Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (4): 792-803.doi: 10.3864/j.issn.0578-1752.2021.04.011

• HORTICULTURE • Previous Articles     Next Articles

Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties

LI KaiFeng1(),YIN YuHe2,WANG Qiong1(),LIN TuanRong2,GUO HuaChun1()   

  1. 1College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201
    2Ulanqab Academy of Agricultural and Animal Husbandry Sciences, Ulanqab 012000, Inner Mongolia
  • Received:2020-04-15 Accepted:2020-09-23 Online:2021-02-16 Published:2021-02-16
  • Contact: Qiong WANG,HuaChun GUO E-mail:dtllx01@sina.cn;gaze12@sohu.com;ynghc@126.com

Abstract:

【Objective】 This paper was aimed to investigate the metabolic compounds related to the change rules of volatile flavour components and to find out the potential metabolic precursor of the volatile flavour components in potato, so as to providing references to the flavour and quality improvement of potatoes. 【Method】 The gas chromatography-mass spectrometry (GC-MS) was used for the non-target detection of the tuber metabolome and post-curing volatile flavour components in the potato varieties (lines), including as Qingshu No.9, Huasong No. 7, Xisen No. 6, Houqihong and Jizhangshu No.12, D545, and D7277.【Result】 There were 22 significantly different volatile flavour compounds between the varieties among 7 main cultivation varieties of potatoes, most of which were found with high content in Jizhangshu No.12, and relatively low content in Huasong No.7. The clustering analysis with the compounds detected could classify the 7 varieties into 2 groups with distinct intensity of typical flavour; in group 1, the fragrance of Huasong No.7 after the curing method of Hot-air fry might be denser; in group 2, the baking flavour of potatoes of the variety of Jizhangshu No.12 was the most obvious. 69 metabolic compoundswere detected through the non-target metabolism detection of the 7 varieties of tubers, including 19 compounds differing significantly between the 2 variety groups. The main metabolite was related to the volatile flavour compounds to a certain extent. Methionine, alanine, threonine and sucrose were significantly and positively correlated with the methional and 2-methylfuran; while the proline and isoserine were significantly and negatively correlated with the E, Z-2, 6-nonadienaldehyde and E, E-2, 4-decadienal. 【Conclusion】 The content change of volatile flavour compounds was affected by the varieties, and methionine, alanine, threonine and sucrose were the metabolic compounds that were most likely to influence the constitution of the typical flavour of potatoes. The correlation analysis results could provide references for seeking the potential metabolic pathways.

Key words: potato, hot-air frying, volatile flavor compounds, metabolic compounds, cluster analysis, correlation analysis

Table 1

Different volatile compounds in seven potato varieties"

化合物
Compound
品种 Variety
希森6号
Xisen
No.6
冀张薯12号
Jizhangshu
No.12
后旗红
Houqihong
华颂7号
Huasong
No.7
D548
D727 青薯9号
Qingshu
No.9
反-2-癸烯醛(E)-2-Decenal 0.01±0.01A 0.08±0.02C 0.01±0.01A 0.03±0.01AB 0.04±0.02B 0.03±0.02AB
反-十二烯醛(E)-2-Dodecenal 0.03±0.01a 0.67±0.38b 0.27±0.14a 0.03±0.03a 0.13±0.01a 0.24±0.37a 0.09±0.02a
2-庚酮 2-Heptanone 0.06±0.02D 0.01±0.01A 0.01±0.01A 0.03±0.01C 0.01±0.01A 0.02±0.01AB
反-2-庚烯醛(E)-2-Heptenal 0.02±0.02A 2.03±1.07B 0.36±0.48A 0.04±0.03A 0.26±0.38A 0.25±0.27A 0.06±0.02A
反-2-辛烯醛(E)-2-Octenal 0.22±0.04a 0.75±0.36b 0.4±0.11ab 0.21±0.06a 0.41±0.09ab 0.55±0.29ab 0.19±0.16a
2-十一烯醛 2-Undecenal 0.03±0.01A 0.26±0.15B 0.07±0.03A 0.03±0.01A 0.08±0.03A 0.11±0.08A 0.06±0.01A
反,反-2,4-癸二烯醛
(E,E)-2,4-Decadienal
2.12±0.49bc 1.08±1.28ab 2.95±0.16c 2.21±1.01bc 1.85±0.61abc 0.56±0.48a 2.54±0.28c
反,反-2,6-壬二烯醛
(E,E)-2,6-Nonadienal
0.38±0.07AB 0.87±0.21CD 0.28±0.1A 0.32±0.07A 1.17±0.32D 0.78±0.29BCD 0.67±0.28ABC
反,顺-2,6-壬二烯醛
(E,Z)-2,6-Nonadienal
0.06±0.02A 2.26±0.88B 0.16±0.1A 0.03±0.1A 0.72±0.65A 0.74±0.21A 0.08±0.03A
3-辛烯-2-酮 3-Octen-2-one 0.01±0.01a 0.03±0.01b 0.01±0.01a 0.02±0.01ab 0.01±0.01a 0.03±0.02b
3,5-辛二烯-2-醇
3,5-Octadien-2-ol
0.02±0.01A 0.22±0.15B 0.07±0.04A 0.01±0.01A 0.13±0.05AB 0.11±0.01A 0.04±0.02A
1-辛醇 1-Octanol 0.04±0.04A 0.33±0.17B 0.04±0.04A 0.09±0.02A 0.14±0.06A 0.16±0.04A 0.09±0.04A
苯乙醛Benzeneacetaldehyde 31.4±9.36a 66.11±19.06b 51.71±17.02ab 33.13±1.43a 66.54±19.91b 51.7±13.9ab 54.4±2ab
异戊醛3-Methylbutanal 7.26±4.18A 31.7±5.41B 12.48±3.32A 7.07±0.1A 10.54±3.42A 15.17±7.2A 9.81±0.22A
2-甲基呋喃2-Methylfuran 0.28±0.2A 7.41±5.09B 0.6±0.21A 0.12±0.04A 1.43±0.99A 2.18±1.4A 0.09±0.06A
2-甲基丙醛2-Methylpropanal 9.39±3.79A 148.69±77.63B 41.5±16.95A 14.52±2.22A 33.49±36.19A 52.79±21.74A 15.13±7.3A
2,6-二甲基吡嗪
2,6-Dimethylpyrazine
0.34±0.09a 2.25±1.84b 0.42±0.06a 0.24±0.01a 0.41±0.06a 0.54±0.1a 0.22±0.15a
2,3,5-三甲基吡嗪
2,3,5-Trimethylpyrazine
34.77±9.95c 21.08±13.76abc 28.52±4.03bc 27.26±7.55abc 16.69±4.49ab 12.77±7.07a 30.74±5.07bc
2,5-二甲基吡嗪
2,5-Dimethylpyrazine
103.87±33.75C 12.16±9.72A 28.64±49.61AB 74.26±13.02BC 5.27±4.32A 8.27±10.04A 43.43±43.43AB
甲硫基丙醛Methional 6.76±1.19AB 16.68±4.22D 8.5±0.8ABC 6.05±0.53A 12.71±5.92BCD 13.83±3.74CD 11.74±1.56ABCD
2-甲氧基苯酚 2-Methoxyphenol 0.52±0.19BC 0.25±0.1AB 0.73±0.38C 1.23±0.06D 0.14±0.05A 0.44±0.19ABC 2.25±0.17E
1,6-二甲基萘
1,6-Dimethylnaphthalene
0.03±0.02b 0.01±0.01a 0.01±0.01a 0.01±0.01a 0.01±0.01a 0.01±0.01a

Fig. 1

Cluster diagram of seven potato varieties XS6:希森6号 Xisen No. 6;HQH:后旗红 Houqihong;HS7:华颂7号 Huasong No. 7;JZS12:冀张薯12号 Jizhangshu No. 12,QS9:青薯9号 Qingshu No. 9。下同 The same as below"

Fig. 2

PDLS-DA scores of seven potato varieties under two cluster groups"

Fig. 3

Total ion current map of metabolites detected in tubers of seven potato cultivars (lines)"

Fig. 4

P-value diagram of Fisher test for major metabolites"

Fig. 5

Distribution of metabolites with significant difference"

Fig. 6

Correlation network of volatile flavor components and metabolic compounds in potato"

[1] MORRIS W L, TAYLOR M A. Improving flavor to increase consumption. American Journal of Potato Research, 2019,96(2):195-200.
[2] MCKENZIE M, CORRIGAN V. Potato Flavor//Marian Advances in Potato Chemistry and Technology. Acadmic Press, 2016: 339-368.
[3] JANSKY S H. Potato flavor. American Journal of Potato Research, 2010,87(2):209-217.
[4] ORUNA-CONCHA M J, BAKKER J, AMES J. Comparison of the volatile components of two cultivars of potato cooked by boiling, conventional baking and microwave baking. Journal of the Science of Food and Agriculture, 2002,82(9):1080-1087.
[5] 赵兵, 张敏, 梁杉. 过度蒸煮对马铃薯风味化合物组成的影响. 食品科学, 2017,38(22):200-204.
ZHAO B, ZHANG M, LIANG S. Effect of overcooking on flavor compounds of potato. Food Science, 2017,38(22):200-204. (in Chinese)
[6] CREMER D R, EICHNER K. The reaction kinetics for the formation of Strecker aldehydes in low moisture model systems and in plant powders. Food Chemistry, 2000,71(1):37-43.
[7] MORRIS W L, SHEPHERD T, VERRALL S R, MCNICOL J W, TAYLOR M A. Relationships between volatile and non-volatile metabolites and attributes of processed potato flavour. Phytochemistry, 2010,71(14):1765-1773.
[8] BOUGH R A, HOLM D G, JAYANTY S S. Evaluation of cooked flavor for fifteen potato genotypes and the correlation of sensory analysis to instrumental methods. American Journal of Potato Research, 2020,97(1):63-77.
[9] DUCKHAM S C, DODSON A T, BAKKER J, AMES J M. Effect of cultivar and storage time on the volatile flavor components of baked potato. Journal of Agricultural and Food Chemistry, 2002,50(20):5640-5648.
[10] THYBO A K, CHRISTIANSEN J, KAACK K, PETERSEN M A. Effect of cultivars, wound healing and storage on sensory quality and chemical components in pre-peeled potatoes. LWT-Food Science and Technology, 2006,39(2):166-176.
[11] ORUNA-CONCHA M J, BAKKER J, AMES J M. Comparison of the volatile components of eight cultivars of potato after microwave baking. LWT-Food Science and Technology, 2002,35(1):80-86.
[12] DI R, KIM J, MARTIN M N, LEUSTEK T, JHOO J, HO C T, TUMER N E. Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine. Journal of Agricultural & Food Chemistry, 2003,51(19):5695-5702.
[13] MORRIS W L, DUCREUX L J M, SHEPHERD T, LEWINSOHN E, DAVIDOVICH-RIKANATI R, SITRIT Y, TAYLOR M A. Utilisation of the MVA pathway to produce elevated levels of the sesquiterpene α-copaene in potato tubers. Phytochemistry, 2011,72(18):2288-2293.
[14] 龚兴旺, 肖继坪, 王婷婷, 郭华春. 马铃薯芳香物质的初步研究. 西南农业学报, 2019,32(3):516-521.
GONG X W, XIAO J P, WANG T T, GUO H C. Primary research of the aroma compounds of potatoes. Southwest China Journal of Agricultural Sciences, 2019,32(3):516-521. (in Chinese)
[15] ZHANG L Y, YU Y B, WANG C Y, ZHANG D J. Isolation and identification of metabolites in Chinese Northeast potato (Solanum tuberosum L.) tubers using gas chromatography-mass spectrometry. Food Analytical Methods, 2019,12(1):51-58.
[16] GAO X X, LOCKE S, ZHANG J Z, JOSHI J. Metabolomics profile of potato tubers after phosphite treatment. American Journal of Plant Sciences, 2018,9(4):845.
[17] 曾著莉, 魏晋梅, 牛黎莉, 汪月, 赖兴娟, 张盛贵. HS-SPME- GC-MS分析马铃薯挥发性风味物质. 食品与生物技术学报, 2019,38(6):123-130.
ZENG Z L, WEI J M, NIU L L, WANG Y, LAI X J, ZHANG S G. Analysis of flavor in potato by Headspace-Solid Phase Microextration- Gas Chromatography-Mass Spectrometry. Journal of Food Science and Biotechnology, 2019,38(6):123-130. (in Chinese)
[18] 詹萍, 李卫国, 马永光, 田洪磊, 张德庆. 风味指纹图谱研究现状及其在食品中的应用. 食品工业, 2014,35(4):175-179.
ZHAN P, LI W G, MA Y G, TIAN H L, ZHANG D Q. Study on flavor fingerprint and its application in food. The Food Industry, 2014,35(4):175-179. (in Chinese)
[19] LV S D, WU Y S, LI C W, XU Y Q, LIU L, MENG Q Y. Comparative analysis of Pu-erh and Fuzhuan teas by fully automatic headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and chemometric methods. Journal of Agricultural and Food Chemistry, 2014,62(8):1810-1818.
[20] 耿友玲. 黄瓜果实几种主要芳香物质含量的遗传分析[D]. 扬州: 扬州大学, 2009.
GENG Y L. Genetic analysis for several aromatic substance contents in cucumber (Cucumis sativus L.) fruit[D]. Yangzhou: Yangzhou University, 2009. (in Chinese)
[21] ROESSNER U, WAGNER C, KOPKA J, TRETHEWEY R N, WILLMITZER L. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. The Plant Journal, 2000,23(1):131-142.
[22] PATRIZIA C, LORENZO C, GIAMPAOLO B. Characterization of potato flavours: An overview of volatile profiles and analytical procedures. Food, 2011,5(1):1-14.
[23] MANDIN O, DUCKHAM S C, AMES J M. Volatile compounds from potato-like model systems. Journal of Agricultural and Food Chemistry, 1999,47(6):2355-2359.
[24] LIMACHER A, KERLER J, DAVIDEK T, SCHMALZRIED F, BLANK I. Formation of furan and methylfuran by Maillard-type reactions in model systems and food. Journal of Agricultural and Food Chemistry, 2008,56(10):3639-3647.
[25] URSEM R, TIKUNOV Y, BOVY A, VAN BERLOO R, VAN EEUWIJK F. A correlation network approach to metabolic data analysis for tomato fruits. Euphytica, 2008,161(1/2):181-193.
[26] LIU J B, LIU M Y, HE C C, SONG H L, CHEN F. Effect of thermal treatment on the flavor generation from Maillard reaction of xylose and chicken peptide. LWT-Food Science and Technology, 2015,64(1):316-325.
[27] 陈佳华. 甘薯采后主要病原真菌分离鉴定及其与块根互作机制的研究[D]. 杭州: 浙江农林大学, 2019.
CHEN J H. Isolation and identification of main pathogenic fungi from sweet potato after harvest and its interaction with roots and roots[D]. Hangzhou: Zhejiang A&F University, 2019. (in Chinese)
[28] DION H W, WOO P W K, WILLMER N E, KERN D L, ONAGA J, FUSARI S A. BUTIROSIN, a new aminoglycosidic antibiotic complex: isolation and characterization. Antimicrobial Agents & Chemotherapy, 1972,2(2):84-88.
[29] HETTINGER T P CRAIG L C. EDEINE. IV. Structures of the antibiotic peptides edeines A1 and B1. Biochemistry, 1970,9(5):1224-1232.
[30] 单治国, 张春花, 满红平, 魏朝霞, 强继业, 张乃明, 唐嘉义. 茶饼病侵染对茶树游离氨基酸组分及含量的影响. 现代食品科技, 2017,33(5):240-246, 318.
SHAN Z G, ZHANG C H, MAN H P, WEI Z X, QIANG J Y, ZHANG N M, TANG J Y. Effects of exobasidium vexans massee on free amino acid composition and content of Camellia sinensis (Linn) var. Assamica (Masters) Kitamura. Modern Food Science and Technology, 2017,33(5):240-246, 318. (in Chinese)
[1] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[4] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[5] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[6] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[7] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[8] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[9] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[10] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[11] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[12] WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
[13] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[14] YuXin LIANG,JianXiang WU,XiaoYu LI,ChunYu ZHANG,JiChao HOU,XuePing ZHOU,YongZhi WANG. Mapping of Epitopes and Establishment of Rapid DAS-ELISA for Potato Virus Y Coat Protein [J]. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162.
[15] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!