, QI G N, CHENG H. Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships. Tree Genetics & Genomes, 2015,11(5):1-12.
[10] LIU S, LIU H, WU A, HOU Y, AN Y, WEI C. Construction of fingerprinting for tea plant (Camellia sinensis) accessions using new genomic SSR markers. Molecular Breeding, 2017,37(8):93.
[11] 陈亮, 王平盛, 山口聪. 应用RAPD分子标记鉴定野生茶树种质资源研究. 中国农业科学, 2002,35(10):1186-1191.
CHEN L, WANG P S, SHAN K C. Identification of wild tea germplasm resources (Camellia sp.) using RAPD markers. Scientia Agricultura Sinica, 2002,35(10):1186-1191. (in Chinese)
[12] 郑丹琳, 陈涛林, 葛智文, 陈美丽, 戴斯佳, 罗军武, 冉立群. 柳州汪洞乡古茶树种质资源遗传多样性的ISSR分析. 分子植物育种, 2018,16(11):3629-3635.
ZHENG D L, CHEN T L, GE Z W, CHEN M L, DAI S J, LUO J W, RAN L Q. ISSR analysis of the genetic diversity of ancient tea plant germplasm resources from Wangdong village in Liuzhou. Molecular Plant Breeding, 2018,16(11):3629-3635. (in Chinese)
[13] 刘冠群, 吴祠平, 谭礼强, 谭杰, 杨婉君, 唐茜. 利用SSR分子标记构建名山茶树基因身份证. 四川农业大学学报, 2019, 37(4): 469-474+503.
LIU G Q, WU S P, TAN L Q, TAN J, YANG W J, TANG Q. Construction of SSR-based molecular IDs for tea planted in Mingshan. Journal of Sichuan Agricultural University, 2019, 37(4): 469-474+503. (in Chinese)
[14] LANDER S E. The New genomics: Global views of biology. Science, 1996,274(5287):536-539.
doi: 10.1126/science.274.5287.536 pmid: 8928008
[15] COOPER D N, SMITH B A, COOKE H J, NIEMANN S, SCHMIDTKE J. An estimate of unique DNA sequence heterozygosity in the human genome. Human Genetics, 1985,69(3):201-205.
[16] 唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展. 中国农学通报, 2012,28(12):154-158.
TANG L Q, XIAO C L, WANG W P. Research and application progress of SNP markers. Chinese Agricultural Science Bulletin, 2012,28(12):154-158. (in Chinese)
[17] KIM J J, HAN B G, LEE H. I, YOO H W, LEE J K. Development of SNP-based human identification system. International Journal of Legal Medicine, 2010,124(2):125-131.
pmid: 19921517
[18] GANAL M W, POLLEY A, GRANER E M, PLIESKE J, WIESEKE R, LUERSSEN H, DURSTEWITZ G. Large SNP arrays for genotyping in crop plants. Journal of Biosciences, 2012,37(5):821-828.
doi: 10.1007/s12038-012-9225-3 pmid: 23107918
[19] 徐琪, 郑舒媛, 阚诗卓, 鄢波. 不同茶树品种PPO基因单核苷酸多态性分析. 分子植物育种, 2017,15(3):1109-1113.
XU Q, ZHENG S Y, KANG S Z, YAN B. Single nucleotide polymorphism of PPO gene in different tea varieties. Molecular Plant Breeding, 2017,15(3):1109-1113. (in Chinese)
[20] LIN Y, YU W T, ZHOU L, FAN X J, WANG P J, FANG W P, CAI C P, YE N X. Genetic diversity of oolong tea (Camellia sinensis) germplasms based on the nanofluidic array of single-nucleotide polymorphism (SNP) markers. Tree Genetics & Genomes, 2020,16(1):3-14.
[21] FANG W, MEINHARDT L W, TAN H, ZHOU L, MISCHKE S, WANG X, ZHANG D. Identification of the varietal origin of processed loose-leaf tea based on analysis of a single leaf by SNP nanofluidic array. The Crop Journal, 2016,4(4):304-312.
[22] XIA E, ZHANG H, SHENG J, LI K, ZHANG Q, KIM C, ZHANG Y, LIU Y, ZHU T, LI W, HUANG H, TONG Y, NAN H, SHI C, SHI C, JIANG J, MAO S, JIAO J, ZHANG D, ZHAO Y, ZHAO Y, ZHANG L, LIU Y, LIU B, YU Y, SHAO S, NI D, EICHLER E E, GAO L. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant, 2017,10(6):866-877.
[23] WEI C, YANG H, WANG S, ZHAO J, LIU C, GAO L, XIA E, LU Y, TAI Y, SHE G, SUN J, CAO H, TONG W, GAO Q, LI Y, DENG W, JIANG X, WANG W, CHEN Q, ZHANG S, LI H, WU J, WANG P, LI P, SHI C, ZHENG F, JIAN J, HUANG B, SHAN D, SHI M, FANG C, YUE Y, LI F, LI D, WEI S, HAN B, JIANG C, YIN Y, XIA T, ZHANG Z, BENNETZEN J L, ZHAO S, WAN X. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the USA, 2018,115(18):E4151-E4158.
[24] ZHANG W, ZHANG Y, QIU H, GUO Y, WAN H, ZHANG X, SCOSSA F, ALSEEKH S, ZHANG Q, WANG P, XU L, SCHMIDT M H, JIA X, LI D, ZHU A, GUO F, CHEN W, NI D, USADEL B, FERNIE A R, WEN W. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications, 2020,11(1):3719.
pmid: 32709943
[25] XIA E, TONG W, HOU Y, AN Y, CHEN L, WU Q, LIU Y, YU J, LI F, LI R, LI P, ZHAO H, GE R, HUANG J, MALLANO A I, ZHANG Y, LIU S, DENG W, SONG C, ZHANG Z, ZHAO J, WEI S, ZHANG Z, XIA T, WEI C, WAN X. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant, 2020,13(7):1013-1026.
doi: 10.1016/j.molp.2020.04.010 pmid: 32353625
[26] ALTSCHUL S F. Basic local alignment search tool. Journal of Molecular Biology, 2012,215(3):403-410.
doi: 10.1016/S0022-2836(05)80360-2 pmid: 2231712
[27] 陈亮, 杨亚军, 虞富莲. 茶树种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005.
CHEN L, YANG Y J, YU F L. Descriptors and Data Standard for Tea (Camellia spp.). Beijing: China Agriculture Press, 2005. (in Chinese)
[28] 陈亮, 马建强. 茶树非主要农作物品种登记要求及进展. 中国茶叶, 2020,42(3):8-12.
CHEN L, MA J Q. Requirement and advance of non-major crop cultivar registration of tea plant. China Tea, 2020,42(3):8-12. (in Chinese)
[29] 魏中艳, 李慧慧, 李骏, YASIR A. GAMAR, 马岩松, 邱丽娟. 应用SNP精准鉴定大豆种质及构建可扫描身份证. 作物学报, 2018,44(3):315-323.
WEI Z Y, LI H H, LI J, GAMAR Y A, MA Y S, QIU L J. Accurate identification of varieties by nucleotide polymorphisms and establishment of scannable variety IDs for soybean germplasm. Acta Agronomica Sinica, 2018,44(3):315-323. (in Chinese)
[30] JONES E S, SULLIVAN H, BHATTRAMAKKI D, SMITH J S C. A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theoretical & Applied Genetics, 2007,115(3):361-371.
doi: 10.1007/s00122-007-0570-9 pmid: 17639299
[31] 许家磊, 王宇, 后猛, 李强. SNP检测方法的研究进展. 分子植物育种, 2015,13(2):475-482.
XU J L, WANG Y, HOU M, LI Q. Progresson detection methods of SNP. Molecular Plant Breeding, 2015(2):475-482. (in Chinese)
[32] FANG W, MEINHARDT L W, TAN H, ZHOU L, MISCHKE S, ZHANG D. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers. Horticulture Research, 2014,1(1):14035.
[33] PAN Y. Databasing molecular identities of sugarcane (Saccharum spp.) clones constructed with microsatellite (SSR) DNA markers. American Journal of Plant Sciences, 2010,1(2):87-94.
[34] 李春花, 陈蕤坤, 王艳青, 尹桂芳, 卢文洁, 孙道旺, 吴斌, 王莉花. 利用SSR标记构建云南苦荞种质资源分子身份证. 分子植物育种, 2019,17(5):1575-1582.
LI C H, CHEN R K, WANG Y Q, YIN G F, LU W J, SUN D W, WU B, WANG L H. Establishment of the molecular ID for Yunnan tartary buckwheat germplasm resources based on SSR marker. Molecular Plant Breeding, 2019,17(5):1575-1582. (in Chinese)
[35] 冉昆, 隋静, 王宏伟, 魏树伟, 张勇, 董冉, 董肖昌, 王少敏. 利用SSR荧光标记构建山东地方梨种质资源分子身份证. 果树学报, 2018,35(S1):73-80.
RAN K, SUI J, WANG H W, WEI S W, ZHANG Y, DONG R, DONG X C, WANG S M. Construction of molecular identity card of Shandong local pear germplasm resources with SSR fluorescent markers. Journal of Fruit Science, 2018,35(S1):73-80. (in Chinese)
[36] 高源, 刘凤之, 王昆, 王大江, 龚欣, 刘立军. 苹果部分种质资源分子身份证的构建. 中国农业科学, 2015,48(19):3887-3898.
GAO Y, LIU F Z, WANG K, WANG D J, GONG X, LIU L J. Establishment of molecular ID for some apple germplasm resources. Scientia Agricultura Sinica, 2015,48(19):3887-3898. (in Chinese)
[37] 陆徐忠, 倪金龙, 李莉, 汪秀峰, 马卉, 张小娟, 杨剑波. 利用SSR分子指纹和商品信息构建水稻品种身份证. 作物学报, 2014,40(5):823-829.
LU X Z, NI J L, LI L, WANG X F, MA H, ZHANG X J, YANG J B. Construction of rice variety indentity using SSR fingerprint and commodity information. Acta Agronomica Sinica, 2014,40(5):823-829. (in Chinese)
[38] 徐雷锋, 葛亮, 袁素霞, 任君芳, 袁迎迎, 李雅男, 刘春, 明军. 利用荧光标记SSR构建百合种质资源分子身份证. 园艺学报, 2014,41(10):2055-2064.
XU L F, GE L, YUAN S X, REN J F, YUAN Y Y, LI Y N, LIU C, MING J. Using the fluorescent labeled SSR markers to establish molecular identity of lily germplasms. Acta Horticulturae Sinica, 2014,41(10):2055-2064. (in Chinese)
[39] 陈昌文, 曹珂, 王力荣, 朱更瑞, 方伟超. 中国桃主要品种资源及其野生近缘种的分子身份证构建. 中国农业科学, 2011,44(10):2081-2093.
CHEN C W, CAO K, WANG L R, ZHU G R, FANG W C. Molecular ID establishment of main China peach varieties and peach related species. Scientia Agricultura Sinica, 2011,44(10):2081-2093. (in Chinese)
[40] 尹跃, 赵建华, 安巍, 李彦龙, 何军, 曹有龙. 利用SSR标记构建枸杞品种分子身份证. 生物技术通报, 2018,34(9):195-201.
YIN Y, ZHAO J H, AN W, LI Y L, HE J, CAO Y L. Establishment of molecular identity for wolfberry cultivars based on SSR markers. Biotechnology Bulletin, 2018,34(9):195-201. (in Chinese)
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[3] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[4] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[5] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[6] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[7] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[8] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[9] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[10] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[11] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[12] LIU YouChun,LIU WeiSheng,WANG XingDong,SUN Bin,LIU XiuLi,YANG YanMin,WEI Xin,YANG YuChun,ZHANG Duo,LIU Cheng,LI TianZhong. Identification of F1 Hybrids in Blueberry (Vaccinium corymbosum L.) Based on Specific-Locus Amplified Fragment Sequencing (SLAF-seq) [J]. Scientia Agricultura Sinica, 2021, 54(2): 370-378.
[13] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[14] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[15] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!