Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4084-4096.doi: 10.3864/j.issn.0578-1752.2021.19.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Planting Density on Photosynthetic Characteristics, Yield and Stem Lodging Resistance of Soybean in Maize-Soybean Strip Intercropping System

CHENG Bin1,2(),LIU WeiGuo1(),WANG Li1,XU Mei1,QIN SiSi1,LU JunJi1,GAO Yang1,LI ShuXian1,Ali RAZA1,ZHANG Yi1,Irshan AHMAD1,JING ShuZhong2,LIU RanJin2,YANG WenYu1   

  1. 1College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130
    2Chengdu Da Mei Seeds Co., Ltd., Chengdu 610066
  • Received:2020-11-23 Accepted:2021-04-28 Online:2021-10-01 Published:2021-10-12
  • Contact: WeiGuo LIU E-mail:2459894545@qq.com;lwgsy@126.com

Abstract:

【Objective】The aim of this study was to reveal the light environment change law of soybean canopy under different planting densities in maize-soybean strip intercropping, and to clarify the effects of density on leaf photosynthetic characteristics, yield and stem lodging resistance of soybean, so as to provide the theoretical reference for the construction of reasonable population density of intercropped soybean in low radiation area. 【Method】In this study, soybean genotype of Chuandou-16 and maize genotype of Zhenghong-505 were used as experimental materials. The two-factor random expulsion design was adopted, among which maize-soybean strip intercropping and monocropping were the main factors, and three planting densities of soybean (PD1 = 17 plants/m2, PD2 = 20 plants/m2, PD3 = 25 plants/m2) were the secondary factors. Effects of planting density on light environment of canopy, photosynthetic characteristics, growth dynamics, lodging percentage and yield composition of soybean were investigated. 【Result】Two-year data showed that the growth of soybean was affected by the shading of maize and self-shade at the middle and later stages in the maize-soybean strip intercropping system. The photosynthetic active radiation (PAR) in the canopy of the plant population, leaf area index (LAI), leaf photosynthetic capacity, number of branches and yield were significantly decreased, while the degree of being affected by maize varied with soybean planting densities. In the strip intercropping, compared with PD3, the PAR in soybean population canopy of PD1 and PD2 increased by 45.4% and 24.8% respectively, the Pn of leaves increased by 46.1% and 12.3%, respectively, the Ep increased by 53.2% and 27.2%, respectively, the Bn increased by 270.4% and 140.9%, respectively, and the lodging percentage decreased by 50.3% and 19.3%, respectively. Correlation analysis showed that lodging percentage was significantly negatively correlated with the PAR, net photosynthetic rate (Pn), stem bending force (SBF), dry weight of stem / leaf ratio (S﹕L), number of branches per plant (Bn) and number of effective pods per plant (Ep), and positively correlated with plant height (PH), LAI and number of ineffective pods per plant (nEp). 【Conclusion】Therefore, in the maize-soybean strip intercropping, the appropriate planting density (20 plants/m2) was beneficial to create a better light environment of soybean population, reduce the lodging percentage, increase the accumulation of photosynthates, and thus improve the yield of soybean.

Key words: LAI, PAR, maize-soybean strip intercropping, photosynthetic characteristics, yield

Fig. 1

The climate changes from April to August in 2019 and 2020"

Fig. 2

The pattern of maize-soybean strip intercropping and monocropping"

Fig. 3

The changes of canopy parameters of soybean populations with different planting densities over time in 2019-2020 *, ** and ns indicated the significant level of LAI and PAR under PD and PP (P<0.05, P<0.01和P≥0.05)"

Fig. 4

Effects of different planting densities on photosynthetic parameters of soybean leaves at R1 in 2019-2020 The density of scattered spots represented the difference between two-year repeated trials. *, ** and *** indicated significant difference among different planting densities and different planting patterns at P<0.05, P<0.01 and P<0.001, respectively. The same as below"

Table 1

Effects of planting densities on chlorophyll content of soybean leaves"

年份
Year
处理
Treatment
叶绿素含量 Content (mg·g-1) Chl(a/b)
Chla Chlb Chl(a+b)
2019 单作
Monocropping
PD1 4.11±0.11f 1.32±0.03e 5.43±0.14e 3.11±0.14a
PD2 4.81±0.14e 1.63±0.06d 6.44±0.17d 2.95±0.21b
PD3 5.68±0.08d 1.98±0.08cd 7.66±0.25cd 2.86±0.17b
间作
Intercropping
PD1 5.91±0.17c 2.08±0.05c 7.99±0.31c 2.84±0.23bc
PD2 6.56±0.27b 2.48±0.12b 9.04±0.28b 2.64±0.16c
PD3 6.80±0.32a 3.04±0.08a 9.84±0.24a 2.23±0.18d
F-value 密度 PD 238.03** 392.30** 213.16** 575.71**
种植模式 PP 1168.70** 1543.48** 982.83** 1631.41**
密度×种植模式 PD×PP 23.03** 19.78** 9.41** 125.41**
2020 单作
Monocropping
PD1 3.84±0.21e 1.18±0.18e 5.02±0.25e 3.24±0.28a
PD2 4.96±0.45d 1.72±0.22d 6.68±0.14d 2.87±0.65b
PD3 5.74±0.29c 2.08±0.32c 7.82±0.27c 2.75±0.24bc
间作
Intercropping
PD1 6.08±0.32b 2.38±0.34b 8.46±0.62b 2.55±0.47c
PD2 6.69±0.34ab 2.88±0.51ab 9.57±0.41ab 2.32±0.27d
PD3 6.98±0.31a 3.02±0.20a 10±0.22a 2.31±0.34d
F-value 密度 PD 520.43** 174.84** 730.86** 458.24**
种植模式 PP 2412.71** 935.43** 4132.46** 1543.26**
密度×种植模式 PD×PP 60.63** 8.23* 65.48** 43.27**

Fig. 5

The variation of field lodging percentage of soybean with time under maize-soybean strip intercropping in 2019-2020 The results were expressed by mean ± standard deviation, and different lowercase letters in the figure indicated that there were significant differences among treatments at P<0.05"

Table 2

Effects of planting densities on agronomic characters of soybean plants"

年份
Year
处理
Treatment
株高
PH (cm)
茎粗
SD (mm)
抗折力
SBF (N)
主茎干重
SW (g)
叶干重
LW (g)
茎叶比
S : L
2019 单作
Monocropping
PD1 41.17±1.74d 7.61±0.13a 119.95±5.99a 5.68±0.38a 15.87±0.98a 0.35±0.08d
PD2 43.16±1.90cd 7.47±0.14a 106.24±5.47b 5.35±0.44ab 11.55±0.69ab 0.47±0.04cd
PD3 45.02±0.98c 6.94±0.25ab 75.48±3.84c 4.74±0.54b 9.14±0.58c 0.52±0.02c
间作
Intercropping
PD1 58.30±3.25bc 6.05±0.14b 71.72±4.22c 3.74±0.54c 6.81±0.98d 0.55±0.07b
PD2 62.16±1.03b 5.86±0.32c 63.47±4.85d 3.26±0.22cd 4.85±0.78de 0.67±3.98ab
PD3 68.02±3.83a 5.56±0.19d 51.34±2.68e 2.57±0.14d 3.625±0.46f 0.71±0.04a
F-value 密度 PD 99.05** 35.00** 120.82** 110.35** 61.90** 70.92**
种植模式 PP 2609.56** 252.43** 640.95** 1427.39** 470.44** 267.70**
密度×种植模式 PD×PP 30.46** 10.47* 18.50* 2.70* 14.85** 11.90*
2020 单作
Monocropping
PD1 43.25±0.65d 7.54±0.23a 108.54±6.84a 5.48±0.34a 16.11±1.24a 0.34±0.04c
PD2 44.58±1.21cd 7.28±0.35ab 100.22±4.35b 5.22±0.25ab 11.34.62±1.15b 0.46±0.03c
PD3 45.89±1.54c 6.87±0.65b 80.65±4.28c 4.73±0.38c 8.18±0.68c 0.58±0.04c
间作
Intercropping
PD1 60.21±1.33b 5.24±0.65c 68.24±3.24d 3.89±0.24d 5.89±0.24d 0.66±0.02b
PD2 63.98±2.14b 4.89±0.78d 54.23±2.46e 3.41±0.32de 4.94±0.33de 0.69±0.08b
PD3 70.21±2.54a 4.48±0.27e 48.55±3.21f 3.10±0.25e 4.31±0.25e 0.72±0.03a
F-value 密度 PD 85.14** 116.78** 186.36** 194.57** 1948.71** 44.98**
种植模式 PP 586.14** 3716.01** 1680.14** 2995.40** 309.78** 287.89**
密度×种植模式 PD×PP 28.34** 3.98* 5.79* 4.99* 133.52** 10.18*

Fig. 6

Effects of planting densities on soybean yield and yield components in 2019-2020"

Fig. 7

Correlation analysis diagram The difference between lodging percentage (Lr) and plant height (PH), stem diameter (SD), stem / leaf ratio (S﹕L), stem bending force (SBF), leaf area index (LAI), photosynthetic active radiation (PAR), net photosynthetic rate (Pn), transpiration rate(Tr), stomatal conductance (Gs), intercellular carbon dioxide concentration (Ci), dry weight of main stem (Sw), leaf dry weight (Lw), number of branches per plant (Bn), number of effective pods per plant (Ep) and number of ineffective pods per plant (nEp) at P<0.05"

[1] 车文斌. 两大任务五项工作2020年中央一号文件解读. 当代县域经济, 2020(3):8-9.
CHE W B. Interpretation of the No. 1 document of the central committee in 2020 with two major tasks and five tasks. Contemporary County Economy, 2020(3):8-9. (in Chinese)
[2] CHENG B, RAZA A, WANG L, XU M, LU J J, GAO Y, QIN S S, ZHANG Y, AHMAD I, ZHOU T, WEN B X, YANG W Y, LIU W G. Effects of multiple planting densities on lignin metabolism and lodging resistance of the strip intercropped soybean stem. Agronomy, 2020, 10:1177.
doi: 10.3390/agronomy10081177
[3] 刘鑫. 玉豆带状间作系统光能分布, 截获与利用研究[D]. 雅安: 四川农业大学, 2016.
LIU X. Study of the light distribution, interception and use efficiency in maize-soybean strip intercropping system[D]. Ya’an: Sichuan Agricultural University, 2016. (in Chinese)
[4] 王甜, 庞婷, 杜青, 陈平, 张晓娜, 周颖, 汪锦, 杨文钰, 雍太文. 田间配置对间作大豆光合特性, 干物质积累及产量的影响. 华北农学报, 2020, 35:111-120.
WANG T, PANG T, DU Q, CHEN P, ZHANG X N, ZHOU Y, WANG J, YANG W Y, YONG T W. Effects of different field collocation patterns on photosynthetic characteristics and dry matter accumulation and yield in intercropping soybean. Acta Agriculturae Boreali Sinica, 2020, 35:111-120. (in Chinese)
[5] 李淑贤, 刘卫国, 高阳, 刘婷, 周涛, 杜勇利, 杨欢, 张浩, 刘俊豆, 杨文钰. 硅对人工荫蔽胁迫下大豆幼苗生长及光合特性的影响. 中国农业科学, 2018, 51(19):3663-3672.
LI S X, LIU W G, GAO Y, LIU T, ZHOU T, DU Y L, YANG H, ZHANG H, LIU J D, YANG W Y. Effects of silicon on plant growth and photosynthetic characteristics of soybean seedlings under artificial shade stress. Scientia Agricultura Sinica, 2018, 51(19):3663-3672. (in Chinese)
[6] YANG F, HUANG S, GAO R C, LIU W G, YONG T W, WANG X C, WU X L, YANG W Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Research, 2014, 155:245-253.
doi: 10.1016/j.fcr.2013.08.011
[7] FENG L Y, RAZA A M, CHEN Y, KHALID M H B, MERAJ T A, AHSAN F, FAN Y F, DU J B, WU X L, SONG C, LIU C Y, BAWA G, ZHANG Z W, YUAN S, YANG F, YANG W Y. Narrow-wide row planting pattern improves the light environment and seed yields of intercrop species in relay intercropping system. PLoS ONE, 2019, 14(2):e0212885.
doi: 10.1371/journal.pone.0212885
[8] RAZA M A, FENG L Y, IQBAL N, AHMED M, CHEN Y K, KHALID M H B, MOHI UD DIN A, KHAN A, IJAZ W, HUSSAIN A, JAMIL M, NAEEM M, BHUTTO S H, ANSAR M, YANG F, YANG W Y. Growth and development of soybean under changing light environments in relay intercropping system. PeerJ, 2019, 7:e7262.
doi: 10.7717/peerj.7262
[9] 邓榆川, 刘卫国, 袁小琴, 袁晋, 邹俊林, 杜俊波, 杨文钰. 套作大豆苗期茎秆纤维素合成代谢与抗倒性的关系. 应用生态学报, 2016, 27(2):469-476.
DENG Y C, LIU W G, YUAN X Q, YUAN J, ZOU J L, DU J B, YANG W Y. Relationship between cellulose synthesis metabolism and lodging resistance in intercropping soybean at seedling stage. Chinese Journal of Applied Ecology, 2016, 27(2):469-476. (in Chinese)
[10] SHER A, KHAN A, ASHRAF U, LIU H H, LI J C. Characterization of the effect of increased plant density on canopy morphology and stalk lodging risk. Frontiers in Plant Science, 2018, 9:1047.
doi: 10.3389/fpls.2018.01047
[11] BAI Z G, MAO S C, HAN Y C, FENG L, WANG G P, YANG B F, ZHI X Y, FAN Z Y, LEI Y P, DU W L, LI Y B. Study on light interception and biomass production of different cotton cultivars. PLoS ONE, 2016, 11(5):e0156335.
doi: 10.1371/journal.pone.0156335
[12] 杨国敏, 孙淑娟, 周勋波, 陈雨海, 齐林, 高会军, 刘岩. 群体分布和灌溉对冬小麦农田光能利用的影响. 应用生态学报, 2009, 20(08):1868-1875.
YANG G M, SUN S J, ZHOU X B, CHEN Y H, QI L, GAO H J, LIU Y. Effects of population distribution pattern and irrigation schedule on radiation utilization in winter wheat farmland. Chinese Journal of Applied Ecology, 2009, 20(8):1868-1875. (in Chinese)
[13] BAO X Y, LI Z G, YAO X D. Changes in photosynthetic traits and their responses to increasing fertilization rates in soybean [Glycine max (L.) Merr.] during decades of genetic improvement. Journal of the Science of Food and Agriculture, 2021, 101(11):4715-4723.
doi: 10.1002/jsfa.v101.11
[14] 谢瑞娟, 张小晶, 刘金平, 游明鸿, 伍德. 遮阴和干旱对荩草光合特性影响的协同作用. 草业学报, 2017, 26(10):64-76.
XIE R J, ZHANG X J, LIU J P, YOU M H, WU D. Synergistic effects of shade and drought on the photosynthetic characteristics of Arthraxon hispidus. Acta Prataculturae Sinica, 2017, 26(10):64-76. (in Chinese)
[15] WU Y S, GONG W Z, WANG Y M, YONG T W, YANG F, LIU W G, WU X L, DU J B, SHU K, LIU J, LIU C Y, YANG W Y. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean. Journal of Plant Research, 2018, 131(4):671-680.
doi: 10.1007/s10265-018-1027-8
[16] FENG L Y, RAZA M A, LI Z C, CHEN Y K, KHALID M H B, DU J B, LIU W G, WU X L, SONG C, YU L, ZHANG Z W, YUAN S, YANG W Y, YANG F. The influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of soybean. Frontiers in Plant Science, 2019, 9:1952.
doi: 10.3389/fpls.2018.01952
[17] 冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海. 豆科-燕麦间作对作物光合特性及籽粒产量的影响. 作物学报, 2015, 41(9):1426-1434.
FENG X M, YANG Y, REN C Z, HU Y G, ZENG Z H. Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield. Acta Agronomica Sinica, 2015, 41(9):1426-1434. (in Chinese)
[18] 覃思思, 刘卫国, 程彬, 赵兴健, 许梅, 李淑贤, 高阳, 王莉, 温冰消, 杨文钰. 套作大豆耐荫品种筛选及农艺性状与产量的关系研究. 中国油料作物学报, 2020, 42(3):390-400.
QIN S S, LIU W G, CHENG B, ZHAO X J, XU M, LI S X, GAO Y, WANG L, WEN B X, YANG W Y. Screening of shade tolerant soybean varieties and the relationship between agronomic characteristics and yield. Chinese Journal of Oil Crop Sciences, 2020, 42(3):390-400. (in Chinese)
[19] FAN Y F, WANG Z L, LIAO D P, RAZA M A, WANG B B, ZHANG J W, CHEN J X, FENG L Y, WU X L, LIU C Y, YANG W Y, YANG F. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in maize-soybean intercropping under different row configurations. Scientific Reports, 2020, 10(1):1-10.
doi: 10.1038/s41598-019-56847-4
[20] XIANG D B, ZHAO G, WAN Y, TAN M L, SONG C, SONG Y. Effect of planting density on lodging-related morphology, lodging rate, and yield of tartary buckwheat (Fagopyrum tataricum). Plant Production Science, 2016, 19(4):479-488.
doi: 10.1080/1343943X.2016.1188320
[21] 杨敏文. 快速测定植物叶片叶绿素含量方法的探讨. 光谱实验室, 2002, 19(4):478-481.
YANG M W. Study on rapid determination of chlorophyll content of leaves. Chinese Journal of Spectroscopy Laboratory, 2002, 19(4):478-481. (in Chinese)
[22] ZHOU T, WANG L, YANG H, GAO Y, LIU W G, YANG W Y. Ameliorated light conditions increase the P uptake capability of soybean in a relay-strip intercropping system by altering root morphology and physiology in the areas with low solar radiation. Science of the Total Environment, 2019, 688:1069-1080.
doi: 10.1016/j.scitotenv.2019.06.344
[23] YAO X D, ZHOU H L, ZHU Q, LI C H, ZHANG H J, WU J J, XIE F T. Photosynthetic response of soybean leaf to wide light-fluctuation in maize-soybean intercropping system. Frontiers in Plant Science, 2017, 8:1695.
doi: 10.3389/fpls.2017.01695
[24] KIM J, SONG Y, KIM D W, FIAZ M, KWON C H. Evaluating different interrow distance between corn and soybean for optimum growth, production and nutritive value of intercropped forages. Journal of Animal Science and Technology, 2018, 60(1):1-6.
doi: 10.1186/s40781-017-0158-0
[25] RAZA A, ASGHAR M A, AHMAD B, CHENG B, IFTIKHAR HUSSAIN M, WANG L, IQBAL T, YASEEN M, SHAFIQ I, ZHANG Y, AHMAD I, YANG W Y, LIU W G. Agro-Techniques for lodging stress management in maize-soybean intercropping system-A review. Plants, 2020, 9(11):1592.
doi: 10.3390/plants9111592
[26] YANG G Z, LUO X J, NIE Y C. ZHANG X L. Effects of plant density on yield and canopy micro environment in hybrid cotton. Journal of Integrative Agriculture, 2014, 13(10):2154-2163.
doi: 10.1016/S2095-3119(13)60727-3
[27] SEDGHI M, SHARIFI R S, GHOLIPOURI A. Practical methods for increasing light interception efficiency and root growth in soybean. Pakistan Journal of Biological Sciences, 2008, 11(4):595-600.
doi: 10.3923/pjbs.2008.595.600
[28] HUSSAIN S, PANG T, IQBAL N, SHAFIQ I, SKALICKY M, BRESTIC M, SAFDAR M E, MUMTAZ M, AHMAD A, ASGHAR M A, RAZA A, ALLAKHVERDIEV S, WANG Y, WANG X C, YANG F, YONG T W, LIU W G, YANG W Y. Acclimation strategy and plasticity of different soybean genotypes in intercropping. Functional Plant Biology, 2020, 47(7):592-610.
doi: 10.1071/FP19161
[29] 帅海威, 孟永杰, 陈锋, 周文冠, 罗晓峰, 杨文钰, 舒凯. 植物荫蔽胁迫的激素信号响应. 植物学报, 2018, 53(1):139-148.
SHUAI H W, MENG Y J, CHEN F, ZHOU W G, LUO X F, YANG W Y, SHU K. Phytohormone-mediated plant shade responses. Bulletin of Botany, 2018, 53(1):139-148. (in Chinese)
[30] BIANCHI J S, QUIJANO A, GOSPARINI C O, MORANDI E N. Changes in leaflet shape and seeds per pod modify crop growth parameters, canopy light environment, and yield components in soybean. The Crop Journal, 2020, 8(2):351-364.
doi: 10.1016/j.cj.2019.09.011
[31] YUE J B, FENG H K, TIAN Q J, ZHOU C Q. A robust spectral angle index for remotely assessing soybean canopy chlorophyll content in different growing stages. Plant Methods, 2020, 16(1):1-18.
doi: 10.1186/s13007-019-0534-5
[32] 崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014, 47(8):1489-1501.
CUI L, SU B Y, YANG F, YANG W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Scientia Agricultura Sinica, 2014, 47(8):1489-1501. (in Chinese)
[33] CONNELLY J P, MÜLLER M G, BASSI R, CROCE R, HOLZWARTH A R. Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II. Biochemistry, 1997, 36(2):281-287.
doi: 10.1021/bi962467l
[34] 徐冉, 陈存来, 邵历, 张礼凤, 王彩洁, 李永孝. 夏大豆叶片光合作用与光强的关系. 作物学报, 2005, 31(8):1080-1085.
XU R, CHEN C L, SHAO L, ZHANG L F, WANG C J, LI Y X. Relationship between photosynthetic rate and light intensity in summer soybean. Acta Agronomica Sinica, 2005, 31(8):1080-1085. (in Chinese)
[35] YANG M H, ZHANG L, XU S T, MCLAUGHLIN N B, LIU J H. Effect of water soluble humic acid applied to potato foliage on plant growth, photosynthesis characteristics and fresh tuber yield under different water deficits. Scientific Reports, 2020, 10(1):1-10.
doi: 10.1038/s41598-019-56847-4
[36] 梁永富, 易家宁, 王康才, 薛启, 隋利. 遮阴对多花黄精生长及光合特性的影响. 中国中药杂志, 2019, 44(1):59-67.
LIANG Y F, YI J N, WANG K C, XUE Q, SUI L. Response of growth and photosynthetic characteristics of Polygonatum cyrtonema to shading conditions. China Journal of Chinese Materia Medica, 2019, 44(1):59-67. (in Chinese)
[37] KRISHNAN P, SWAIN D K, BHASKAR B C, NAYAK S K, DASH R N. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems & Environment, 2007, 122(2):233-242.
doi: 10.1016/j.agee.2007.01.019
[38] 邹俊林, 刘卫国, 袁晋, 蒋涛, 叶素琴, 邓榆川, 杨晨雨, 罗玲, 杨文钰. 套作大豆苗期茎秆木质素合成与抗倒性的关系. 作物学报, 2015, 41(7):1098-1104.
ZOU J L, LIU W G, YUAN J, JIANG T, YE S Q, DENG Y C, YANG C Y, LUO L, YANG W Y. Relationship between lignin synthesis and lodging resistance at seedlings stage in soybean intercropping system. Acta Agronomica Sinica, 2015, 41(7):1098-1104. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[15] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!