Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (12): 2447-2460.doi: 10.3864/j.issn.0578-1752.2022.12.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan

FENG JunJie(),ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao(),MA Xiao()   

  1. Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130
  • Received:2021-04-21 Accepted:2021-06-16 Online:2022-06-16 Published:2022-06-23
  • Contact: Yao LING,Xiao MA E-mail:fengjun0206@126.com;9729752@qq.com;maroar@126.com

Abstract:

【Objective】This study aimed to determine the consistency and specificity of DUS test traits of Lolium multiflorum (annual ryegrass) standard varieties introduced from Japan, and to optimize the DUS test system of L. multiflorum in China, thus identify new varieties (lines) more quickly and accurately. 【Method】In this study, seven standard varieties of annual ryegrass introduced from Japan were planted in Chengdu Plain, China. Fifteen individuals with the similar growth status were selected from each standard variety. Cluster analysis of the standard varieties was conducted based on their DUS test data to identify the DUS trait expression of the standard varieties in Chengdu Plain. In order to screen out the characters with the high intra-population consistency and obvious inter-population specificity, the coefficient of variation and variance values of 18 tested DUS characters were calculated, and the nested variance analysis of the studied characters was also conducted. Furthermore, the probability classification was conducted based on the selected characters, which was used to clustering analysis and identification of the tested national approved varieties and new lines, and to evaluate the correlation coefficients of test traits. 【Result】According to the values of 18 DUS test traits of standard varieties, the standard varieties could be clearly clustered into 7 groups. The DUS traits were fully expressed and could be clearly distinguished from each other, which were suitable for subsequent correlation analysis. The results of intraspecific consistency analysis showed that, six traits, including leaf color degree, growth habit after vernalization, plant width at booting stage, flag leaf width at booting stage, flag leaf length-width ratio at booting stage, and spikelet length, possessed the poor intra-population consistency for multiple varieties. When conducting the inter-population specificity analysis of varieties, however, the poor specificity among the tested varieties was found in plant height at booting stage, ratio of flag leaf length to width at booting stage and spikelet density among cultivars, among which the variance component between populations of flag leaf length-width ratio at booting stage was 54.83%, and the variance component between individuals within populations was 45.17%. The selected ten quantitative traits were conducted the K-S test and χ2 test analysis, however, only the basal spikelet length conformed to χ2 test. Afterwards, the ten quantitative traits were divided into five grades. On the basis of these traits grading criterion, the identification of national approved varieties and new lines of L. multiflorum. The results showed that the tested varieties and new lines of annual ryegrass could be clustered into eight groups according to its classification results and corresponding to varieties origin, which revealed the reliability of traits grading criterion built in this study on variety identification. The heat map drawn based on the trait values of the tested varieties showed that the leaf length of ‘Tetragold’ was significantly different from that of other tested varieties in the vegetative growth period, which was manifested as shorter leaf length; the variety ‘Chuannong No. 2’ showed higher plant height after vernalization; the internode length under spike of ‘Diamond T×changjiang No. 2’ was significantly shorter than that of other varieties; the poor intra-population consistency of ‘Double Barrel’, ‘Chuannong No. 1’ and ‘Chuannong No. 2’ showed good intra-population consistency. The low correction and strong independence were existed within the selected ten traits, indicating that these traits were very well suited for DUS test. 【Conclusion】The character classification system for DUS test based on Japanese standard varieties could be applied to the identification and distinguish of L. multiflorum varieties released in China. This study could provide the important technical and theoretical reference for the optimization of DUS test method system of annual ryegrass varieties.

Key words: Lolium multiflorum, quantitative characters, probability classification analysis, correlation analysis, DUS test optimization

Table 1

Test materials of Lolium multiflorum"

编号
No.
品种名称
Variety name
登记时间
Registration time
选育单位
Breeding organization
品种类型
Type
1 Satiaoba —— 日本 Japan 日本标准品种 Japanese standard varieties
2 Yuosyunn —— 日本 Japan 日本标准品种 Japanese standard varieties
3 Nagahahikari —— 日本 Japan 日本标准品种 Japanese standard varieties
4 Waseaoba —— 日本 Japan 日本标准品种 Japanese standard varieties
5 Hitatihikari —— 日本 Japan 日本标准品种 Japanese standard varieties
6 Shiwasuaoba —— 日本 Japan 日本标准品种 Japanese standard varieties
7 Akiaoba —— 日本 Japan 日本标准品种 Japanese standard varieties
8 特高德Tetragold 2001 广东省饲草饲料站 Guangdong Feeding Station 国审引进品种 Imported varieties of national audit
9 剑宝Jumbo 2015 四川省畜牧科学研究院
Sichuan Academy of Animal Science
国审引进品种
Imported varieties of national audit
10 川农1号Chuannong No. 1 2016 四川农业大学 Sichuan Agricultural University 国审育成品种Varieties bred varieties
11 达伯瑞Double Barrel 2012 云南省草山饲料工作站
Yunnan Grassy Hill Feed Workstation
国审引进品种
Imported varieties of national audit
12 邦德Abundant 2008 云南省草山饲料工作站
Yunnan Grassy Hill Feed Workstation
国审引进品种
Imported varieties of national audit
13 南黑1号Nanhei No. 1 —— 四川省农科院蚕桑所
Sericulture Institute, Sichuan Academy of Agricultural Sciences
新品系
New strain
14 川农2号Chuannong No. 2 —— 四川农业大学 Sichuan Agricultural University 新品系 New strain
15 钻石T×长江2号
Diamond T×changjiang No. 2
—— 四川农业大学
Sichuan Agricultural University
新品系
New strain

Table 2

The growth period of Lolium multiflorum stage"

代码
Code
名称
Name
描述
Description
代码
Code
名称
Name
描述
Description
00 发芽期
Germination stage
干种子
Dry seeds
41 孕穗期
Boot stage
旗叶叶鞘伸展
Flag leaf sheath extension
01 开始吸水
Start absorbing water
45 穗苞膨大
Bracts swelled
03 吸水结束
End of water absorption
47 第1叶鞘张开
1st leaf sheath open
05 胚根从颖果中露出
Embryo roots exposed from glume
49 第1芒可见
First awn visible
07 胚芽鞘从颖果中露出
Germ sheath emerged from glume
50 花序形成期
Inflorescence formation stage
花序第1小穗可见
Inflorescences 1st spikelet visible
09 叶刚露出胚芽鞘顶端
Leaf just exposed the top of germ sheath
52 1/4花序出现
1 / 4 inflorescence appeared
10 幼苗生长期
Seedling season of growth
第1叶从胚芽鞘长出
The first leaf grows from the germ sheath
54 1/2花序出现
1 / 2 inflorescence appeared
15 第1叶展开
The first leaf unfolds
56 3/4花序出现
3 / 4 inflorescence appeared
19 第5叶或者更多叶展开
5th or more leaves unfold
58 整个花序出现
The whole inflorescence appears
20 分蘖期
Tillering stage
仅有主茎
Main stem only
60 开花期
Flowering period
开花开始
Onset of flowering
23 主茎和3个分蘖
Main stem and 3 tillers
64 开花一半
Flowering half
25 主茎和5个分蘖
Main stem and 5 tillers
68 开花结束
Flowering end
29 主茎和9个以上分蘖
Main stem and more than 9 tillers
70 成熟期
Maturity
颖果结束
The end of caryopsis
30 拔节期
Jointing stage
假茎直立
Pseudostem erect
72 种子休眠
Seed dormancy
31 第1节出现
Section 1 appears
76 种子休眠结束
End of seed dormancy
35 第5节出现
Section 5 appears
78 诱发第二次休眠
Inducing second sleep
39 旗叶可见
Flag leaf visible
80 二次休眠消失
Secondary sleep disappears

Table 3

Tested characteristics and period"

编号
Number
性状
Characteristics
观测时期对应代码
Corresponding code for Survey period
编号
Number
性状
Characteristics
观测时期对应代码
Corresponding code for Survey period
C1 叶长(营养生长期)
Leaf: length(at vegetative stage)
20-29 C10 孕穗期旗叶宽
Flag leaf: width at inflorescence emergence
50
C2 叶宽(营养生长期)
Leaf: width(at vegetative stage)
20-29 C11 旗叶长宽比
Flag leaf: length/width ratio
50
C3 叶色(营养生长期)
Leaf: intensity of green color
(at vegetative stage)
20-29 C12 最长茎秆:长度(包括花序)
Plant: length of longest stem, inflorescence included (when fully expanded)
60-68
C4 株高(春化后)
Leaf: intensity of green color
30-39 C13 穗下茎节长度
Plant: length of upper internode
60-68
C5 生长习性(春化后)
Plant: vegetative growth habit (after vernalization)
30-39 C14 花序长
Inflorescence: length
60-68
C6 孕穗期(春化后)
Plant: time of inflorescence emergence (after vernalization)
50 C15 小穗数
Inflorescence: number of spikelet
60-68
C7 株高(孕穗期)
Plant: natural height at inflorescence emergence
50 C16 小穗密度(每个小穗着生长度)
Inflorescence: density ( dividing characteristic 16 by characteristic 17)
60-68
C8 株幅(孕穗期)
Plant: width at inflorescence emergence
50 C17 外颖长
Inflorescence: length of outer glume on basal spikelet
60-68
C9 旗叶长(孕穗期)
Flag leaf: length at inflorescence emergence
50 C18 基部小穗长(不包括芒)
Inflorescence: length of basal spikelet excluding awn
60-68

Fig. 1

Clustering tree of standard Lolium multiflorum varieties from Japan"

Fig. 2

Diagram of variation coefficient of test characters of standard Lolium multiflorum varieties from Japan"

Fig. 3

Diagram of variance of standard Lolium multiflorum varieties from Japan"

Table 4

Nested anova among standard varieties of Japanese Lolium multiflorum from Japan"

方差分量
Variance component
品种群体间(%)
Between varietal groups
群体内单株间(%)
Per plant of varieties
误差
Error
显著性
Significance
C1 89.41 5.41 5.07 **
C2 92.16 2.16 5.68 **
C3 90.87 9.13 **
C4 77.47 22.53 **
C5 90.66 9.34 **
C6 97.49 2.51 **
C7 54.83 45.17 **
C8 80.65 19.35 **
C9 88.15 6.07 5.78 **
C10 90.29 4.93 4.78 **
C11 59.26 10.67 30.06 **
C12 87.54 9.36 3.1 **
C13 90.40 4.07 5.53 **
C14 93.69 1.34 4.97 **
C15 94.75 1.08 4.17 **
C16 66.93 2.9 30.16 **
C17 88.92 6.02 5.06 **
C18 96.70 2.51 0.79 **

Table 5

K-S and χ2 normal test of quantitative characteristics of Lolium multiflorum"

性状
Characteristics
正极差
Positive
负极差
Negative
K-S值
K-S value
Sig值
Sig value
χ2-P
χ2-P value
C1 0.040 -0.022 0.040 0.200 1.000
C2 0.024 -0.031 0.031 0.200 1.000
C4 0.085 -0.040 0.085 0.058 1.000
C6 0.059 -0.084 0.084 0.067 0.560
C9 0.026 -0.020 0.026 0.200 1.000
C12 0.034 -0.044 0.044 0.200 1.000
C13 0.033 -0.029 0.033 0.200 1.000
C14 0.027 -0.033 0.033 0.200 1.000
C15 0.074 -0.050 0.074 0.058 0.000
C18 0.123 -0.112 0.123 0.000 1.000

Table 6

Grading range of quantitative traits"

性状
Characteristics
分级范围Grading range
1 3 5 7 9
C1 ≤27.42 27.42—30.61 30.61—35.04 35.04—38.24 ≥38.24
C2 ≤9.81 9.81—11.37 11.37—13.53 13.53—15.09 ≥15.09
C4 ≤39.49 39.49—47.68 47.68—59.04 59.04—67.23 ≥67.23
C6 ≤150.48 150.48—159.97 159.97—173.13 173.13—182.62 ≥182.62
C9 ≤25.44 25.44—28.68 28.68—33.17 33.17—36.41 ≥36.41
C12 ≤118.28 118.28—129.03 129.03—143.91 143.91—154.66 ≥154.66
C13 ≤29.17 29.17—33.94 33.94—40.55 40.55—45.32 ≥45.32
C14 ≤36.76 36.76—39.67 39.67—43.69 43.69—46.59 ≥46.59
C15 ≤30.82 30.82—33.81 33.81—37.95 37.95—40.94 ≥40.94
C18 ≤23.50 23.50—28.31 28.31—34.73 34.73—39.43 ≥39.43

Fig. 4

Correlation coefficients of 10 measured traits The data below the left is the specific correlation value between the traits. The blue in the pie chart above the right represents a positive correlation, and the red represents a negative correlation. The larger the pie area, the deeper the color represents the stronger the correlation"

Fig. 5

Clustering heat maps of 8 Lolium multiflorum based on 10 quantitative character grades"

[1] 魏志标, 柏兆海, 马林, 张福锁. 中国苜蓿、黑麦草和燕麦草产量差及影响因素. 中国农业科学, 2018, 51(3): 507-522.
WEI Z B, BAI Z H, MA L, ZHANG F S. Yield gap of alfalfa, ryegrass and oat grass and their influence factors in China. Scientia Agricultura Sinica, 2018, 51(3): 507-522. (in Chinese)
[2] WANG Z, WU Y Q, DENNIS L M. Identification of vegetatively propagated turf bermudagrass cultivars using simple sequence repeat markers. Crop Science, 2010, 50(5).
[3] 庄文发, 陈冲, 张晓华, 杨威, 才兴蔓. 粮改饲的主要问题与对策思考. 现代畜牧兽医, 2017(7): 56-59.
ZHUANG W F, CHEN C, ZHANG X H, YANG W, CAI X M. Main problems and countermeasures of thinking on grain as fodder. Modern Journal of Animal Husbandry and Veterinary Medicine, 2017(7): 56-59. (in Chinese)
[4] 马金星, 张吉宇, 单丽燕, 贠旭疆. 中国草品种审定登记工作进展. 草业学报, 2011, 20(1): 206-213.
MA J X, ZHANG J Y, SHAN L Y, YUAN X J. Progress of the herbage variety approval and registration in China. Acta Prataculturae Sinica, 2011, 20(1): 206-213. (in Chinese)
[5] 韩瑞玺, 张晗, 赵艳杰, 马莹雪, 李汝玉, 唐浩. DNA分子标记技术在DUS测试中的应用探讨. 中国种业, 2019(2): 43-45.
HAN R X, ZHANG H, ZHAO Y J, MA Y X, LI R Y, TANG H. Application of DNA molecular marker technology in DUS test. China Seed Industry, 2019(2): 43-45. (in Chinese)
[6] UPOV. TG/1/ 3 General introduction to the examination of distinctness, uniformity and stability and the development of harmonized descriptions of new varieties of plant. Geneva, Switzerland: UPOV, 2002.
[7] 张一弓, 张荟荟, 杨刚, 付爱良, 沙吾列. 黑麦草新品种特异性、一致性和稳定性测试指南初报. 草食家畜, 2013(2): 50-54.
ZHANG Y G, ZHANG H H, YANG G, FU A L, SHA W L. Preliminary study on testing guidelines of distinctness, uniformity and stability of ryegrass. Grass-Feeding Livestock, 2013(2): 50-54. (in Chinese)
[8] NCSS. イタリアンライグラス亜種, Italian ryegrass(Lolium multiflorum Lam. ssp. italicum(A. Br. ) Volkart and Loliummultiflorum Lam. ssp. non alternativum. ). Japan: NCSS, 2012.
[9] 黄婷, 马啸, 张新全, 张新跃, 张瑞珍, 符开欣. 多花黑麦草DUS测定中SSR标记品种鉴定比较分析. 中国农业科学, 2015, 48(2): 381-389.
HUANG T, MA X, ZHANG X Q, ZHANG X Y, ZHANG R Z, FU K X. Comparation of SSR Molecular markers analysis of annual ryegrass varieties in DUS testing. Scientia Agricultura Sinica, 2015, 48(2): 381-389. (in Chinese)
[10] PEMBLETON L W, DRAYTON M C, BAIN M. Targeted genotyping-by-sequencing permits cost-effective identification and discrimination of pasture grass species and cultivars. Theoretical and Applied Genetics, 2016, 129(5): 991-1005.
doi: 10.1007/s00122-016-2678-2
[11] 王绍飞, 罗永聪, 张新全, 黄琳凯, 马啸, 刘恋. 14个多花黑麦草品种(系)在川西南地区生产性能综合评价. 草业学报, 2014, 23(6): 87-94.
WANG S F, LUO Y C, ZHANG X Q, HUANG L K, MA X, LIU L. The production performance of 14 annual ryegrass varieties in the southwest of Sichuan Province. Acta Prataculturae Sinica, 2014, 23(6): 87-94. (in Chinese)
[12] 刘春英, 孙学映, 朱体超, 陈光蓉, 郑章云. 不同黑麦草品种生产性能比较与优势品种筛选. 草业学报, 2014, 23(4): 39-48.
LIU C Y, SUN X Y, ZHU T C, CHEN G R, ZHENG Z Y. Comparison of the production performance of ryegrass cultivars and screening of dominant varieties. Acta Prataculturae Sinica, 2014, 23(4): 39-48. (in Chinese)
[13] 王宇涛, 辛国荣, 杨中艺, 陈三有. 多花黑麦草的应用研究进展. 草业科学, 2010, 27(3): 118-123.
WANG Y T, XIN G R, YANG Z Y, CHEN S Y. Progress on applications of Italian ryegrass. Pratacultural Science, 2010, 27(3): 118-123. (in Chinese)
[14] 张艾青, 黄尧瑶, 初晓辉, 毕玉芬, 姜华, 段新慧, 任健, 单贵莲. 施氮水平对多花黑麦草生产性能和营养品质的影响. 草业与畜牧, 2014(4): 1-5.
ZHANG A Q, HUANG Y Y, CHU X H, BI Y F, JIANG H, DUAN X H, REN J, SHAN G L. Effects of nitrogen fertilizing on productivity and nutritional quality of Lolium multiflorum. Prataculture & Animal Husbandry, 2014(4): 1-5. (in Chinese)
[15] 张晓华, 纪宏. 中国中产阶层比重的测度及变迁研究. 统计与决策, 2019, 35(5): 97-100.
ZHANG X H, JI H. A study on measurement and change of middle class proportion in China. Statistics & Decision, 2019, 35(5): 97-100. (in Chinese)
[16] 徐肇友, 肖德卿, 沈斌, 肖纪军, 陈杏林, 周志春. 秀丽四照花叶色参数和叶形性状的变异及相关性分析. 植物资源与环境学报, 2021, 30(1): 61-68.
XU Z Y, XIAO D Q, SHEN B, XIAO J J, CHEN X L, ZHOU Z C. Variation and correlation analyses on leaf color parameters and leaf shape traits of Cornus hongkongensis subsp. elegans. Journal of Plant Resources and Environment, 2021, 30(1): 61-68. (in Chinese)
[17] 经建永, 颉刚刚, 欧阳丽婷, 陈曦, 马百强, 耿文娟. 新疆野生欧洲李表型性状多样性分析. 植物资源与环境学报, 2020, 29(2): 28-37.
JING J Y, JIE G G, OUYANG L T, CHEN X, MA B Q, GENG W J. Analysis on diversity of phenotypic traits of wild Prunus domestica in Xinjiang. Journal of Plant Resources and Environment, 2020, 29(2): 28-37. (in Chinese)
[18] 朱敏, 高爱平, 邓穗生, 陈业渊. 杧果种质资源果实主要数量性状评价指标探讨. 植物遗传资源学报, 2010, 11(4): 418-423.
ZHU M, GAO A P, DENG S S, CHEN Y Y. Evaluation index of main quantitative characters of mango (Mangifera indica) genetic resources. Journal of Plant Genetic Resources, 2010, 11(4): 418-423. (in Chinese)
[19] 王新宇, 蒋林峰, 张新全, 黄琳凯, 李宁, 王鹏喜. 鸭茅DUS测试不同品种性状一致性分析. 草业学报, 2016, 25(9): 104-116.
WANG X Y, JIANG L F, ZHANG X Q, HUANG L K, LI N, WANG P X. Uniformity analysis of DUS traits of different orchardgrass (Dactylis glomerata) varieties. Acta Prataculturae Sinica, 2016, 25(9): 104-116. (in Chinese)
[20] 孙延智, 义鸣放. 唐菖蒲品种的特异性、一致性和稳定性研究. 中国农业大学学报, 2002(5): 7-13.
SUN Y Z, YI M F. Study on distincness, uniformity and stability of gladiolus cultivars. Journal of China Agricultural University, 2002(5): 7-13. (in Chinese)
[21] 张建华, 王建军, 米艳华, 张金渝. 玉米DUS测试标准品种在云南的差异性分析. 西南农业学报, 2004(S1): 224-227.
ZHANG J H, WANG J J, MI Y H, ZHANG J Y. Analysis on difference of character of maize standard variety for DUS testing in Yunnan. Southwest China Journal of Agricultural Sciences, 2004(S1): 224-227. (in Chinese)
[22] 贺晨帮, 宗绪晓. 豌豆种质资源形态标记遗传多样性分析. 植物遗传资源学报, 2011, 12(1): 42-48.
HE C B, ZONG X X. Genetic diversity of pea (Pisum sativum L. ) germplasm resources revealed by morphological traits. Journal of Plant Genetic Resources, 2011, 12(1): 42-48. (in Chinese)
[23] 刘青林, 张云, 原雅玲, 彭隆金. 百合品种一致性、稳定性与特异性的研究. 北京林业大学学报, 2002(1): 35-40.
LIU Q L, ZHANG Y, YUAN Y L, PENG L J. Uniformity, stability and distinctness in lily cultivars. Journal of Beijing Forestry University, 2002(1): 35-40. (in Chinese)
[24] 李垚垚, 刘海荷, 陈金湘. 棉花DUS测试不同品种性状一致性分析. 江西棉花, 2009, 31(2): 15-18.
LI Y Y, LIU H H, CHEN J X. Uniformity analysis on DUS traits of cotton different varieties of cotton different varieties. Jiangxi Cotton, 2009, 31(2): 15-18. (in Chinese)
[25] 褚云霞, 邓姗, 黄志城, 顾晓君, 李寿国, 张永春, 陈海荣. 朱顶红新品种DUS测试数量性状筛选与分级. 植物遗传资源学报, 2016, 17(3): 466-474.
CHU Y X, DENG S, HUANG Z C, GU X J, LI S G, ZHANG Y C, CHEN H R. Selection and classification for amaryllis (Hippeastrum) DUS testing quantitative traits. Journal of Plant Genetic Resources, 2016, 17(3): 466-474. (in Chinese)
[26] 徐振江, 刘洪, 李春兰, 李之林, 任永浩. 水稻新品种DUS测试数量性状特异性统计分析判别研究. 华南农业大学学报, 2008(1): 6-9.
XU Z J, LIU H, LI C L, LI Z L, REN Y H. Study on the statistical assessment of distinctness of quantitative characteristics in DUS testing of the new rice varieties. Journal of South China Agricultural University, 2008(1): 6-9. (in Chinese)
[27] 许晓岗, 吴秀萍, 丁芳芳. 垂珠花自然居群表型性状及遗传多样性分析. 西北植物学报, 2017, 37(8): 1517-1524.
XU X G, WU X P, DING F F. Phenotypic traits and genetic diversity of natural population of Styrax dasyanthus Perkins. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(8): 1517-1524. (in Chinese)
[28] 李宗艳, 李名扬. 硬叶兜兰居群表型变异研究. 植物遗传资源学报, 2015, 16(4): 765-771.
LI Z Y, LI M Y. Study on phenotypic variation of Paphiopedilum micranthum population. Journal of Plant Genetic Resources, 2015, 16(4): 765-771. (in Chinese)
[29] 胡宏霞, 穆国俊, 侯名语, 陈焕英, 崔顺立, 何美敬, 刘立峰. 河北省花生地方品种基于EST-SSR的遗传多样性及性状-标记相关分析. 植物遗传资源学报, 2013, 14(6): 1118-1123, 1129.
HU H X, MU G J, HOU M Y, CHEN H Y, CUI S L, HE M J, LIU L F. Genetic diversity and marker-trait analysis for the peanut landraces in Hebei based on EST-SSR markers. Journal of Plant Genetic Resources, 2013, 14(6): 1118-1123, 1129. (in Chinese)
[30] 林茂, 李正强, 郑治洪, 吕建伟, 马天进, 李超, 阚健全. 贵州省花生地方品种的遗传多样性. 作物学报, 2012, 38(8): 1387-1396.
doi: 10.3724/SP.J.1006.2012.01387
LIN M, LI Z Q, ZHENG Z H, LU J W, MA T J, LI C, KAN J Q. Genetic diversity of peanut landraces in Guizhou Province. Acta Agronomica Sinica, 2012, 38(8): 1387-1396. (in Chinese)
doi: 10.3724/SP.J.1006.2012.01387
[31] 张晓飞, 赵建文, 李维国. 中国育成橡胶树杂交品种的血缘组成及骨干亲本选择[A]. 中国作物学会. 2018中国作物学会学术年会论文摘要集. 中国作物学会, 2018: 1.
ZHANG X F, ZHAO J W, LI W G. Bloodline composition and selection of backbone parents of chinese rubber tree hybrids. Proceedings of 2018 Annual Conference of the Crop Science Society of China, 2018: 1. (in Chinese)
[32] 俞华先, 桃联安, 安汝东, 经艳芬, 边芯, 董立华, 郎荣斌, 周清明, 杨李和, 孙有芳, 田春艳. 云南甘蔗细茎野生种F2群体主要农艺性状的主成分分析与综合评价. 热带作物学报, 2021, 42(1): 54-61.
YU H X, TAO L A, AN R D, JING Y F, BIAN X, DONG L H, LANG R B, ZHOU Q M, YANG L H, SUN Y F, TIAN C Y. Principal component analysis and comprehensive evaluation of main agronomic traits in Saccharum spontaneum L. blood F2 progeny innovated in Yunnan. Chinese Journal of Tropical Crops, 2021, 42(1): 54-61. (in Chinese)
[33] 陈湘瑜, 徐日荣, 陈昊, 熊发前, 胡润芳, 张玉梅, 林国强. 花生品系主要农艺性状的分析与综合评价. 种子, 2020, 39(9): 84-88.
CHEN X Y, XU R R, CHEN H, XIONG F Q, HU R F, ZHANG Y M, LIN G Q. Analysis and comprehensive evaluation of main agronomic traits of peanut lines. Seed, 2020, 39(9): 84-88. (in Chinese)
[34] 刘欢, 马啸, 张新全, 张瑞珍, 陈诚, 唐露, 杨忠富. 多花黑麦草品种DUS测试数量性状分级分析. 植物遗传资源学报, 2016, 17(5): 846-853, 860.
LIU H, MA X, ZHANG X Q, ZHANG R Z, CHEN C, TANG L, YANG Z F. Classification analysis for italian ryegrass DUS testing quantitative traits. Journal of Plant Genetic Resources, 2016, 17(5): 846-853, 860. (in Chinese)
[1] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[2] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[3] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[4] WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
[5] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
[6] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[7] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[8] ZHU LingXiao,LIU LianTao,ZHANG YongJiang,SUN HongChun,ZHANG Ke,BAI ZhiYing,DONG HeZhong,LI CunDong. The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture [J]. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163.
[9] ZHU ZiJian,CHEN SiYu,SU Jun,TAO YongSheng. Correlation Analysis Between Amino Acids and Fruity Esters During Spine Grape Fermentation [J]. Scientia Agricultura Sinica, 2020, 53(11): 2272-2284.
[10] FANG HuiTing,MENG JiHua,CHENG ZhiQiang. Spatio-Temporal Variability of Soil Available Nutrients Based on Remote Sensing and Crop Model [J]. Scientia Agricultura Sinica, 2019, 52(3): 478-490.
[11] JianFeng LI,Bo ZHANG,JianZhang QUAN,YongFang WANG,XiaoMei ZHANG,Yuan ZHAO,XiLei YUAN,XiaoPing JIA,ZhiPing DONG. Associated Loci Detection and Elite Allelic Variations Analysis of Main Agronomic Traits in Foxtail Millet (Setaria italica L.) Based on SSR Markers [J]. Scientia Agricultura Sinica, 2019, 52(24): 4453-4469.
[12] ZENG WeiYing, SUN ZuDong, LAI ZhenGuang, CAI ZhaoYan, CHEN HuaiZhu, YANG ShouZhen, TANG XiangMin. Correlation Analysis on Transcriptomic and Proteome of Soybean Resistance to Bean Pyralid(Lamprosema indicata) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1244-1260.
[13] ZHANG AiYing, GUO ErHu, DIAO XianMin, FAN HuiPing, LI YuHui, WANG LiXia, GUO HongLiang, CHENG LiPing, Wu YinSheng. Evaluation of Foxtail Millet Cultivars Developed in the Middle and Late-Maturing Spring-Sowing Region in Northwest China in 2005-2015 [J]. Scientia Agricultura Sinica, 2017, 50(23): 4486-4495.
[14] ZHANG AiYing, DIAO XianMin, GUO ErHu, FAN HuiPing, WANG LiXia, LI YuHui, CHENG LiPing, WU YinSheng, ZHANG Li. Research Progress and Major Traits of Foxtail Millet Cultivars Developed in the Early-Mature Spring-Sowing Region in the Past 15 Years [J]. Scientia Agricultura Sinica, 2017, 50(23): 4496-4506.
[15] LI ZhiJiang, MA JinFeng, LI YanDong, LI XiangYu, DIAO XianMin, ZHANG Ting. Evaluation of Foxtail Millet Cultivars Developed in Northeast China Spring-Sowing Region in Recent Years [J]. Scientia Agricultura Sinica, 2017, 50(23): 4507-4516.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!