Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (4): 804-819.doi: 10.3864/j.issn.0578-1752.2021.04.012

• HORTICULTURE • Previous Articles     Next Articles

Enantiomeric Analysis of Free Amino Acids in Different Teas

ZHU Yin(),ZHANG Yue,YAN Han,LÜ HaiPeng,LIN Zhi()   

  1. Tea Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008
  • Received:2020-05-19 Accepted:2020-09-27 Online:2021-02-16 Published:2021-02-16
  • Contact: Zhi LIN E-mail:zhuy_scu@tricaas.com;linzhi@caas.cn

Abstract:

【Objective】 Free amino acids are the main chemical compositions in teas, and they are closely related to the taste quality of tea. In account of the existence of stereogenic centers, most amino acids contain two enantiomers (D and L configurations) with obviously different taste characteristics and biological activities. However, due to the limitation of detection technology, the studies of L-amino acids were focused in the previous work, and the D-amino acids have been rarely studied. Therefore, the study on the enantiomers of free amino acids in teas is very important for deepening the theoretical system of tea chemistry and is beneficial for improving and controlling of tea taste quality. 【Method】 In this study, the separation performance of free amino acid enantiomers (Chiral HPLC, Silanization of MTBSTFA and Esterification PFP acylation) was compared by using three different analytical methods. A total of 15 pairs of amino acids, including alanine, valine, threonine, isoleucine, leucine, proline, serine, cysteine, aspartic acid, methionine, phenylalanine, glutamic acid, tyrosine, lysine and tryptophan, were effectively separated by using esterification- pentafluoropropionic acylation combined with chiral gas chromatography-mass spectrometry (GC-MS). Furthermore, the efficient derivatization, qualitative and quantitative analysis approaches were established, and the distribution regularities of amino acids enantiomers in 11 representative commercial white, oolong and pu-erh teas were investigated. 【Result】 The derivatization conditions were showed as follows: the reaction mixture was esterified at 100oC for 105 min, and then further acylated by pentafluoropropionic anhydride using tetrahydrofuran as the solvent at 100oC for 10 min. Recoveries of the free amino acid enantiomers were ranged from 75.26% to 123.6% (low concentration) and from 81.23% to 121.8% (high concentration), and the corresponding RSDs were ranged from 2.09% to 13.12% (low concentration) and from 1.48% to 10.59% (high concentration). The analysis results indicated that 1-2 enantiomers of most amino acids could be detected, and D-amino acids were frequently distributed in most tea samples, especially D-threonine, D-aspartic acid, D-cysteine, D-phenylalanine, and the mixture of D-theanine, D-glutamic acid and D-glutamine. On the contrary, D-methionine, D-lysine and D-tryptophan were unable to be detected in all samples. As for the detailed content distributions, in addition to the mixture of L-theanine, L-glutamic acid and L-glutamine and L-aspartic acid, L-cysteine (1.48-2.08 mg?g-1), D-cysteine (1.46-1.49 mg?g-1) and D-aspartic acid (1.02-1.14 mg?g-1) presented higher contents in white teas, L-cysteine (1.52-1.70 mg?g-1), D-cysteine (1.45-1.49 mg?g-1), L-serine (1.03-1.50 mg?g-1), L-methionine (1.03-1.52 mg?g-1), L-tyrosine (1.32-1.35 mg?g-1) and D-aspartic acid (1.01-1.15 mg?g-1) were abundant in oolong teas. In pu-erh teas, no significant differences on the contents between the mixture of L-theanine, L-glutamic acid and L-glutamine (1.04 mg?g-1) and other amino acids, and L-threonine, L-tryptophan, and L-serine presented relatively high content levels ranging from 0.61 to 0.84 mg?g-1. The content distribution of the total amino acids were presented the following tendency: white tea (up to 40.61 mg?g-1) > oolong tea (up to 25.43 mg?g-1) > pu-erh tea (8.01 mg?g -1). Moreover, multivariate statistical analysis results indicated that the mixture of L-theanine, L-glutamic acid and L-glutamine, L-tryptophan, L-aspartic acid, L-tyrosine and L-methionine showed significant content differences, and the first three enantiomers were abundant in white teas, and other compounds were rich in oolong teas.【Conclusion】 D-amino acids could be detected in most teas, indicating their potential impact on the taste quality of tea infusion. However, no significant differences on the content distribution of D-amino acids were observed among different kinds of teas used in our study.

Key words: tea, free amino acids, enantiomers, gas chromatography-mass spectrometry, pentafluoropropionic anhydride

Fig. 1

The total ion chromatogram A:混合标准品 Mixed standards;B:游离氨基酸 The separated free amino acids"

Fig. 2

The total ion chromatogram of the silicane derivative of free amino acid standard (take threonine as an example)"

Fig. 3

The detected amino acid enantiomers in the mixed tea samples"

Table 1

The qualitative parameters of the amino acid enantiomers"

序号 No. 名称 Compound 保留时间Retention time[1] 定性离子Qualitative ion[2]
1-2 丙氨酸 Alanine (Ala) 4.306, 5.125 190, 43, 218
3-4 缬氨酸 Valine (Val) 5.940, 6.642 218, 55, 203, 164
5-6 苏氨酸 Threonine (Thr) 6.663, 7.506 203, 43, 248, 366
7-8 异亮氨酸 Isoleucine (Isoleu) 7.504, 8.982 232, 69, 43, 203, 221
9-10 亮氨酸 Leucine (Leu) 9.780, 11.621 190, 69, 43
11-12 脯氨酸 Proline (Pro) 9.499, 9.667 216, 69, 43, 119
13-14 丝氨酸 Serine (Ser) 10.612, 11.262 189, 43, 119, 69, 234
15-16 半胱氨酸 Cysteine (Cys) 15.998, 16.254 190, 220, 103, 368
17-18 天冬氨酸 Aspartic acid (Asp) 16.622, 16.909 234, 189, 43
19-20 蛋氨酸 Methionine (Met) 18.680, 20.007 61, 75, 43, 131, 203
21-22 苯丙氨酸 Phenylalanine (Phe) 21.049, 22.095 91, 266, 190, 148
23-24 谷氨酸 Glutamic acid (Glu) 21.546, 22.581 202, 276, 85, 248, 230
25-26 酪氨酸 Tyrosine (Tyr) 27.693, 28.562 252, 428, 352, 310
27-28 赖氨酸 Lysine (Lys) 32.653, 32.995 230,176, 420,394,67
29-30 色氨酸 Tryptophan (Try) 36.385, 37.729 276, 130, 333

Fig. 4

Optimization of derivatization method A: The derivatization steps of amino acids (take L-phenylalanine as an example); B: The screen of esterification temperature; C: The screen of esterification time; D: The screen of PFP reaction temperature; E: Solvent; F: The screen of PFP reaction time"

Table 2

Recoveries and RSDs (%) for free amino acid enantiomers"

序号 No. 名称
Name
添加量
Added (nmol)
回收率
Recovery (%)
RSD (%) 添加量
Added (nmol)
回收率
Recovery (%)
RSD (%)
D L D L D L D L D L D L
1-2 Ala 10.00 10.00 78.53 88.70 6.59 7.42 100.0 100.0 92.36 102.2 8.93 5.80
3-4 Val 12.50 12.50 80.36 92.57 7.89 6.52 125.0 125.0 85.72 95.69 10.23 6.79
5-6 Thr 50.00 50.00 90.37 95.10 5.69 7.89 200.0 200.0 100.2 105.6 4.33 8.97
7-8 Isoleu 25.00 25.00 85.32 96.32 10.12 8.98 150.0 150.0 110.8 92.63 8.56 9.67
9-10 Leu 5.00 5.00 76.53 88.90 11.52 8.98 50.00 50.00 86.26 82.02 7.58 9.33
11-12 Pro 10.00 10.00 98.57 96.23 2.69 3.98 100.0 100.0 121.8 118.4 9.56 7.46
13-14 Ser 50.00 50.00 114.2 86.97 7.46 9.87 200.0 200.0 96.35 104.5 2.32 9.08
15-16 Cys 50.00 50.00 123.6 115.9 13.12 12.08 200.0 200.0 121.3 119.2 9.63 7.89
17-18 Asp 100.0 100.0 98.45 89.63 4.69 7.41 500.0 500.0 85.23 94.12 1.48 7.56
19-20 Met 25.00 25.00 81.23 75.26 2.09 8.09 150.0 150.0 85.79 81.47 9.65 7.12
21-22 Phe 50.00 50.00 96.23 85.47 2.36 7.49 200.0 200.0 100.2 109.8 3.56 7.02
23-24 Glu 50.00 50.00 92.09 89.25 3.44 5.74 250.0 250.0 94.56 81.23 7.28 9.25
25-26 Tyr 25.00 25.00 80.12 87.90 7.96 7.85 150.0 150.0 97.58 101.2 7.89 10.59
27-28 Lys 10.00 10.00 80.20 77.98 10.23 11.20 100.0 100.0 87.67 90.90 9.88 9.73
29-30 Try 25.00 25.00 84.26 78.97 8.70 9.24 150.0 150.0 91.77 89.79 10.01 4.80

Table 3

The enantiomeric compositions and corresponding contents of free amino acids in the different types of teas"

茶样
Teas
Ala (mg?g-1) Val (mg?g-1) Thr (mg?g-1) Isoleu (mg?g-1) Leu (mg?g-1) Ser (mg?g-1) Pro (mg?g-1) Asp (mg?g-1) Cys (mg?g-1) Met (mg?g-1) Phe (mg?g-1) Glu (mg?g-1) Tyr (mg?g-1) Lys (mg?g-1) Try (mg?g-1)
D L D L D L D L D L D L D L D L D L D L D L D L D L D L D L
白茶 White tea
BHYZ 0.00 0.00 0.00 0.17 0.20 0.16 0.15 0.14 0.00 0.00 0.00 1.80 0.24 0.30 1.14 15.58 1.46 2.08 0.00 0.00 0.55 0.60 0.85 14.22 0.00 0.00 0.00 0.31 0.00 0.66
YNBHYZ 0.08 0.37 0.00 0.21 0.36 0.27 0.00 0.21 0.00 0.00 0.00 1.14 0.26 0.29 1.09 3.21 1.49 1.55 0.00 2.56 0.60 0.71 0.93 13.38 0.00 1.36 0.00 0.29 0.00 1.31
BMD-1 0.00 0.33 0.00 0.43 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.28 1.06 5.14 1.48 1.62 0.00 0.00 0.55 0.65 0.79 9.60 0.00 0.00 0.00 0.28 0.00 0.75
BMD-2 0.00 0.31 0.00 0.40 0.25 0.29 0.13 0.34 0.00 0.48 0.00 0.15 0.00 0.45 0.00 1.58 0.00 1.48 0.00 0.00 0.00 0.73 0.74 12.90 0.00 0.00 0.00 0.32 0.00 0.73
SM 0.00 0.23 0.00 0.42 0.00 0.20 0.00 0.00 0.00 0.00 0.00 1.53 0.00 0.25 1.02 6.67 1.46 1.70 0.00 0.00 0.00 0.59 0.73 7.50 0.00 0.00 0.00 0.25 0.00 0.46
乌龙茶 Oolong tea
RG 0.30 0.13 0.00 0.38 0.64 0.58 0.00 0.19 0.00 0.00 0.00 1.50 0.00 0.27 1.02 4.09 1.45 1.57 0.00 1.31 0.55 0.80 0.71 3.85 0.00 1.35 0.00 0.27 0.00 0.31
DHP 0.00 0.72 0.00 0.13 0.00 0.47 0.00 0.22 0.00 0.00 0.00 1.47 0.00 0.23 1.10 6.37 1.47 1.68 0.00 1.52 0.56 0.81 0.72 3.95 1.36 1.32 0.00 0.33 0.00 0.76
SX 0.00 0.22 0.00 0.26 0.00 0.24 0.00 0.13 0.00 0.00 0.00 1.03 0.00 0.23 1.01 2.75 1.45 1.52 0.00 1.21 0.54 0.72 0.82 6.75 0.00 1.32 0.00 0.32 0.00 0.62
TGY-1 0.00 0.15 0.13 0.18 1.01 0.29 0.00 0.19 0.00 0.00 0.00 1.29 0.00 0.23 1.06 6.59 1.48 1.70 0.00 1.03 0.55 0.74 0.74 6.15 0.00 1.33 0.00 0.26 0.00 0.33
TGY-2 0.00 0.19 0.10 0.17 0.20 0.69 0.00 0.17 0.00 0.00 0.00 1.27 0.00 0.33 1.15 5.26 1.49 1.57 0.00 1.31 0.56 0.63 1.20 6.40 0.00 1.34 0.00 0.34 0.00 0.85
黑茶 Pu-erh tea
PR 0.00 0.34 0.00 0.13 0.00 0.84 0.17 0.14 0.38 0.54 0.21 0.61 0.00 0.27 0.00 0.52 0.46 0.50 0.00 0.00 0.00 0.55 0.00 1.04 0.00 0.34 0.00 0.29 0.00 0.68

Fig. 5

The content distribution of free amino acid enantiomers in the white teas (A), the total content distribution of amino acids among different white teas (B)"

Fig. 6

The content distribution of free amino acid enantiomers in the oolong teas (A), the total content distribution of amino acids among different oolong teas (B)"

Fig. 7

The content distribution of free amino acid enantiomers in Pu-erh tea"

Fig. 8

The PLS-DA model based on the free amino acid enantiomers in the white and oolong teas (A), the content heat map of key differential amino acid enantiomers (B)"

[1] 林智, 尹军峰, 吕海鹏. 茶叶深加工技术. 北京:科学出版社, 2020: 7.
LIN Z, YIN J F, LÜ H P. Tea Deep-Processing Technology. Beijing: Science Press, 2020: 7. (in Chinese)
[2] 宛晓春. 茶叶生物化学 . 北京:中国农业出版社, 2003: 32-35.
WANG X C. Tea Biochemistry. Beijing:China Agriculture Press, 2003: 32-35. (in Chinese)
[3] SOLMS J. Taste of amino acids, peptides, and proteins. Journal of Agricultural and Food Chemistry, 1969,17(4):686-688.
[4] WIESER H, JUGEL H, BELITZ H-D. Relationships between structure and sweet taste of amino acid. Z Lebensm Unters Forsch, 1977,164:277-282.
[5] KATO H, RHUE M R, NISHIMURA T. Role of free amino acids and peptides in food taste//Flavor Chemistry: Trends and Developments. TERANISHI R, BUTTERY R G, SHAHID F, American Chemical Society: Washington,DC, 1989: 158-174.
[6] ZHAO Y S, LI P, GE L, WANG Y, MO T, ZENG X P, WANG X D. Effect of electrolyzed reduced water on chiral theanine and polyphenols in tea. Food Chemistry, 2012,134(4):1761-1766.
[7] FIORI J, PASQUINI B, CAPRINI C, ORLANDINI S, FURLANETTO S, GOTTI R. Chiral analysis of theanine and catechin in characterization of green tea by cyclodextrin-modified micellar electrokinetic chromatography and high performance liquid chromatography. Journal of Chromatography A, 2018,1562:115-122.
[8] EKBORG-OTT K H, TAYLOR A., ARMSTRONG D W. Varietal differences in the total and enantiomeric composition of theanine in tea. Journal of Agricultural and Food Chemistry, 1997,45(2):353-363.
[9] HORANNI R, ENGELHARDT U H. Enantiomeric analysis of theanine in different teas (Camellia sinensis) using Marfey’s reagent. European Food Research and Technology, 2015,240:61-70.
[10] DESAI M J, ARMSTRONG D W. Analysis of derivatized and underivatized theanine enantiomers by high-performance liquid chromatography/atmospheric pressure ionization-mass spectrometry. Rapid Communication in Mass Spectrometry, 2004,18:251-256.
[11] 李银花, 李娟, 刘仲华, 黄建安. 配体交换色谱手性固定相法拆分与定量茶氨酸对映体. 福建分析测试, 2010,19(1):10-13.
LI Y H, LI J, LIU Z H, HUANG J A. Separation and quantitation of theanine enantiomer on ligand exchange chromatography with chiral stationary phase, Fujian Analysis & Testing, 2010,19(1):10-13. (in Chinese)
[12] 李银花, 刘仲华, 黄建安. 配体交换色谱手性流动相法拆分和定量茶氨酸对映体. 茶叶科学, 2006,26(4):280-284.
LI Y H, LIU Z H, HUANG J A. Separation and quantitation of theanine enantiomers on ligand exchange chromatography with chiral mobile phase. Journal of Tea Science, 2006,26(4):280-284. (in Chinese)
[13] 李银花, 刘仲华, 黄建安. 手性衍生-高效液相色谱法拆分和定量测定茶氨酸对映体. 色谱, 2007,25(5):719-722.
LI Y H, LIU Z H, HUANG J A. Separation and quantification of theanine enantiomers using high performance liquid chromatography coupled with chiral derivatization. Chinese Journal of Chromatography, 2007,25(5):719-722. (in Chinese)
[14] WANG X Y, WU H H, LUO R Y, XIA D H, JIANG Z J, HAN H. Separation and detection of free D- and L-amino acids in tea by off-line two-dimensional liquid chromatography. Analytical Methods, 2017,9(43):6131-6138.
[15] XU Y, LIU Z Y, LIU Z Y, FENG Z H, ZHANG L, WAN X C, YANG X G. Identification of D-amino acids in tea leaves. Food Chemistry, 2020,317:126428.
[16] 祝馨怡, 蔡迎春, 陈立仁, 李永民. α-氨基酸在L-苯丙氨酸手性配体交换色谱固定相上的分离研究. 化学试剂, 2003,25(2):65-68.
ZHU X Y, CAI Y C, CHEN L R, LI Y M. Study on the separation of α-amino acid using L-phenylalanine chiral ligand exchange chromatography as the stationary phase. Chemical Reagent, 2003,25(2):65-68. (in Chinese)
[17] GRÜNER B, HOLUB J, PLEŠEK J, VANĚK T, VOTAVOVÁ H. High-performance liquid chromatographic enantiomeric resolution in the ten-vertex carborane series: Comparison of acyetl- and native β- cyclodextrin bonded chiral stationary phases. Journal of Chromatography A, 1998,793(2):249-256.
[18] 方骏, 夏小庆, 吴勇勇. 使用手性冠醚的高效液相色谱法研究伯胺类药物的手性分离. 中国药物化学杂志, 2003,13(1):48-50.
FANG J, XIA X Q, WU Y Y. Study on chiral separation of amino drugs by HPLC utilizing crown ethers. Chinese Journal of Medicinal Chemistry, 2003,13(1):48-50. (in Chinese)
[19] KARL B, HALKET J M. Handbook of Derivatives for Chromatography (2nd). Chichester: John Wiley & Sons, 1993.
[20] SHEN X Z, DENG C H, WANG B, DONG L. Quantification of trimethylsilyl derivatives of amino acid disease biomarkers in neonatal blood samples by gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2006,384(4):931-938.
[21] 何红波, 张威, 解宏图, 侯松嵋, 张旭东. 测定土壤氨基糖和氨基酸手性异构体中氮同位素比值的气相色谱-质谱方法. 土壤学报, 2009,46(2):289-298.
HE H B, ZHANG W, XIE H T, HOU S M, ZHANG X D. A Gc/Ms method to assess 15n ratios in soil amino sugars and amino acid enantiomers. Acta Pedologica Sinica, 2009,46(2):289-298. (in Chinese)
[22] 邢其毅, 裴伟伟, 徐瑞秋, 裴坚. 基础有机化学(第3版). 北京:高等教育出版社, 2005.
XING Q Y, PEI W W, XU R Q, PEI J. Basic Organic Chemistry (3rd ed). Beijing: Higher Education Press, 2005. (in Chinese)
[23] 丁永胜, 牟世芬. 氨基酸的分析方法及其应用进展. 色谱, 2004,22(3):210-215.
DING Y S, MOU S F. Development of analytical methods for amino acids and their applications. Chinese Journal of Chromatography, 2004,22(3):210-215. (in Chinese)
[24] 陈勤操, 戴伟东, 蔺志远, 解东超, 吕美玲, 林智. 代谢组学解析遮阴对茶叶主要品质成分的影响. 中国农业科学, 2019,52(6):1066-1077.
CHEN Q C, DAI W D, LIN Z Y, XIE D C, LÜ M L, LIN Z. Effects of shading on main quality components in tea (Camellia Sinensis (L) O. Kuntze) leaves based on metabolomics analysis. Scientia Agricultura Sinica, 2019,52(6):1066-1077. (in Chinese)
[25] ZHU Y, SHAO C, LV H, ZHANG Y, DAI W D, GUO L, TAN J F, PENG Q H, LIN Z. Enantiomeric and quantitative analysis of volatile terpenoids in different teas (Camellia sinensis). Journal of Chromatography A, 2017,1490:177-190.
[26] SINGH S K, KOLE P C, MISRA A K, ROY S, ARYA L, VERMA M, BHARDWAJ R, SUNEJA P, VERMA M R, BHAT K V, SINGH R. Characterization of Perilla frutescens (Linn.) Britt based on morphological, biochemical and STMS markers. Industrial Crops and Products, 2017,109, 773-785.
[27] 陈宗懋, 杨亚军. 中国茶经. 上海:上海文化出版社, 2011.
CHEN Z M, YANG Y J. The Classic of Chinese Tea. Shanghai: Shanghai Cultural Publishing House, 2011. (in Chinese)
[28] BRÜCKNER H, HAUSCH M. D-amino acids in dairy products: detection, origin and nutritional aspects. I. Milk, fermented milk, fresh cheese and acid curd cheese. Milchwissenschaft, 1990,45:357-360.
[29] ERBE T, BRÜCKNER H. Chromatographic determination of amino acid enantiomers in beers and raw materials used for their manufacture. Journal of Chromatography A, 2000,881(1-2):81-91.
[30] GOGAMI Y, OKADA K, OIKAWA T. High-performance liquid chromatography analysis of naturally occurring D-amino acids in sake. Journal of Chromatography B, 2011,879(29):3259-3267.
[31] MARCONE G L, ROSINI E, CRESPI E, POLLEGIONI L. D-amino acids in foods. Applied Microbiology and Biotechnology, 2020,104(2):555-574.
[32] PALLA G, MARCHELLI R, DOSSENA A, CASNATI G. Occurrence of D-amino acids in food: detection by capillary gas chromatography and by reversed-phase high-performance liquid chromatography with L-phenylalaninamides as chiral selectors. Journal of Chromatography A, 1989,475(1):45-53.
[33] GENCHI G. An overview on D-amino acids. Amino Acids, 2017,49:1521-1533.
[34] PÄTZOLD R, NIETO-RODRIGUEZ A, BRÜCKNER H. Chiral gas chromatographic analysis of amino acids in fortified wines. Chromatographia, 2003,57(Suppl. l):207-211.
[35] PRANDI B, FACCINI A, LAMBERTINI F, BENCIVENNI M, JORBA M, DROOGENBROEK B V, BRUGGEMAN G, SCHÖBER J, PETRUSAN J, ELST K, SFORZA S. Food wastes from agrifood industry as possible sources of proteins: a detailed molecular view on the composition of the nitrogen fraction, amino acid profile and racemisation degree of 39 food waste streams. Food Chemistry, 2019,286:567-575.
[36] ALI H, PÄTZOLD R, BRÜCKNER H. Determination of L- and D-amino acids in smokeless tobacco products and tobacco. Food Chemistry, 2006,99(4):803-812.
[1] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[2] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[3] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[4] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[5] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[6] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[7] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[8] DU JinTing,ZHANG Yan,LI Yan,WANG JiaJia,LIAO Na,ZHONG LiHuang,LUO BiQun,LIN Jiang. Optimization and Mechanism of Ultrasonic-Assisted Two-Phase Extraction of Tea Saponin [J]. Scientia Agricultura Sinica, 2022, 55(1): 167-183.
[9] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[10] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[11] LIU Qiang,LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao. Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(2): 379-391.
[12] HAO HaiPing,BAI HongTong,XIA Fei,HAO YuanPeng,LI Hui,CUI HongXia,XIE XiaoMing,SHI Lei. Effects of Tea-Litsea Cubeba Intrercropping on Soil Microbial Community Structure in Tea Plantation [J]. Scientia Agricultura Sinica, 2021, 54(18): 3959-3969.
[13] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[14] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[15] CHEN Zhi,ZHANG Yi,LU QinYue,GUO JiaHe,LIANG Yan,ZHANG MingYiXing,YANG ZhangPing. Effect and Mechanism of Tea Tree Oil on LPS Induced Mastitis in Dairy Cows [J]. Scientia Agricultura Sinica, 2021, 54(14): 3124-3133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!