Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 1-11.doi: 10.3864/j.issn.0578-1752.2022.01.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen

WU YaRui1(),LIU XiJian1,YANG GuoMin2,LIU HongWei1,KONG WenChao1,WU YongZhen1,SUN Han1,QIN Ran1,CUI Fa1(),ZHAO ChunHua1()   

  1. 1College of Agriculture, Ludong University, Yantai 264025, Shandong
    2Soil and Fertilizer Workstation in Heze City, Heze 274000, Shandong
  • Received:2021-06-07 Accepted:2021-08-16 Online:2022-01-01 Published:2022-01-07
  • Contact: Fa CUI,ChunHua ZHAO E-mail:1684813375@qq.com;sdaucf@126.com;sdauzch@126.com

Abstract:

【Objective】 Flag leaf is an important place for wheat photosynthetic carbon fixation, which plays an important role in wheat yield. The genetic characteristics and the genetic mechanism were analyzed under high and low nitrogen for flag leaf traits of wheat, which will provide a reference for excellent plant-type breeding and high-yield breeding. 【Method】 188 recombinant inbred line (RIL) populations derived from a cross between Kenong9204 and Jing411 was used in this study, which were planted in low nitrogen (LN) and high nitrogen (HN), respectively. The flag leaf traits of 188 RILs were investigated in 6 different environments, then the genetic analysis was conducted to determine the number of genes controlling each trait, and to estimate the genetic effect value and the heritability. In addition, the relationship between flag leaf characters and yield related traits of wheat was also studied.【Result】 Under LN environment: The optimal genetic model of flag leaf length was 2MG-CE (two pairs of interaction major genes) in E3. The additive × additive epistatic interaction value was 1.098, and the heritability of major genes was 31.35%. The flag leaf length was polygenic in another LN environment. The width of flag leaf was polygenic in all the LN environment. The optimal genetic model for flag leaf area (except E5) was 2MG-CE. The additive × additive epistatic interaction value was 1.884 and the heritability of major genes was 36.7%, while it was polygenic inheritance in E5. Under HN environment: The optimal genetic model for flag leaf length (except E4) was 2MG-CE, the additive × additive epistatic interaction value was 1.133, and the heritability of major genes was 32.6%. The optimal genetic model was 2MG-ER (two pairs of recessive epistatic major genes) in E4, which the additive effect value was 1.431 and 1.108 for the first and the second major genes respectively, and the heritability of the major gene was 51.77%. The optimal genetic model for flag leaf width (except E2) was 2MG-CE, the additive × additive epistatic interaction value was 0.119, and the heritability of major genes was 37.29%, while it showed polygenic inheritance in E2. The optimal genetic model for flag leaf area was 2MG-CE, which the additive × additive epistatic interaction value was 3.067 and the heritability of the main gene was 44.42%. The genetic models of flag leaf traits were different in different environments, which the genetic model was more stable under HN than that in LN. The correlation analysis of flag leaf and yield traits showed that flag leaf traits were significantly positively correlated with grain number per spike, grain weight per spike and yield per plant, and the influence degree was different in the 6 environments. 【Conclusion】 Flag leaf traits are easily affected by environment, and the performance of flag leaf traits is different in HN and LN. Flag leaf traits exhibited different major gene inheritance and polygene inheritance in LN, while they showed major gene inheritance which controlled by two pairs of interactions genes in most of HN environment, which might be major QTLs. Yield per plant and grain weight per spike could be increased by improving flag leaf traits.

Key words: wheat, flag leaf traits, genetic model, production, correlation analysis

Table 1

Analysis of variance between parents in different environments"

性状
Trait
变异源
Source of variation
自由度
Degree of freedom
均方
Mean square
F 显著性
Significance
效应量
Effect quantity
旗叶长
FLL
品种Breed 1 0.421 0.091 0.763 0.001
环境Environment 5 220.711 47.859 0.000 0.660
品种×环境 Breed×Environment 5 4.134 0.896 0.486 0.035
误差Error 123 4.612
旗叶宽FLW 品种Breed 1 0.939 46.235 0.000 0.273
环境Environment 5 0.472 23.247 0.000 0.486
品种×环境 Breed×Environment 5 0.035 1.741 0.130 0.066
误差Error 123 0.020
旗叶面积FLA 品种Breed 1 120.240 8.819 0.004 0.067
环境Environment 5 674.892 49.497 0.000 0.668
品种×环境 Breed×Environment 5 20.239 1.484 0.200 0.057
误差Error 123 13.635

Table 2

Statistic analysis of flag leaves in different ecological conditions"

性状
Trait
生境
Environment
亲本Parent RIL群体RIL population
科农9204
Kenong 9204
京411
Jing 411
最小值
Min
最大值
Max
均值
Average
标准差
SD
变异系数
CV (%)
偏度
Skew
峰度
Kurt
旗叶长FLL 低氮LN E1 10.05 11.05 6.00 17.40 13.30 1.50 0.11 0.24 0.04
E3 14.42 14.83 9.92 20.14 14.67 1.69 0.12 0.26 0.13
E5 14.78 15.56 12.08 20.82 15.43 1.37 0.09 0.30 0.71
均值Average 13.08 13.81 9.33 19.45 14.47 1.52 0.11 0.27 0.29
高氮HN E2 16.46 15.20 11.80 22.50 16.03 1.72 0.11 0.42 0.20
E4 19.22 19.61 13.48 25.62 19.66 2.27 0.12 0.20 -0.32
E6 19.11 18.79 13.60 25.74 19.04 1.75 0.09 0.22 0.27
均值Average 18.26 17.87 12.96 24.62 18.24 1.91 0.11 0.28 0.05
旗叶宽FLW 低氮LN E1 1.48 1.25 0.78 1.66 1.20 0.14 0.11 0.27 0.60
E3 1.43 1.36 1.06 1.74 1.35 0.13 0.09 0.17 -0.24
E5 1.55 1.42 1.16 1.80 1.43 0.13 0.09 0.35 -0.27
均值Average 1.49 1.34 1.00 1.73 1.33 0.13 0.10 0.26 0.03
高氮HN E2 1.44 1.13 0.82 1.76 1.31 0.15 0.11 0.15 0.38
E4 1.79 1.56 1.18 2.30 1.59 0.17 0.11 0.43 0.30
E6 1.68 1.57 1.22 2.10 1.58 0.17 0.10 0.42 0.10
均值Average 1.64 1.42 1.07 2.05 1.49 0.16 0.11 0.33 0.26
旗叶
面积FLA
低氮LN E1 12.14 11.97 6.10 20.67 13.27 2.39 0.18 0.39 0.37
E3 17.17 16.74 9.72 28.28 16.48 2.99 0.18 0.41 0.15
E5 18.99 18.30 11.95 28.69 18.36 2.43 0.13 0.42 0.31
均值Average 16.10 15.67 9.26 25.88 16.04 2.60 0.16 0.41 0.28
高氮HN E2 19.82 14.63 9.74 28.84 17.57 3.14 0.18 0.41 0.06
E4 28.64 25.38 15.44 42.92 26.09 4.83 0.19 0.50 0.24
E6 26.66 25.53 16.45 37.57 25.07 3.91 0.16 0.51 0.08
均值Average 25.04 21.85 13.88 36.44 22.91 3.96 0.18 0.47 0.13

Fig. 1

Distribution characteristics of flag leaf traits in RIL population under 6 environments LN: Low nitrogen; HN: High nitrogen; FLL: Flag leaf length; FLW: Flag leaf width; FLA: Flag leaf area. E1: Low nitrogen in Shijiazhuang in 2011-2012; E2: High nitrogen in Shijiazhuang in 2011-2012; E3: Low nitrogen in Shijiazhuang in 2012-2013; E4: High nitrogen in Shijiazhuang in 2012-2013; E5: Low nitrogen in Beijing in 2012-2013; E6: High nitrogen in Beijing in 2012-2013"

Table 3

Analysis of the optimal genetic model for flag leaf traits in recombinant inbred line population"

性状
Trait
环境
Environment
模型代码
Model code
最适遗传模型代号
Optimal genetic model code
最大似然值Log
Max likelihood value
最小AIC值
Min AIC value
旗叶长
FLL
低氮LN E1 0MG -705.64 1415.28
E3 B-1-7 2MG-CE -729.05 1464.11
E5 0MG -652.32 1308.63
高氮HN E2 B-1-7 2MG-CE -732.15 1470.30
E4 B-1-5 2MG-ER -838.02 1684.05
E6 B-1-7 2MG-CE -743.82 1493.63
旗叶宽FLW 低氮LN E1 0MG 126.13 -248.25
E3 0MG 240.62 -477.24
E5 0MG 81.13 -158.27
高氮HN E2 0MG 43.46 -82.91
E4 B-1-7 2MG-CE 137.97 -269.93
E6 B-1-7 2MG-CE 145.32 -284.64
旗叶面积FLA 低氮LN E1 B-1-7 2MG-CE -854.10 1714.21
E3 B-1-7 2MG-CE -942.37 1890.73
E5 0MG -963.52 1931.05
高氮HN E2 B-1-7 2MG-CE -954.50 1915.00
E4 B-1-7 2MG-CE -1119.11 2244.22
E6 B-1-7 2MG-CE -1037.79 2081.58

Table 4

Genetic parameters of flag leaf traits in RIL population of wheat"

性状
Trait
环境
Environment
模型代码
Optimal genetic mode
一阶遗传参数1st order parameter estimate 二阶遗传参数2nd order parameter estimate
m d(da) db iab(i*) σ²p σ²mg σ²e h²mg (%)
旗叶长FLL
低氮LN E1 0MG 2.505 2.505
E3 2MG-CE 15.233 1.098 2.868 0.899 1.969 31.353
E5 0MG 1.886 1.886
高氮HN E2 2MG-CE 16.692 1.302 2.970 1.260 1.711 42.410
E4 2MG-ER 19.652 1.431 1.108 5.180 2.682 2.499 51.766
E6 2MG-CE 19.522 0.963 3.081 0.702 2.379 22.790
旗叶宽FLW 低氮LN E1 0MG 0.030 0.030
E3 0MG 0.016 0.016
E5 0MG 0.038 0.038
高氮HN E2 0MG 0.047 0.047
E4 2MG-CE 1.654 0.122 0.029 0.011 0.018 38.575
E6 2MG-CE 1.643 0.116 0.028 0.010 0.018 35.993
旗叶面积FLA 低氮LN E1 2MG-CE 14.168 1.726 5.718 2.193 3.525 38.347
E3 2MG-CE 17.504 2.042 8.978 3.140 5.839 34.970
E5 0MG 9.873 9.874
高氮HN E2 2MG-CE 18.803 2.390 9.858 4.216 5.641 42.770
E4 2MG-CE 27.948 3.716 23.389 10.417 12.972 44.538
E6 2MG-CE 26.677 3.095 15.335 7.048 8.288 45.956

Table 5

Correlation between flag leaf traits and yield traits of wheat RIL population"

性状
Trait
环境
Environment
有效穗数
Effective panicles
穗粒数
Spike grain number
穗粒重
Spike grain weight
单株产量
Yield
千粒重
Thousand grain weight
旗叶长
FLL
E1 0.032 0.237** 0.168** 0.178** -0.060
E2 0.060 0.166** 0.140** 0.081
E3 0.067 0.358** 0.372** 0.171** 0.101
E4 0.212** 0.235** 0.130* 0.208** -0.016
E5 0.144** 0.055 0.193** 0.230** 0.115*
E6 -0.002 0.078 0.126* 0.093 0.081
旗叶宽
FLW
E1 -0.014 0.101 0.105* 0.086 0.043
E2 0.120* 0.102 0.043 0.059
E3 0.088 0.243** 0.313** 0.215** 0.064
E4 0.133* 0.332** 0.302** 0.181** 0.008
E5 -0.041 0.186** 0.208** 0.045 -0.022
E6 -0.236** 0.416** 0.189** -0.084 -0.143**
旗叶面积
FLA
E1 0.046 0.288** 0.236** 0.221** -0.054
E2 0.100 0.190** 0.105* 0.106*
E3 0.088 0.352** 0.397** 0.221** 0.092
E4 0.199** 0.345** 0.258** 0.227** -0.005
E5 0.046 0.177** 0.266** 0.155** 0.044
E6 -0.160** 0.325** 0.200** -0.001 -0.045
[1] 夏江宝, 张光灿, 许景伟, 李传荣. 干旱胁迫下常春藤净光合速率日变化及其影响因子分析. 水土保持通报, 2010, 30(3): 78-82.
XIA J B, ZHANG G C, XU J W, LI C R. Analysis on diurnal variation of net photosynthetic rate and its influencing factors under drought stress. Bulletin of Soil and Water Conservation, 2010, 30(3): 78-82. (in Chinese)
[2] 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012, 23(3): 724-730.
MA F J, LI D D, CAI J, JIANG D, CAO W X, DAI T B. Effects of drought stress on root growth and leaf photosynthesis of wheat seedlings. Chinese Journal of Applied Ecology, 2012, 23(3): 724-730. (in Chinese)
[3] 贺安娜, 姚奕. 虎耳草冬季净光合速率、蒸腾速率日变化及其影响因子分析. 西南农业学报, 2011, 24(4): 1298-1302.
HE A N, YAO Y. Analysis of diurnal variation of net photosynthetic rate, transpiration rate and its influencing factors in winter. Southwest China Journal of Agricultural Sciences, 2011, 24(4): 1298-1302. (in Chinese)
[4] 张治安, 杨福, 陈展宇, 徐克章. 菰叶片净光合速率日变化及其与环境因子的相互关系. 中国农业科学, 2006, 39(3): 502-509.
ZHANG Z A, YANG F, CHEN Z Y, XU K Z. Diurnal variation of net photosynthetic rate in leaves of wild rice and its relationship with environmental factors. Scientia Agricultura Sinica, 2006, 39(3): 502-509. (in Chinese)
[5] 唐晓培, 杨丽, 冯冬雪, 高壮壮, 张文杰, 刘海军. 非充分灌溉下8个小麦品种旗叶光合与产量及水分利用效率的关系. 干旱地区农业研究, 2020, 38(4): 245-252+265.
TANG X P, YANG L, FENG D X, GAO Z Z, ZHANG W J. LIU H J. The relationship between flag leaf photosynthesis and yield and water use efficiency of eight wheat cultivars under inadequate irrigation. Agricultural Research in the Arid Areas, 2020, 38(4): 245-252+265. (in Chinese)
[6] 徐恒永, 赵君实. 高产冬小麦的冠层光合能力及不同器官的贡献. 作物学报, 1995, 21(2): 204-209.
XU H Y, ZHAO J S. Canopy photosynthetic capacity and contribution of different organs in high-yielding winter wheat. Acta Agronomica Sinica, 1995, 21(2): 204-209. (in Chinese)
[7] LIU L P, SUN G L, REN X F, LI C D, SUN D F. Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genetics, 2015, 16(1): 29.
doi: 10.1186/s12863-015-0187-y
[8] 熊淑萍, 吴克远, 王小纯, 张捷, 杜盼, 吴懿鑫, 马新明. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016, 49(12): 2267-2279.
XIONG S P, WU K Y, WANG X C, ZHANG J, DU P, WU Y X, MA X M. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency. Scientia Agricultura Sinica, 2016, 49(12): 2267-2279. (in Chinese)
[9] LIDIYA M, OREST F, VALERIY P, et al. Nitrogen balance of crop production in Ukraine. Journal of Environmental Management, 2019, 246: 860-867.
doi: 10.1016/j.jenvman.2019.05.108
[10] LASSALETTA L, BILLEN G, GARNIER J, BOUWMAN L, VELAZQUEZ E, MUELLER N D, GERBER J S. Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environmental Research Letters, 2016, 11(9): 095007.
doi: 10.1088/1748-9326/11/9/095007
[11] 盖钧镒, 章元明, 王建康. QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析. 作物学报, 2000, 26(4): 385-391.
GAI J Y, ZHANG Y M, WANG J K. A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene. Acta Agronomica Sinica, 2000, 26(4): 385-391. (in Chinese)
[12] WANG J K, PODLICH D W, COOPER M, DELACY I H. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theoretical and Applied Genetics, 2001, 103: 804-816.
doi: 10.1007/s001220100628
[13] WANG J K, GAI J Y. Mixed inheritance model for resistance to agromyzid beanfly (Melanagromyza sojae Zehntner) in soybean. Euphytica, 2001, 122(1): 9-18.
doi: 10.1023/A:1012649506212
[14] GAI J Y. Segregation analysis on genetic system of quantitative traits in plants. Frontiers of Biology, 2006, 1(1): 85-92.
[15] KHAN M I, KHATTAK G S S, KHAN A J, SUBHAN F, MOHAMMAD T, ALI A. Genetic control of flag leaf area in wheat (Triticum aestivum) crosses. African Journal of Agricultural Research, 2012, 7(27): 3978-3990.
[16] KUMAR S. Quantitative genetics, molecular markers, and plant improvement. Scholarly Journal of Agricultural Science, 2014, 4(10): 502-511.
[17] BECHE E, BENIN G, SILVA C L, MUNARO L B, MARCHESE J A. Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century. European Journal of Agronomy, 2014, 61: 49-59.
doi: 10.1016/j.eja.2014.08.005
[18] 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003: 96-102.
GAI J Y, ZHANG Y M, WANG J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003: 96-102. (in Chinese)
[19] MA J, TU Y, ZHU J, LUO W, LIU H, LI C, LI S, LIU J J, DING P Y, AHSAN H. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theoretical and Applied Genetics, 2020, 133(1): 297-315.
doi: 10.1007/s00122-019-03458-2
[20] FAROKHZADEH S, FAKHERI B A, NEZHAD N M, TAHMASEBI S, MIRSOLEIMANI A. Mapping QTLs of flag leaf morphological and physiological traits related to aluminum tolerance in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 2019, 25(4): 975-990.
doi: 10.1007/s12298-019-00670-8
[21] LIU K Y, XU H, LIU G, GUAN P F, ZHOU X Y, PENG H R, YAO Y Y, NI Z F, SUN Q X, DU J K. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2018, 131(4): 839-849.
doi: 10.1007/s00122-017-3040-z
[22] FRANCKI M G, WAIKER E, LI D A, FORREST K. High-density SNP mapping reveals closely linked QTL for resistance to Stagonospora nodorum blotch (SNB) in flag leaf and glume of hexaploid wheat. Canadian Journal of Genetics and Cytology, 2018, 61(2): 145-149.
[23] HUSSAIN W, BAENZIGER P S, BELAMKAR V, GUTTIERI M J, VENEGAS J P, EASTERLY A, SALLAM A, POLAND J. Genotyping-by-sequencing derived high-density linkage map and its application to QTL mapping of flag leaf traits in bread wheat. Scientific Reports, 2017, 7(1): 16394.
doi: 10.1038/s41598-017-16006-z
[24] 赵倩茹, 钟兴华, 张飞, 房伟民, 陈发棣, 滕年军. 切花小菊绿心性状杂种优势与混合遗传分析. 中国农业科学, 2018, 51(5): 964-976.
ZHAO Q R, ZHONG X H, ZHANG F, FANG W M, CHEN F D, TENG N J. Heterosis and mixed genetic analysis of green-center trait of spray cut chrysanthemum. Scientia Agricultura Sinica, 2018, 51(5): 964-976. (in Chinese)
[25] 叶红霞, 吕律, 海睿, 胡雨晴, 汪炳良. 甜瓜果实糖含量的主基因+多基因遗传分析. 浙江大学学报(农业与生命科学版), 2019, 45(4): 391-400.
YE H X, LÜ L, HAI R, HU Y Q, WANG B L. Genetic analysis of main gene + polygene in sugar content of melon fruit. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 391-400. (in Chinese)
[26] 曹齐卫, 张允楠, 王永强, 杨桂兰, 孙小镭, 李利斌. 黄瓜节间长的主基因+多基因混合遗传模型分析. 农业生物技术学报, 2018, 26(2): 205-212.
CAO Q W, ZHANG Y N, WANG Y Q, YANG G L, SUN X L, LI L B. Genetic analysis of internode length using mixed major-gene plus polygene inheritance model in Cucumis sativus. Journal of Agricultural Biotechnology, 2018, 26(2): 205-212. (in Chinese)
[27] 汪文祥, 胡琼, 梅德圣, 李云昌, 周日金, 王会成, 洪涛, 付丽, 刘佳. 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应. 作物学报, 2016, 42(8): 1103-1111.
doi: 10.3724/SP.J.1006.2016.01103
WANG W X, HU Q, MEI D S, LI Y C, ZHOU R J, WANG H C, HONG T, FU L, LIU J. Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus. Acta Agronomica Sinica, 2016, 42(8): 1103-1111. (in Chinese)
doi: 10.3724/SP.J.1006.2016.01103
[28] YE Y J, WU J Y, FENG L, JU Y Q, CAI M, CHENG T R, PAN H T, ZHANG Q X. Heritability and gene effects for plant architecture traits of crape myrtle using major gene plus polygene inheritance analysis. Scientia Horticulturae, 2017, 225: 335-342.
doi: 10.1016/j.scienta.2017.06.065
[29] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析. 作物学报, 2021, 47(7): 1215-1227.
doi: 10.3724/SP.J.1006.2021.02057
JIANG J H, ZHANG W H, DANG X J, RONG H, YE Q, HU C M, ZHANG Y, HE Q, WANG D Z. Genetic analysis of the stigma trait in rice nuclear male sterile lines. Acta Agronomica Sinica, 2021, 47(7): 1215-1227. (in Chinese)
doi: 10.3724/SP.J.1006.2021.02057
[30] 黄冰艳, 张新友, 苗利娟, 刘华, 秦利, 徐静, 张忠信, 汤丰收, 董文召, 韩锁义, 刘志勇. 花生油酸和亚油酸含量的遗传模式分析. 中国农业科学, 2012, 45(4): 617-624.
HUANG B Y, ZHANG X Y, MIAO L J, LIU H, QIN L, XU J, ZHANG Z X, TANG F S, DONG W Z, HAN S Y, LIU Z Y. Inheritance analysis of oleic acid and linoleic acid content of Arachis hypogaea. Scientia Agricultura Sinica, 2012, 45(4): 617-624. (in Chinese)
[31] 解松峰, 吉万全, 王长有, 胡卫国, 李俊, 张耀元, 师晓曦, 张俊杰, 张宏, 陈春环. 小麦穗部性状的主基因+多基因混合遗传模型分析. 中国农业科学, 2019, 52(24): 4437-4452.
XIE S F, JI W Q, WANG C Y, HU W G, LI J, ZHANG Y Y, SHI X X, ZHANG J J, ZHANG H, CHEN C H. Analysis of mixed genetic model of major gene and polygene for wheat panicle traits. Scientia Agricultura Sinica, 2019, 52(24): 4437-4452. (in Chinese)
[32] 解松峰, 吉万全, 张耀元, 张俊杰, 胡卫国, 李俊, 王长有, 张宏, 陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析. 作物学报, 2020, 46(3): 365-384.
doi: 10.3724/SP.J.1006.2020.91044
XIE S F, JI W Q, ZHANG Y Y, ZHANG J J, HU W G, LI J, WANG C Y, ZHANG H, CHEN C H. Genetic analysis of major genes and polygenes in important yield traits of wheat. Acta Agronomica Sinica, 2020, 46(3): 365-384. (in Chinese)
doi: 10.3724/SP.J.1006.2020.91044
[33] CUI F, FAN X L, ZHAO C H, ZHANG W, CHEN M, JI J, LI J M. A novel genetic map of wheat: Utility for mapping QTL for yield under different nitrogen treatments. BMC Genetics, 2014, 15: 57-74.
doi: 10.1186/1471-2156-15-57
[34] FAN X L, CUI F, ZHAO C H, ZHANG W, YANG L J, ZHAO X Q, HAN J, SU Q N, JI J, ZHAO Z W, TONG Y P, LI J M. QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Molecular Breeding, 2015, 35(1): 1-16.
doi: 10.1007/s11032-015-0202-z
[35] 胡燕美, 苏慧, 朱玉磊, 李金鹏, 李金才, 宋有洪. 花后早期增温对小麦旗叶光合和抗氧化特性及籽粒发育的影响. 麦类作物学报, 2020, 40(10): 1247-1256.
HU Y M, SU H, ZHU Y L, LI J P, LI J C, SONG Y H. Effects of early post-anthesis warming on photosynthesis and antioxidant characteristics of flag leaves and grain development of wheat. Journal of Triticeae Genetics, 2020, 40(10): 1247-1256. (in Chinese)
[36] 高娣, 吴宏亮, 刘根红, 康建宏, 坚天才, 李鑫. 不同追氮时期对花后高温胁迫下春小麦旗叶蛋白质和核酸代谢的影响. 农业科学研究, 2020, 41(3): 21-25.
GAO D, WU H L, LIU G H, KANG J H, JIAN T C, LI X. Effects of nitrogen topdressing on protein and nucleic acid metabolism in flag leaves of spring wheat under post-anthesis heat stress. Research in Agricultural Sciences, 2020, 41(3): 21-25. (in Chinese)
[37] 尹嘉德, 侯慧芝, 张绪成, 王红丽, 于显枫, 方彦杰, 马一凡, 张国平, 雷康宁. 全膜覆土下施有机肥对春小麦旗叶碳氮比、光合特性和产量的影响. 应用生态学报, 2020, 31(11): 3749-3757.
YIN J D, HOU H Z, ZHANG X C, WANG H L, YU X F, FANG Y J, MA Y F, ZHANG G P, LEI K N. Effects of organic fertilizer application on carbon nitrogen ratio, photosynthetic characteristics and yield of flag leaf of spring wheat. Chinese Journal of Applied Ecology, 2020, 31(11): 3749-3757. (in Chinese)
[38] KHAN M I, KHATTAK G S S, KHAN A J, KHAN A J, SUBHAN F, MOHAMMAD T, ALI A. Genetic control of flag leaf area in wheat (Triticum aestivum) crosses. African Journal of Agricultural Research, 2012, 7(27): 3978-3990.
[39] 钮力亚, 王伟伟, 王伟, 王奉芝, 赵松山, 于亮. 小麦功能叶对产量及其构成因素的影响. 作物研究, 2018, 32(4): 295-298.
NIU L Y, WANG W W, WANG W, WANG F Z, ZHAO S S, YU L. Effects of functional leaves on yield and its components in wheat. Crop Research, 2018, 32(4): 295-298. (in Chinese)
[40] 王敏, 张从宇. 小麦旗叶性状与产量因素的相关与回归分析. 种子, 2004, 23(3): 17-21.
WANG M, ZHANG C Y. Correlation and regression analysis of flag leaf traits and yield factors in wheat. Seed, 2004, 23(3): 17-21. (in Chinese)
[41] 黄杰, 乔冀良, 苗运武, 张振永, 葛昌斌, 廖平安. 小麦产量与旗叶性状的相关性分析. 中国种业, 2018(1): 63-64.
HUANG J, QIAO J L, MIAO Y W, ZHANG Z Y, GE C B, LIAO P A. Correlation analysis of wheat yield and flag leaf traits. China Seed Industry, 2018(1): 63-64. (in Chinese)
[42] 姜莉莉, 王东. 不同年代小麦产量性状与农艺性状的相关性比较. 华北农学报, 2017, 32(S1): 130-134.
JIANG L L, WANG D. Comparison of yield and agronomic traits of wheat in different ages. Acta Agriculturae Boreali-Sinica, 2017, 32(S1): 130-134. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[5] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[6] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[7] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[8] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[10] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[11] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[12] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[13] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[14] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[15] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!