Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (5): 909-920.doi: 10.3864/j.issn.0578-1752.2021.05.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province

Qian CAI1,3(),ZhanXiang SUN1,3(),JiaMing ZHENG1,3,WenBin WANG2,Wei BAI1,3(),LiangShan FENG1,3,Ning YANG1,3,WuYan XIANG1,3,Zhe ZHANG1,3,Chen FENG1,3   

  1. 1Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161
    2Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161
    3National Agricultural Experimental Station for Agricultural Environment, Fuxin 123100, Liaoning
  • Received:2020-05-31 Accepted:2020-08-31 Online:2021-03-01 Published:2021-03-09
  • Contact: ZhanXiang SUN,Wei BAI E-mail:caiqian2005@163.com;sunzx67@163.com;libai200008@126.com

Abstract:

【Objective】The study investigated the mechanism of overyielding in maize-soybean intercropping systems and optimized maize-soybean intercropping configurations in semi-arid western Liaoning province by analyzing the dry matter accumulation and allocation of crops and the competition relationship between species in maize-soybean intercropping systems.【Method】The experiment was carried out in 2018-2019 at National Agricultural Environmental Station for Agricultural Environment in Fuxin. The cropping systems were: maize-soybean strip intercropping with 2 rows of maize and 2 rows of soybean (MS2:2), maize-soybean strip intercropping with 4 rows of maize and 4 rows of soybean (MS4:4), maize-soybean strip intercropping with 6 rows of maize and 6 rows of soybean (MS6:6), sole maize (M) and sole soybean (S). The dry matter accumulation and allocation of crops, interspecies competitiveness and its impact on crop yields and land productivity were analyzed. 【Result】The dry matter of intercropped maize in all the 3 intercropping systems in jointing and grain filling stages was increased by 16.58%-20.32% and 51.29%-52.56%, respectively, compared with that of the sole maize system. The effect of intercropping on the dry matter accumulation of soybean in the branching and grain filling stages was not significant, however the dry matter of soybean in the MS2:2 intercrop in the branching stage was significantly lower than that of sole stands. The dry matter allocation ratio of maize leaf in jointing stage was greater than that of stem, and the ratio of maize ear in filling stage was greater than that of maize stem and leaf. The allocation ratio of intercropped maize ear was 23.22%-31.70% higher than that of sole maize. The dry matter allocation ratio of soybean stem in branching stage was greater than leaf, and the ratio of soybean stem and leaf in grain filling stage was greater than that pod. The allocation ratios of intercropped soybean pod in MS2:2 and MS 4:4 were 19.30% and 17.22% lower than that of soled soybean, while the ratio under MS6:6 was only 6.1% (not significant) lower than that of soled soybean. Maize had a stronger interspecific competitiveness (AMS>0) and yield nutrition competition ratio (CRMS>1) than soybean in intercropping systems. MS6:6 and MS4:4 intercropping systems had significant land use advantages and the land equivalent ratio (LER) were 1.16 and 1.07, respectively, indicating that intercropping increased the land productivity by 7%-16%. MS2:2 intercropping system didn’t have a significant land use advantages, and the LER was 0.97.【Conclusion】The maize-soybean intercropping systems affected crop yield and land productivity by changing dry matter accumulation and allocation ratios and interspecific competition. Intercropping systems with wider strip width had a more significant yield advantage. MS6:6 intercropping systems performed the best, which significantly improved the land productivity and might be an option of cropping system in maintaining regional agricultural sustainability.

Key words: maize, soybean, planting configuration, accumulation and allocation of dry matter, interspecific competition, yield, land equivalent ratio (LER)

Fig. 1

Daily rainfall and mean air temperature during crop growth period of experimental station in 2018-2019"

Fig. 2

Row arrangements of maize and soybean in field experiment M1, M2 and M3 refer to the first, second and third row from the borderline of a maize strip. S1, S2 and S3 refer to the first, second and third row from the borderline of a soybean strip"

Table 1

Effect of crop yield in maize- soybean intercropping systems"

年份
Year
种植模式
Planting configuration
均一化产量 Grain yield (kg·hm-2)
玉米 Maize 大豆 Soybean
2018 单作 Sole 8112.0±856.0a 2474.5±203.5a
MS2:2 5268.0±316.2b 766.4±78.4c
MS4:4 5123.0±490.1b 1086.7±232.7b
MS6:6 5628.7±390.1b 1227.2±50.7b
2019 单作 Sole 10228.2±829.3a 3378.7±433.0a
MS2:2 6245.0±263.0b 1235.2±177.7c
MS4:4 6321.5±290.1b 1498.8±115.1bc
MS6:6 6384.3±140.0b 1692.3±148.6b
平均值
Mean
单作 Sole 9170.1±844.1a 2926.6±318.3a
MS2:2 5756.5±210.6b 1000.8±108.5c
MS4:4 5722.3±267.6b 1292.7±115.7b
MS6:6 6006.5±167.5b 1459.7±87.0b
P 种植模式 Planting configuration 0.000 0.000
年份 Year 0.001 0.003
种植模式×年份 Planting configuration×Year 0.522 0.457

Table 2

Land equivalent ratios in different maize-soybean cropping systems"

年份 Year 种植模式 Planting configuration LERM LERS LER
2018 MS2:2 0.65±0.04a 0.31±0.03b 0.96±0.07b
MS4:4 0.63±0.06a 0.44±0.09a 1.07±0.11ab
MS6:6 0.69±0.05a 0.50±0.02a 1.19±0.03a
2019 MS2:2 0.61±0.03a 0.37±0.05b 0.98±0.05b
MS4:4 0.62±0.03a 0.44±0.03ab 1.06±0.02a
MS6:6 0.62±0.01a 0.50±0.04a 1.13±0.04a
平均值
Mean
MS2:2 0.63±0.02a 0.34±0.04b 0.97±0.06b
MS4:4 0.62±0.04a 0.44±0.06a 1.07±0.05ab
MS6:6 0.66±0.03a 0.50±0.02a 1.16±0.03a
P 种植模式 Planting configuration 0.647 0.039 0.027
年份 Year 0.299 0.648 0.730
种植模式×年份 Planting configuration×Year 0.769 0.906 0.796

Table 3

Above-ground dry matter accumulation and allocation rate of maize in sole and maize-soybean intercropping systems"

种植模式Planting configuration 单株干物质积累
Dry matter accumulation per plant (g/plant)
干物质分配比率
Dry matter partitioning ratio (%)
拔节期
Jointing stage
灌浆期
Filling stage
拔节期 Jointing stage 灌浆期 Filling stage
茎 Stem 叶 Leaf 茎 Stem 叶 Leaf 穗 Ear
M 64.97±5.85b 277.67±14.30b 40.05±1.05a 59.95±1.05a 40.25±3.62a 18.58±1.11a 41.17±3.38b
MS2:2 78.17±4.77a 420.10±19.43a 41.25±1.90a 58.75±1.90b 31.60±1.16c 15.74±0.44b 52.66±0.84a
MS4:4 77.38±5.26a 423.62±17.62a 40.57±0.48a 59.43±0.48a 35.55±1.16ab 13.72±0.73c 50.73±1.25a
MS6:6 75.74±2.93a 421.22±21.27a 41.32±0.67a 58.68±0.67b 32.21±2.26bc 13.57±0.61c 54.22±1.95a

Table 4

Above-ground dry matter accumulation and allocation rate of soybean in sole and maize-soybean intercropping systems"

种植模式Planting configuration 单株干物质积累
Dry matter accumulation per plant (g/plant)
干物质分配比率
Dry matter partitioning ratio (%)
分枝期
Branching stage
鼓粒期
Pod filling stage
分枝期 Branching stage 鼓粒期 Pod filling stage
茎 Stem 叶 Leaf 茎 Stem 叶 Leaf 荚果 Pod
S 9.87±1.47a 44.07±1.65a 55.71±0.77b 44.29±0.77a 40.45±0.89c 36.43±1.66a 23.11±0.83a
MS2:2 7.20±0.83b 43.67±6.77a 57.73±0.82a 42.27±0.82b 43.83±1.76ab 37.52±2.64a 18.65±2.62b
MS4:4 8.50±1.09ab 44.52±7.02a 56.72±1.27ab 43.28±1.27ab 44.64±1.26a 36.23±2.14a 19.13±1.48b
MS6:6 9.02±1.05ab 47.09±7.27a 54.99±1.12b 45.01±1.12a 42.24±1.02bc 36.06±1.74a 21.70±2.37ab

Fig. 3

Interspecific competition(AMS) and nutrient competition ratio of yield (CRMS) of different maize-soybean intercropping systems"

[1] BAI W, SUN Z X, ZHENG J M, DU G J, FENG L S, CAI Q, YANG N, FENG C, ZHANG Z, EVERS J B, VAN DER WERF W, ZHANG L Z. Mixing trees and crops increases land and water use efficiencies in a semi-arid area. Agricultural Water Management, 2016,178:281-290.
doi: 10.1016/j.agwat.2016.10.007
[2] ZHANG D S, DU G J, SUN Z X, BAI W, WANG Q, FENG L S, ZHENG J M, ZHANG Z, LIU Y, YANG S, YANG N, FENG C, CAI Q, EVERS J B, VAN DER WERF W, ZHANG L Z. Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate. European Journal of Agronomy, 2018,94:1-11.
doi: 10.1016/j.eja.2018.01.001
[3] 唐秀梅, 黄志鹏, 吴海宁, 刘菁, 蒋菁, 唐荣华. 玉米/花生间作条件下土壤环境因子的相关性和主成分分析. 生态环境学报, 2020,29(2):223-230.
TANG X M, HUANG Z P, WU H N, LIU J, JIANG J, TANG R H. Correlation and principal component analysis of the soil environmental factors in corn/peanut intercropping system. Ecology and Environmental Sciences, 2020,29(2):223-230. (in Chinese)
[4] 张晓娜, 陈平, 杜青, 周颖, 任建锐, 金福, 杨文钰, 雍太文. 玉米/大豆、玉米/花生间作对作物氮素吸收及结瘤固氮的影响. 中国生态农业学报, 2019,27(8):1183-1194.
ZHANG X N, CHEN P, DU Q, ZHOU Y, REN J R, JIN F, YANG W Y, YONG T W. Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation. Chinese Journal of Eco-Agriculture, 2019,27(8):1183-1194. (in Chinese)
[5] REN J H, ZHANG L Z, DUAN Y, ZHANG J, EVERS J B, ZHANG Y, SUZ C, VAN DER WERF W. Intercropping potato (Solanum tuberosum L. ) with hairy vetch (Vicia villosa) increases water use efficiency in dry conditions. Field Crops Research, 2019,240:168-176.
doi: 10.1016/j.fcr.2018.12.002
[6] 张悦, 邸万通, 王晶晶, 董宛麟, 于洋, 苟芳, 王旗, 张东升, 顾生浩, 张立祯. 北方农牧交错带间套作资源利用的研究进展. 生态学杂志, 2017,36(9):2623-2632.
ZHANG Y, DI W T, WANG J J, DONG W L, YU Y, GOU F, WANG Q, ZHANG D S, GU S H, ZHANG L Z. Progress and perspectives of resource use in intercropping system in agro-pastoral ecotone. Chinese Journal of Ecology, 2017,36(9):2623-2632. (in Chinese)
[7] ZHANG Y, DUAN Y, NIE J, YANG J, REN J H, VAN DER WERF W, EVERS J B, ZHANG J, SU Z C, ZHANG L Z. A lack of complementarity for water acquisition limits yield advantage of oats/vetch intercropping in a semi-arid condition. Agricultural Water Management, 2019,225:1-9.
[8] 李伟绮, 孙建好, 赵建华. 覆膜对玉米间作豌豆干物质积累与分配的影响. 中国土壤与肥料, 2016(5):118-123.
LI W Q, SUN J H, ZHAO J H. Effects of mulching on dry matter accumulation and distribution in maize-pea intercrop. Journal of Soil and Fertilizer Sciences in China, 2016(5):118-123. (in Chinese)
[9] 高砚亮, 孙占祥, 白伟, 冯良山, 杨宁, 蔡倩, 冯晨, 张哲. 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响. 中国农业科学, 2017,50(19):3702-3713.
doi: 10.3864/j.issn.0578-1752.2017.19.007
GAO Y L, SUN Z X, BAI W, FENG L S, YANG N, CAI Q, FENG C, ZHANG Z. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning province. Scientia Agricultura Sinica, 2017,50(19):3702-3713. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.19.007
[10] 刘洋, 孙占祥, 白伟, 郑家明, 侯志研, 张莹, 文凤. 玉米大豆间作对辽西地区作物生长和产量的影响. 大豆科学, 2011,30(2):225-228.
LIU Y, SUN Z X, BAI W, ZHENG J M, HOU Z Y, ZHANG Y, WEN F. Effect of maize and soybean interplanting on crops growth and yield in western Liaoning province. Soybean Science, 2011,30(2):224-228. (in Chinese)
[11] 苟芳, 张立祯, 董宛麟, 于洋, 邸万通, 赵沛义, 妥德宝, 潘学标. 农牧交错带不同间套作模式的土地生产力. 农业工程学报, 2013,29(6):129-141.
GOU F, ZHANG L Z, DONG W L, YU Y, DI W T, ZHAO P Y, TUO D B, PAN X B. Productivity of strip intercropping systems in agro-pastoral ecotone. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(6):129-141. (in Chinese)
[12] 程玉柱, 李龙, 周琴, 郭娜, 邢邯, 江海东. 玉米/大豆不同配置下的玉米生长和产量形成研究. 南京农业大学学报, 2016,39(1):34-39.
CHENG Y Z, LI L, ZHOU Q, GUO N, XING H, JIANG H D. Growth and yield formation of maize under different maize/soybean intercropping patterns. Journal of Nanjing Agricultural University, 2016,39(1):34-39. (in Chinese)
[13] 张丽, 张乃明, 张仕颖, 贾广军, 宁东卫, 岳献荣, 夏运生. AMF 和间作对作物产量和坡耕地土壤径流氮磷流失的影响. 农业工程学报, 2019,35(22):216-224.
ZHANG L, ZHANG N M, ZHANG S Y, JIA G J, NING D W, YUE X R, XIA Y S. Effects of AMF and intercropping on crop yield and soil nitrogen and phosphorus loss by runoff on slope farmland. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(22):216-224. (in Chinese)
[14] 任旭灵, 滕园园, 王一帆, 殷文, 柴强. 玉米间作豌豆种间竞争互补对少耕密植的响应. 中国生态农业学报, 2019,27(6):860-869.
REN X L, TENG Y Y, WANG Y F, YIN W, CHAI Q. Response of interspecific competition and complement arity of maize/pea intercropping to reduced tillage and high-density planting. Chinese Journal of Eco-Agriculture, 2019,27(6):860-869. (in Chinese)
[15] 王钰云, 王宏富, 李智, 段宏凯, 黄珊珊. 谷子花生间作对谷子光合特性及产量的影响. 中国农业科技导报, 2020,22(5):153-165.
WANG Y Y, WANG H F, LI Z, DUAN H K, HUANG S S. Influences of millet-peanut intercropping on photosynthetic characteristics and yield of millet. Journal of Agricultural Science and Technology, 2020,22(5):153-165. (in Chinese)
[16] LIU S, YANG J Y, ZHANG X Y, DRURY C F, REYNOLDS W D, HOOGENBOOM G. Modelling crop yield, soil water content and soil temperature for a soybean-maize rotation under conventional and conservation tillage systems in Northeast China. Agricultural Water Management, 2013,123(10):32-44.
doi: 10.1016/j.agwat.2013.03.001
[17] 张亦涛, 任天志, 刘宏斌, 雷秋良, 翟丽梅, 王洪媛, 刘申, 尹昌斌, 张继宗. 玉米大豆间作降低小麦玉米轮作体系土壤氮残留的效应与机制. 中国农业科学, 2015,48(13):2580-2590.
doi: 10.3864/j.issn.0578-1752.2015.13.010
ZHANG Y T, REN T Z, LIU H B, LEI Q L, ZHAI L M, WANG H Y, LIU S, YIN C B, ZHANG J Z. Effect and mechanism of maize intercropping with soybean on reducing soil nitrogen residue in wheat-maize rotation. Scientia Agricultura Sinica, 2015,48(13):2580-2590. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.13.010
[18] WANG R N, SUN Z X, ZHANG L Z, YANG N, FENGL S, BAI W, ZHANG D S, WANG Q, EVERS J B, LIU Y, REN J H, ZHANG Y, VAN DER WERF W. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Research, 2020,253:1-10.
[19] 刘浩, 左青松, 刘婧怡, 周佳琳, 丁立, 杨晨. 盐分浓度对油菜干物质积累分配、农艺性状及品质的影响. 中国农学通报, 2017,33(22):19-23.
LIU H, ZUO Q S, LIU J Y, ZHOU J L, DING L, YANG C. Effects of salt-ion content on dry matter accumulation and distribution, agronomic traits and quality of rapeseed. Chinese Agricultural Science Bulletin, 2017,33(22):19-23. (in Chinese)
[20] 赵建华, 孙建好, 陈亮之, 李伟绮. 玉米行距对大豆/玉米间作作物生长及种间竞争力的影响. 大豆科学, 2019,38(2):229-235.
ZHAO J H, SUN J H, CHEN L Z, LI W Q. Growth and interspecific competition of crops as affected by maize row spacing in soybean/ maize intercropping system. Soybean Science, 2019, 38(2):229-235. (in Chinese)
[21] 张晓娜, 陈平, 庞婷, 杜青, 付智丹, 周颖, 任建锐, 杨文钰, 雍太文. 玉米/豆科间作种植模式对作物干物质积累、分配及产量的影响. 四川农业大学学报, 2017,35(4):484-490.
ZHANG X N, CHEN P, PANG T, DU Q, FU Z D, ZHOU Y, REN J R, YANG W Y, YONG T W. The effects of dry matter accumulation, distribution and yield in the maize/soybean and maize/peanut intercropping system. Journal of Sichuan Agricultural University, 2017,35(4):484-490. (in Chinese)
[22] 王雪蓉, 张润芝, 李淑敏, 许宁, 牟尧, 张春怡. 不同供氮水平下玉米/大豆间作体系干物质积累和氮素吸收动态模拟. 中国生态农业学报, 2019,27(9):1354-1363.
WANG X R, ZHANG R Z, LI S M, XU N, MU Y, ZHANG C Y. Simulation of dry matter accumulation and nitrogen absorption in a maize/soybean intercropping system supplied with different nitrogen levels. Chinese Journal of Eco-Agriculture, 2019,27(9):1354-1363. (in Chinese)
[23] 高砚亮, 孙占祥, 白伟, 冯良山, 蔡倩, 冯晨, 张哲. 玉米‖花生间作系统作物产量及根系空间分布特征的影响. 玉米科学, 2016,24(6):79-87.
GAO Y L, SUN Z X, BAI W, FENG L S, CAI Q, FENG C, ZHANG Z. Spatial distribution characteristics of root system and the yield in maize‖peanut intercropping system. Journal of Maize Sciences, 2016,24(6):79-87. (in Chinese)
[24] 白伟, 孙占祥, 张立祯, 郑家明, 冯良山, 蔡倩, 向午燕, 冯晨, 张哲. 耕层土壤虚实结构优化春玉米根系形态提高水分利用效率. 农业工程学报, 2019,35(21):88-97.
BAI W, SUN Z X, ZHANG L Z, ZHENG J M, FENG L S, CAI Q, XIANG W Y, FENG C, ZHANG Z. Furrow loose and ridge compaction plough layer structure optimizing root morphology of spring maize and improving its water use efficiency. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(21):88-97. (in Chinese)
[25] 白伟, 孙占祥, 郑家明, 杜桂娟, 蔡倩, 冯良山, 杨宁. 东北风沙半干旱区仁用杏作物间作对作物产量和土地生产力的影响. 生态学杂志, 2017,36(9):2521-2528.
BAI W, SUN Z X, ZHENG J M, DU G J, CAI Q, FENG L S, YANG N. Effect of apricot and crop intercropping on yield and land productivity in a semi-arid area of Northeast China. Chinese Journal of Ecology, 2017,36(9):2521-2528. (in Chinese)
[26] 董宛麟, 张立祯, 于洋, 苟芳, 赵沛义, 妥德宝, 潘学标. 向日葵和马铃薯间作模式的生产力及水分利用. 农业工程学报, 2012,28(18):127-133.
DONG W L, ZHANG L Z, YU Y, GOU F, ZHAO P Y, TUO D B, PAN X B. Productivity and water use in sunflower intercropped with potato. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(18):127-133. (in Chinese)
[27] MAO L L, ZHANG L Z, LI W Q, VAN DER WERF W, SUN J H, SPIERTZ H, LI L. Yield advantage and water saving in maize /pea intercrop. Field Crops Research, 2012,138:11-20.
doi: 10.1016/j.fcr.2012.09.019
[28] YANG W, LI Z, WANG J, WU P, ZHANG Y. Crop yield, nitrogen acquisition and sugarcane quality as affected by interspecific competition and nitrogen application. Field Crops Research, 2013,146(3):44-50.
doi: 10.1016/j.fcr.2013.03.008
[29] 雍太文, 刘小明, 宋春, 周丽, 李星辰, 杨峰, 王小春, 杨文钰. 种植方式对玉米/大豆套作体系中作物产量、养分吸收和种间竞争的影响. 中国生态农业学报, 2015,23(6):659-667.
YONG T W, LIU X M, SONG C, ZHOU L, LI X C, YANG F, WANG X C, YANG W Y. Effect of planting patterns on crop yield, nutrients uptake and interspecific competition in maize-soybean relay strip intercropping system. Chinese Journal of Eco-Agriculture, 2015,23(6):659-667. (in Chinese)
[30] 高砚亮, 孙占祥, 白伟, 郑家明, 冯良山, 杨宁, 蔡倩, 冯晨, 张哲. 玉米花生间作效应研究进展. 辽宁农业科学, 2016(1):41-46.
GAO Y L, SUN Z X, BAI W, ZHENG J M, FENG L S, YANG N, CAI Q, FENG C, ZHANG Z. The research progress on the interspecific interaction of the peanut-maize intercropping system. Liaoning Agricultural Sciences, 2016(1):41-46. (in Chinese)
[31] 林松明, 孟维伟, 南镇武, 徐杰, 李林, 张正, 李新国, 郭峰, 万书波. 玉米间作花生冠层微环境变化及其与荚果产量的相关性研究. 中国生态农业学报, 2020,28(1):31-41.
LIN S M, MENG W W, NAN Z W, XU J, LI L, ZHANG Z, LI X G, GUO F, WAN S B. Canopy microenvironment change of peanut intercropped with maize and its correlation with pod yield. Chinese Journal of Eco-Agriculture, 2020,28(1):31-41. (in Chinese)
[32] 赵乾旭, 史静, 夏运生, 张乃明, 宁东卫, 岳献荣, 杨海宏. AMF与隔根对紫色土上玉米||大豆种间氮竞争的影响. 中国农业科学, 2017,50(14):2696-2705.
doi: 10.3864/j.issn.0578-1752.2017.14.006
ZHAO Q X, SHI J, XIA Y S, ZHANG N M, NING D W, YUE X R, YANG H H. Effect of AMF inoculation on N uptake of interspecific competition between maize and soybean growing on the purple soil. Scientia Agricultura Sinica, 2017,50(14):2696-2705. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.14.006
[33] WANG Q, ZHANG D S, ZHANG L Z, HAN S, VAN DER WERF W, EVERS J, SU Z C, ANTEN P R N. Spatial configuration drives complementary capture of light of the understory cotton in young jujube plantations. Field Crops Research, 2017,213:21-28.
doi: 10.1016/j.fcr.2017.07.016
[34] 柴强, 杨彩红, 黄高宝. 交替灌溉对西北绿洲区小麦间作玉米水分利用的影响. 作物学报, 2011,37(9):1623-1630.
doi: 10.3724/SP.J.1006.2011.01623
CHAI Q, YANG C H, HUANG G B. Water use characteristics of alternately irrigated wheat/maize intercropping in oasis region of northwestern China. Acta Agronomica Sinica, 2011,37(9):1623-1630. (in Chinese)
doi: 10.3724/SP.J.1006.2011.01623
[35] 焦念元, 李亚辉, 杨潇, 尹飞, 马超, 齐付国, 刘领, 熊瑛. 玉米/花生间作行比和施磷对玉米光合特性的影响. 应用生态学报, 2016,27(9):2959-2967.
JIAO N Y, LI Y H, YANG X, YIN F, MA C, QI F G, LIU L, XIONG Y. Effect of maize/peanut intercropping row ratio and phosphate fertilizer on photosynthetic characteristics of maize. Chinese Journal of Applied Ecology, 2016,27(9):2959-2967. (in Chinese)
[36] 张绪成, 王红丽, 于显枫, 侯慧芝, 方彦杰, 马一凡. 半干旱区全膜覆盖垄沟间作种植马铃薯和豆科作物的水热及产量效应. 中国农业科学, 2016,49(3):468-481.
doi: 10.3864/j.issn.0578-1752.2016.03.006
ZHANG X C, WANG H L, YU X F, HOU H Z, FANG Y J, MA Y F. The study on the effect of potato and beans intercropping with whole field plastics mulching and ridge-furrow planting on soil thermal-moisture status and crop yield on semi-arid region. Scientia Agricultura Sinica, 2016,49(3):468-481. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.03.006
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[9] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[10] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[11] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[12] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[13] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[14] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[15] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!