Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (12): 2278-2293.doi: 10.3864/j.issn.0578-1752.2022.12.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comprehensive Evaluation of Potato Tuber Texture

LI WenLi(),YUAN JianLong,DUAN HuiMin,JIANG TongHui,LIU LingLing,ZHANG Feng()   

  1. College of Agriculture, Gansu Agricultural University/State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement &Germplasm Enhancement, Lanzhou 730070
  • Received:2022-01-17 Accepted:2022-04-11 Online:2022-06-16 Published:2022-06-23
  • Contact: Feng ZHANG E-mail:liwl@gsau.edu.cn;zhangf@gsau.edu.cn

Abstract:

【Objective】 The comprehensive evaluation of texture qualities of potato tubers not only are beneficial to the subdivision of processing quality traits and accurately locate purpose of potato, but also assist breeders screening new varieties, and accelerate the development of potato products.【Method】Potato cultivated varieties were selected as the research samples. Puncture, TPA compression and shear methods were chosen to analyze the texture parameters. These included puncture distance, puncture initial force, puncture speed, compression deformation, compression speed, compression interval time, compression initial force, shear initial force and speed. The texture indexes of eight varieties were measured under the optimal texture analyzer parameters setting, then the correlation among the texture parameters and the evaluation of optimal texture parameters were analyzed. 【Result】 Optimal parameters of fresh tuber puncture: Cylindrical metal probe (TMS 2 mm Steel), 2 mm puncture distance and, 2.5 N initial force, 50 mm·min-1 detection speed. The optimal test factors of TPA compression (fresh/steamed): The cylinder sample for fresh and steamed tubers both ranged in the diameter and height from 10 mm to 15 mm, no significant difference was examined among three probe selection in the fresh tubers. Cylindrical aluminum probe (TMS 36.0 mm Aluminum Cylinder) was the optimal type for steamed tubers probe. The optimal parameters (fresh/steamed): 50% and 60% deformation, 60 mm·min-1 and 80 mm·min-1 detection speed, 6 s and 10 s interval time, both 0.7 N initial force. The optimal shear parameters (fresh/steamed): The length, width and height of the cuboid sample were 30 mm, 15 mm, and 10 mm, respectively. The probe type was light single knife probe (TMS Perspex Knife Edge), with both 60 mm·min-1 detection speed, and 1 N and 0.5 N initial force. They’re existed significant correlation between springiness and the peel crispness, no significant correlation among the other texture parameters of TPA compression and shear. They’re existed significant positive correlation among puncture, TPA compression and shear texture parameters (0.410-0.959) in fresh tubers. There also existed significant positive correlation between TPA compression and shear texture parameters (0.441-0.952) in steamed tubers. 【Conclusion】 Puncture, TPA compression and shear methods were suitable for the samples evaluation of the quality of fresh tubers. The indexes of peel hardness, peel brittleness, TPA hardness, cohesiveness, chewiness, shear hardness can be chosen as important parameters to compare differences of texture. TPA compression and shear methods were suitable for the sample’s evaluation of the quality of steamed tubers. The indexes of TPA hardness, adhesiveness, cohesiveness, springiness, chewiness, shear hardness can be chosen as important parameters to compare differences of texture.

Key words: Solanum tuberosum, texture analyzer parameter, puncture, TPA compression, shear

Fig. 1

Puncture test site, detection probe and parameters setting"

Fig. 2

TPA compression test site, detection probe and parameters setting"

Fig. 3

Shear test site, detection probe and parameters setting"

Table 1

The results of different puncture parameter on potato peel"

穿刺参数
Puncture parameter
穿刺距离 Puncture distance (mm) 起始力 Initial force (N) 检测速度 Detection speed (mm·min-1)
1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 10 30 50 70 90
薯皮硬度
Peel hardness
(N)
9.10±0.34a 12.00±0.54b 12.79±0.57b 12.54±0.79b 12.24±0.48b 10.86±0.09a 11.40±0.14ab 11.73±0.28ab 12.05±0.39b 12.41±1.06b 11.16±0.88a 11.77±1.39a 11.77±0.99a 12.17±1.17a 12.25±1.34a
破裂距离
Puncture distance (mm)
0.98±0.02a 1.41±0.03b 1.62±0.10c 1.66±0.13c 1.71±0.08c 1.91±0.02c 1.76±0.08bc 1.55±0.13ab 1.43±0.21a 1.31±0.22a 1.68±0.04a 1.54±0.04b 1.49±0.04b 1.47±0.07b 1.44±0.07b
薯皮脆性
Peel brittleness (N·mm-1)
9.32±0.19d 8.56±0.13c 8.02±0.18b 7.72±0.21b 7.31±0.13a 5.70±0.08a 6.48±0.31ab 7.59±0.80abc 8.55±1.62bc 9.75±2.42c 6.65±0.67a 7.67±1.10a 7.92±0.47a 8.27±0.39a 8.48±0.70a

Table 2

The results of three TPA probe on fresh and steamed tubers"

探头类型
Probe type
块茎类型
Tuber type
TPA硬度
Hardness (N)
粘附性
Adhesiveness (mJ)
内聚性
Cohesiveness
弹性
Springiness (mm)
咀嚼性
Chewiness (mJ)
38.1 mm圆柱塑胶探头
38.1 mm Cylindrical Plastic Probe
鲜Fresh 216.48±35.15a 0.10±0.01a 2.85±0.12a 60.55±16.26a
熟Steamed 21.51±4.62a 0.62±0.11a 0.06±0.01a 0.94±0.15a 1.32±0.61a
36 mm圆柱铝制探头
36 mm Cylindrical Aluminum Probe
鲜Fresh 219.12±15.22a 0.10±0.01a 2.99±0.06a 64.58±8.37a
熟Steamed 22.17±1.55a 0.88±0.10b 0.07±0.00b 1.02±0.04a 1.58±0.25a
25.4 mm圆柱塑胶探头
25.4 mm Cylindrical Plastic Probe
鲜Fresh 220.00±10.39a 0.10±0.01a 2.89±0.09a 61.59±5.00a
熟Steamed 18.24±2.78a 1.01±0.11b 0.06±0.00a 0.82±0.14a 0.88±0.33a
F 鲜Fresh 0.019 0.000 1.929 0.110
熟Steamed 1.264 10.717 6.000 2.090 2.083
P 鲜Fresh 0.981 1.000 0.226 0.989
熟Steamed 0.348 0.010* 0.037* 0.205 0.206

Fig. 4

The results of four shapes on fresh and steamed tubers A: Hardness; B: Hardness per unit area; C: Adhesiveness; D: Adhesiveness per unit area; E: Cohesiveness; F: Cohesiveness per unit area; G: Springiness; H: Springiness per unit area; I: Chewiness; J: Chewiness per unit area. Different lowercase letters indicate significant differences at P<0.05 level. The same as below"

Fig. 5

The results of texture parameters on fresh and steamed tubers A: Hardness; B: Adhesiveness; C: Cohesiveness; D: Springiness; E: Chewiness"

Table 3

Analysis of variance of regression equation of Plackett-Burman for fresh and steamed tubers"

质地参数
Texture parameters
项目
Item
平方和
Sum of squares
自由度
Df
均方差
Mean square
F <BOLD>P</BOLD> 显著性
Significance
内聚性(鲜)
Cohesiveness (Fresh)
模型Model 9.697E﹣0.003 4 2.424E﹣003 99.45 <0.0001 *
A 9.336E–0.003 1 9.336E﹣003 382.98 <0.0001
B 3.282E﹣0.004 1 3.282E﹣004 13.46 0.0080
C 1.245E﹣0.005 1 1.245E﹣005 0.51 0.4980
D 2.089E﹣0.005 1 2.089E﹣005 0.86 0.3854
咀嚼性(鲜)
Chewiness (Fresh)
模型Model 4148.55 4 1037.14 44.42 <0.0001 *
A 3306.59 1 3306.59 141.61 <0.0001
B 669.78 1 669.78 28.68 0.0011
C 70.26 1 70.26 3.01 0.1264
D 101.93 1 101.93 4.36 0.0751
内聚性(熟)
Cohesiveness (Steamed)
模型Model 9.000E﹣004 4 2.250E﹣004 9.45 <0.0060 *
A 7.292E﹣004 1 7.292E﹣004 30.63 <0.0009
B 2.917E﹣005 1 2.917E﹣005 1.22 0.3050
C 0.000 1 0.000 0.000 1.0000
D 3.333E﹣005 1 3.333E﹣005 1.40 0.2753

Table 4

The design table and results of fresh and steamed tubers"

编号
Number
块茎类型
Tuber type
A
B
D 空白列
Blank
硬度
Hardness (N)
粘附性
Adhesiveness (mJ)
内聚性
Cohesiveness
弹性
Springiness (mm)
咀嚼性
Chewiness (mJ)
1 鲜Fresh 1(50) 1(20) 1(4) 1 206.261 0.134 2.902 80.840
熟Steamed 1(40) 1(40) 1(4) 1 7.166 0.255 0.068 0.544 0.271
2 鲜Fresh 1 2(60) 2(6) 2 209.969 0.137 2.868 82.490
熟Steamed 1 2(60) 2(6) 2 8.174 0.249 0.063 0.550 0.319
3 鲜Fresh 1 3(100) 3(8) 3 188.022 0.120 2.751 61.984
熟Steamed 1 3(80) 3(10) 3 8.014 0.332 0.069 0.586 0.331
4 鲜Fresh 2(60) 1 2 3 215.105 0.092 2.919 57.696
熟Steamed 2(50) 1 2 3 8.544 0.383 0.057 0.563 0.282
5 鲜Fresh 2 2 3 1 231.517 0.095 2.941 65.245
熟Steamed 2 2 3 1 7.893 0.383 0.062 0.586 0.295
6 鲜Fresh 2 3 1 2 218.210 0.083 2.787 51.107
熟Steamed 2 3 1 2 7.775 0.735 0.067 0.541 0.285
7 鲜Fresh 3(70) 1 3 2 228.348 0.077 2.864 50.731
熟Steamed 3(60) 1 3 2 8.174 1.006 0.076 0.628 0.404
8 鲜Fresh 3 2 1 1 217.744 0.072 2.650 41.845
熟Steamed 3 2 1 1 8.771 1.014 0.070 0.561 0.366
9 鲜Fresh 3 3 2 3 242.891 0.074 2.690 48.826
熟Steamed 3 3 2 3 9.074 1.242 0.070 0.546 0.369
k1(硬度)
k1 (Hardness)
鲜Fresh 201.417 216.571 214.072 218.507
熟Steamed 7.785 7.962 7.904 8.045
k2(硬度)
k2 (Hardness)
鲜Fresh 221.610 219.743 222.655 218.842
熟Steamed 8.071 8.279 8.598 8.041
k3(硬度)
k3 (Hardness)
鲜Fresh 229.661 216.374 215.962 215.339
熟Steamed 8.673 8.288 8.027 8.443
R(硬度)
R (Hardness)
鲜Fresh 28.244 3.370 8.583 3.503
熟Steamed 0.888 0.326 0.693 0.400
k1(粘附性)
k1 (Adhesiveness)
鲜Fresh
熟Steamed 0.279 0.548 0.668 0.627
k2(粘附性)
k2 (Adhesiveness)
鲜Fresh
熟Steamed 0.500 0.549 0.624 0.663
k3(粘附性)
k3 (Adhesiveness)
鲜Fresh
熟Steamed 1.087 0.770 0.574 0.576
R(粘附性)
R (Adhesiveness)
鲜Fresh
熟Steamed 0.809 0.221 0.094 0.087
k1(内聚性)
k1 (Cohesiveness)
鲜Fresh 0.130 0.101 0.096 0.101
熟Steamed 0.066 0.067 0.068 0.066
k2(内聚性)
k2 (Cohesiveness)
鲜Fresh 0.090 0.102 0.099 0.099
熟Steamed 0.062 0.065 0.063 0.069
k3(内聚性)
k3 (Cohesiveness)
鲜Fresh 0.074 0.092 0.095 0.095
熟Steamed 0.072 0.069 0.069 0.065
R(内聚性)
R (Cohesiveness)
鲜Fresh 0.056 0.010 0.004 0.005
熟Steamed 0.010 0.004 0.005 0.003
k1(弹性)
k1 (Springiness)
鲜Fresh 2.840 2.895 2.779 2.831
熟Steamed 0.560 0.578 0.549 0.559
k2(弹性)
k2 (Springiness)
鲜Fresh 2.882 2.819 2.826 2.839
熟Steamed 0.563 0.566 0.553 0.573
k3(弹性)
K3 (Springiness)
鲜Fresh 2.735 2.743 2.852 2.787
熟Steamed 0.578 0.558 0.600 0.570
R(弹性)
R (Springiness)
鲜Fresh 0.148 0.152 0.072 0.053
熟Steamed 0.019 0.020 0.051 0.011
k1(咀嚼性)
k1 (Chewiness)
鲜Fresh 75.105 63.089 57.931 62.643
熟Steamed 0.307 0.319 0.307 0.311
k2(咀嚼性)
k2 (Chewiness)
鲜Fresh 58.016 63.193 65.520 61.443
熟Steamed 0.287 0.327 0.323 0.336
k3(咀嚼性)
k3 (Chewiness)
鲜Fresh 47.134 53.973 59.320 56.169
熟Steamed 0.380 0.328 0.343 0.326
R(咀嚼性)
R (Chewiness)
鲜Fresh 27.971 9.221 7.589 6.475
熟Steamed 0.073 0.009 0.036 0.025

Table 5

The texture results of fresh and steamed tubers at different initial force and detection speed"

剪切参数
Shear parameter
块茎类型
Tuber type
起始力 Initial force (N) 检测速度 Detection speed (mm·min-1)
0.5
0.5
0.7
0.6
1.0
0.7
1.5
0.8
2.0
0.9
20 40 60 120 180
剪切硬度
Shear hardness (N)
鲜Fresh 17.76±3.23a 17.23±5.09a 17.23±1.97a 18.28±0.78a 18.34±2.01a 15.67±2.74a 18.03±2.58ab 16.97±1.46ab 22.61±5.15b 21.90±1.50b
熟Steamed 1.48±0.26ab 1.60±0.16b 1.23±0.13a 1.56±0.07ab 1.51±0.21ab 1.39±0.38a 1.44±0.18a 1.69±0.17a 1.83±0.05a 1.76±0.22a
位移
Displacement (mm)
鲜Fresh 4.60±1.02a 4.29±0.74a 4.09±0.12a 4.21±0.12a 3.93±0.15a 4.03±0.26a 3.97±0.38a 4.22±0.42a 4.28±0.19a 4.76±0.70a
熟Steamed 1.61±0.10b 1.53±0.30b 1.04±0.19a 1.04±0.16a 0.98±0.21a 1.90±0.90a 1.27±0.17a 1.41±0.19a 1.65±0.49a 1.48±0.16a
剪切力做功
Shear work
鲜Fresh 54.62±21.72a 49.13±15.56a 46.48±2.5a 46.48±2.5a 49.21±5.53a 42.44±9.13a 45.22±9.43a 47.85±6.82ab 58.53±9.00ab 66.96±15.56b
熟Steamed 1.71±0.40b 1.82±0.25b 1.06±0.23a 1.06±0.23a 1.30±0.41ab 1.28±0.66a 1.48±0.31ab 1.88±0.38a 2.38±0.80ab 2.00±0.37b

Table 6

Texture parameters of different varieties of fresh and steamed tubers"

品种名
<BOLD>V</BOLD>ariety
块茎类型
Tubers type
穿刺测试 Puncture test TPA压缩测试 TPA compression test 剪切测试 Shear test
薯皮硬度
Hardness
(N)
破裂距离
Puncture distance (mm)
薯皮脆性
Brittleness
(N·mm-1)
TPA硬度
Hardness
(N)
粘附性
Adhesiveness (mJ)
内聚性
Cohesiveness
弹性
Springiness (mm)
咀嚼性
Chewiness (mJ)
剪切硬度
Hardness (N)
位移
Displacement (mm)
剪切力做功
Shear work
(mJ)
青薯9号
Qingshu No. 9
鲜Fresh 11.15±0.61b 1.32±0.02bc 8.45±0.38d 362.07±12.03d 0.19±0.01c 2.79±0.04a 192.34±9.71c 34.07±2.99bc 137.10±13.27ab 137.10±13.27bc
熟Steamed 12.13±1.87ab 0.80±0.02a 0.06±0.00a 0.73±0.02ab 0.54±0.08a 1.21±0.06ab 1.34±0.06bc 1.21±0.05b
京张1号
Jingzhang No. 1
鲜Fresh 15.05±0.78d 1.44±0.06c 10.45±0.35f 396.53±25.93d 0.19±0.02c 3.01±0.02c 229.03±39.61d 18.72±2.50a 64.19±20.81ab 64.19±20.81a
熟Steamed 12.26±1.19ab 0.87±0.08a 0.06±0.00a 0.74±0.04ab 0.57±0.06a 1.16±0.14ab 1.32±0.18bc 1.15±0.24ab
龙薯4号
Longshu No. 4
鲜Fresh 8.70±0.39a 1.31±0.08bc 6.64±0.31ab 280.88±30.52b 0.13±0.01ab 2.98±0.15bc 107.87±21.84b 25.36±1.73ab 87.60±8.57ab 87.60±8.57a
熟Steamed 11.00±1.49ab 0.80±0.05a 0.06±0.01ab 0.78±0.03b 0.54±0.10a 1.03±0.09a 0.96±0.12a 0.91±0.17ab
冀张薯12
Jizhangshu 12
鲜Fresh 10.58±0.86b 1.21±0.08ab 8.74±0.34ab 286.02±12.89b 0.14±0.02b 2.85±0.11ab 109.88±17.08b 18.70±3.77a 75.44±22.33ab 75.44±22.33a
熟Steamed 9.79±0.45a 1.66±0.15b 0.07±0.00b 0.68±0.02ab 0.47±0.02a 0.95±0.08a 1.09±0.18ab 0.82±0.17a
北方002
Beifang 002
鲜Fresh 10.64±0.83b 1.18±0.06ab 9.02±0.19bc 269.69±19.42b 0.12±0.01ab 2.80±0.09a 90.66±7.61ab 24.98±2.97ab 102.03±33.98ab 102.03±33.98ab
熟Steamed 11.31±0.44ab 0.70±0.07a 0.06±0.01ab 0.65±0.03a 0.48±0.07a 1.16±0.15ab 1.25±0.10bc 1.16±0.20ab
布尔班克
Russet Burbank
鲜Fresh 13.83±0.51c 1.33±0.01bc 10.40±0.32e 325.40±26.90c 0.12±0.01ab 2.92±0.02abc 111.30±9.60b 40.13±3.10c 156.46±2.72ab 156.46±2.72c
熟Steamed 11.31±0.44ab 0.84±0.25a 0.06±0.00a 0.67±0.06a 0.48±0.07a 1.32±0.14b 1.61±0.18d 1.61±0.10c
甘农奶香薯
Gannongnaixiangshu
鲜Fresh 9.42±0.50a 1.13±0.05a 8.34±0.54a 399.93±21.87d 0.20±0.02c 2.86±0.03abc 236.90±20.54d 38.11±12.43c 170.02±56.57b 170.02±56.57c
熟Steamed 19.97±1.32c 0.82±0.05a 0.07±0.01ab 1.02±0.11c 1.38±0.28b 1.82±0.02c 1.42±0.10dc 1.80±0.14c
大西洋
Atlantic Ocean
鲜Fresh 11.40±0.58a 1.31±0.16bc 8.70±0.86bd 209.33±7.61a 0.11±0.01a 2.79±0.11a 65.92±6.83a 20.55±1.36a 61.13±7.94a 61.13±7.94a
熟Steamed 12.68±1.82b 0.84±0.25a 0.06±0.00a 0.67±0.06a 0.53±0.14a 1.33±0.28b 1.22±0.12bc 1.80±0.14c

Fig. 6

Correlation analysis of texture parameters fresh and steamed tubers A: Fresh tubers; B: Steamed tubers"

[1] RYTA M D MACHADO, MARIA F T, LUCILA C G. Effect of light and temperature on the formation of glycoalkaloids in potato tubers. Food Control, 2005, 18(5): 503-508.
doi: 10.1016/j.foodcont.2005.12.008
[2] SZCZESNIAK A S, KAHN E L. Consumer awareness of and attitudes to food texture. Journal of Texture Studies, 1971, 2(3): 280-295.
doi: 10.1111/j.1745-4603.1971.tb01005.x
[3] HUTCHINGS J B, LILLFORD P J. The perception of food texture the philosophy of the breakdown path. Journal of Texture Studies, 1988, 19(2): 103-115.
doi: 10.1111/j.1745-4603.1988.tb00928.x
[4] 梁辉, 戴志远. 物性分析仪在食品质构测定方面的应用. 食品研究与开发, 2006, 27(4): 118-121.
LIANG H, DAI Z Y. Application texture analyzer in the assessment for food texture. Food Research and Development, 2006, 27(4): 118-121. (in Chinese)
[5] HARKER F R, MAINDONALD J, MURRAY S H. Sensory interpretation of instrumental measurements 2: sweet and acid taste of apple fruit. Postharvest Biology and Technology, 2002, 24(3): 225-239.
doi: 10.1016/S0925-5214(01)00158-2
[6] 李洪浩, 陈季旺. 水果与蔬菜质地. 食品研究与开发, 1997, 18(1): 61-62.
LI H H, CHEN J W. Texture of fruits and vegetables. Food Research and Development, 1997, 18(1): 61-62. (in Chinese)
[7] 刘亚平, 李红波. 物性分析仪及 TPA 在果蔬质构测试中的应用综述. 山西农业大学学报(自然科学版), 2010, 30(2): 188-192.
LIU Y P, LI H B. Review on application of physical property analyzer and TPA in fruit and vegetable texture testing. Journal of Shanxi Agricultural University (Natural Science Edition), 2010, 30(2): 188-192. (in Chinese)
[8] 刘莉, 高星, 华德平, 刘翔, 李志文, 张平, 李三培, 张少慧. 不同的质构检测方法对甜瓜果肉质构的评价. 天津大学学报(自然科学与工程技术版), 2016, 49(8): 875-881.
LIU L, GAO X, HUA D P, LIU X, LI Z W, ZHANG P, LI S P, ZHANG S H. Evaluation of the textural properties of melon flesh by different texture test methods. Journal of Tianjin University (Science and Technology), 2016, 49(8): 875-881. (in Chinese)
[9] 陈丽. 甘薯块根质构特性的评价研究[D]. 杭州: 浙江农林大学, 2013.
CHEN L. Study on texture properties evaluation of sweet potato[D]. Hangzhou: Zhejiang A & F University, 2013. (in Chinese)
[10] 汤鹏宇, 孟繁博, 黄道梅, 郑秀艳, 林茂. 质构参数与花生物性测定的相关性. 现代食品科技, 2021, 37(7): 294-301.
TANG P Y, MENG F B, HUANG D M, ZHENG X Y, LIN M. Correlation between texture analyzer parameters and physical properties measurement of peanut. Modern Food Science and Technology, 2021, 37(7): 294-301. (in Chinese)
[11] 杜昕美, 赵前程, 吕可, 刘婧懿, 程少峰, 马永生. 五种苹果质构测定方法的比较及与感官评价的相关性分析. 食品工业科技, 2020, 41(22): 240-246.
DU X M, ZHAO Q C, LÜ K, LIU J Y, CHENG S F, MA Y S. Comparison of texture determination method and correlation analysis with sensory evaluation of 5 kinds of apple. Science and Technology of Food Industry, 2020, 41(22): 240-246. (in Chinese)
[12] 李玉梅, 李守强, 田世龙, 王俊舟. 质构仪质地多面分析法检测马铃薯块茎质地参数. 食品工业科技, 2016, 37(8): 92-96.
LI Y M, LI S Q, TIAN S L, WANG J Z. Texture parameters of potato tubers with texture profile analysis method. Science and Technology of Food Industry, 2016, 37(8): 92-96. (in Chinese)
[13] SZCZESNIAK A S, HUMBAUGH P R, BLOCK H W. Behavior of different foods in the standard shear compression cell of the shear press and the effect of sample weight on peak area and maximum force. Journal of Texture Studies, 1970, 1(3): 356-378.
doi: 10.1111/j.1745-4603.1970.tb00736.x
[14] BOUNE M C. Texture evaluation of horticultural drops. Hortscience, 1980, 15(1): 51-57.
[15] 张秋会, 李苗云, 黄现青. 肉制品的质构特性及其评价. 食品与机械, 2012, 28(3): 36-39.
ZHANG Q H, LI M Y, HUANG X Q. Texture characteristics and evaluation of meat products. Food & Machinery, 2012, 28(3): 36-39. (in Chinese)
[16] RAFFO A, SINESIO F, MONETA E, NARDO N, PPPARAIO M, PAOLETTI F. Internal quality of fresh and cold stored celery petioles described by sensory profile, chemical and instrumental measurements. European Food Research & Technology, 2006. 222(5/6): 590-599.
[17] 潘好斌. 薄皮甜瓜果实质地品质综合评价及质地差异分析[D]. 沈阳: 沈阳农业大学, 2019.
PAN H B. Comprehensive evaluation of textual quality and analysis of internal cause of texture difference of oriental melon fruit[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese)
[18] SZCZESNIAK A S. Classification of textural characteristics. Journal of Food Science, 1962, 28(4): 385-389.
doi: 10.1111/j.1365-2621.1963.tb00215.x
[19] SZCZESNIAK A S. Texture is a sensory property. Food Quality and Preference 2002, 13: 215-225.
doi: 10.1016/S0950-3293(01)00039-8
[20] 刘娟, 梁延超, 隋景航, 余斌, 王润润, 张小微, 程李香, 王玉萍, 张峰. 马铃薯块茎蒸煮品质、质构特性及加工型品系筛选. 中国农业科学, 2016, 49(21): 4074-4084.
LIU J, LIANG Y C, SUI J H, YU B, WANG R R, ZHANG X W, CHENG L X, WANG Y P, ZHANG F. Screening for cooking- processing potato lines according to potato tuber qualities and properties. Scientia Agricultura Sinica, 2016, 49(21): 4074-4084. (in Chinese)
[21] 纪宗亚. 质构仪及其在食品品质检测方面的应用. 食品工程, 2011, 5(3): 22-25.
JI Z Y. Texture analyzer and its application in food quality inspection. Food Engineering, 2011, 5(3): 22-25. (in Chinese)
[22] 林芳栋, 蒋珍菊, 廖珊, 游娟, 李朝学. 质构仪及其在食品品质评价中的应用综述. 生命科学仪器, 2009, 7(5): 61-63.
LIN F D, JIANG Z J, LIAO S, YOU J, LI C X. A review of texture analyzer and its application in food quality evaluation. Life Science Instruments, 2009, 7(5): 61-63. (in Chinese)
[23] 梁静, 孙锐, 孙蕾, 李雪彤, 郭倩文. 不同品种果桑穿刺试验质构特性分析. 山东林业科技, 2017, 47(05): 26-30.
LIANG J, SUN R, SUN L, LI X T, GUO Q W. Analysis of characteristics of different varieties of mulberry puncture test texture. Journal of Shandong Forestry Science and Technology, 2017, 47(5): 26-30. (in Chinese)
[24] CAMPS C, GUILLERMIN P, MAUGET J C, BERTRAND D. Data analysis of penetrometric force/displacement curves for the characterization of whole apple fruits. Journal of Texture Studies, 2005, 36(4): 387-401.
doi: 10.1111/j.1745-4603.2005.00023.x
[25] PONS M, FISZMAN S M. Instrumental texture profile analysis with particular reference to gelled systems. Journal of Texture Studies, 1996, 27(6): 597-624.
doi: 10.1111/j.1745-4603.1996.tb00996.x
[26] NADULSKI R, GROCHOWICZ J. The influence of the measurement conditions on the TPA test of selected fruit. Acta Horticulturae, 2001, 562(1): 213-219.
[27] 邵兴锋, 朱勇, 张春丹. 测试因素对苹果质地剖面分析结果的影响. 中国食品学报, 2011, 11(6): 199-205.
SHAO X F, ZHU Y, ZHANG C D. The influence of measurement factors on the results of texture profile analysis of apple fruit. Journal of Chinese Institute of Food Science and Technology, 2011, 11(6): 199-205. (in Chinese)
[28] 姜松, 王海鸥. TPA质构分析及测试条件对苹果TPA质构分析的影响. 食品科学, 2004, 25(12): 68-71.
JIANG S, WANG H O. The influence of measurement factors on the results of texture profile analysis of apple fruit. Food Science, 2004, 25(12): 68-71. (in Chinese)
[29] 潘秀娟, 屠康. 质构仪质地多面分析(TPA)方法对苹果采后质地变化的检测. 农业工程学报, 2005, 6(3): 166-170.
PAN X J, TU K. Comparison of texture properties of post- harvested apples using texture profile analysis. Transactions of the Chinese Society of Agricultural Engineering, 2005, 6(3): 166-170. (in Chinese)
[30] 孟陆丽, 张谦益, 吴洪华, 王香林, 张明德. 剪切实验测试梨果肉质地研究. 食品工业科技, 2006, 27(11): 55-57.
MENG L L, ZHANG Q Y, WU H H, WANG X L, ZHANG M D. Study on the meat quality of pear by shear test. Science and Technology of Food Industry, 2006, 27(11): 55-57. (in Chinese)
[31] 宋钰兴, 邵兴锋, 张春丹, 程赛. 测试条件的变化对草莓质地剖面分析结果的影响. 食品科学, 2011, 32(13): 15-18.
SONG Y X, SHAO X F, ZHANG C D, CHENG S. Effects of different test conditions on texture profile analysis parameters of strawberry fruits. Food Science, 2011, 32(13): 15-18. (in Chinese)
[32] WU T X, JUDITH A A. Firmness and force relaxation characteristics of tomatoes stored intact or as slices. Postharvest Biology and Technology, 2002, 24(1): 89-68.
doi: 10.1016/S0925-5214(01)00186-7
[33] VAN MARLE J T, STOLLE S T, DONKERS J, VAN D C, VORAGEN ALPHONS G J, RECOURT K. Chemical and microscopic characterization of potato (Solanum tuberosum L.) cell walls during cooking. Journal of Agricultural and Food Chemistry, 1997, 45(1): 50-58.
doi: 10.1021/jf960085g
[1] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YU Yao-chuang, WANG Chang-yan. Seasonal Variations of Soil Critical Shear Stress in Typical Farmlands in the Hilly Region of Loess Plateau [J]. Scientia Agricultura Sinica, 2016, 49(21): 4149-4159.
[4] ZHONG Shou-qin, LIU Bo, WEI Chao-fu, HU Fei-nan. The Rock Fragments (<2 mm) and Their Action Mechanism on the Shear Strength of Purple Mudstone-Developed Soils [J]. Scientia Agricultura Sinica, 2015, 48(23): 4846-4858.
[5] WEI Qing-Jiang-1, WANG Miao-Qiu-1, ZENG Zhi-Fu-2, YANG Cheng-Quan-1, PENG Shu-Ang-1, LIU Yong-Zhong-1. Evaluation of the Mastication and Comparison of Fruit Quality with Different Bearing Habits in Nanfeng Tangerine (Citrus reticulata Blanco cv. Kinokuni) [J]. Scientia Agricultura Sinica, 2014, 47(6): 1162-1170.
[6] PU Yu-Lin-1, 2 , 3 , XIE De-Ti-1, 3 , NI Jiu-派1, 3 , WEI Chao-Fu-1, 3 , LIN Chao-Wen-4. Effects of Hedgerow Patterns on Soil Shear Strength and Anti-scouribility on Slope Farmland in Purple Soil Area [J]. Scientia Agricultura Sinica, 2014, 47(5): 934-945.
[7] WANG Yan-xia, WANG Xiao-man, GUAN Jun-feng. Flesh Texture Characteristic Analysis of Pear [J]. Scientia Agricultura Sinica, 2014, 47(20): 4056-4066.
[8] HUANG Wei, CAO Jin-Xuan, WANG Dao-Ying, XU Wei-Min, ZHANG Mu-Han. Impact of Caspase-3 Activation on the Tenderness of Duck  Skeletal Muscle During Postmortem Conditioning [J]. Scientia Agricultura Sinica, 2012, 45(7): 1372-1379.
[9] WANG Zhao-Feng, YANG Zai-Bin, YANG Wei-Ren, ZHANG Gui-Guo, JIANG Shu-Zhen, ZHANG Chong-Yu, LIU Li, CUI Xiu-Mei. Changing Laws and Correlations of Shearing Force and Feed Characteristics of Maize Plant [J]. Scientia Agricultura Sinica, 2012, 45(3): 509-521.
[10] CUI Xiu-Mei, YANG Zai-Bin, YANG Wei-Ren, ZHANG Gui-Guo, JIANG Shu-Zhen, LIU Li, WANG Zhao-Feng. Correlations of Shearing Force and Feed Nutritional Characteristics of Crop Straws [J]. Scientia Agricultura Sinica, 2012, 45(15): 3137-3146.
[11] . Establishment of the Detecting Method on the Fruit Texture of Dongzao by Puncture Test
[J]. Scientia Agricultura Sinica, 2011, 44(6): 1210-1217 .
[12] WANG Gui-bo,DING Ming-xing,GUO Ni-ni,ZHUO Guo-rong,ZHANG Qian-qian,GUO Cheng
. Effects of Electroacupuncture Anesthesia Combined with Xylidinothiazoline on Pain Threshold and Physiological and Biochemical Indexes in Goats
[J]. Scientia Agricultura Sinica, 2010, 43(5): 1066-1074 .
[13] LIU Li,YANG Zai-bin,YANG Wei-ren,JIANG Shu-zhen,ZHANG Gui-guo,YAO Bao-qiang
. Correlations Among Shearing Force, Morphological Characteristics, Chemical Compositions, and in situ Degradibility of Alfalfa Stem and Rye Grass Stem#br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3374-3380 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!