Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3183-3197.doi: 10.3864/j.issn.0578-1752.2021.15.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Regulation Effects of Water Saving and Nitrogen Reduction on Dry Matter and Nitrogen Accumulation, Transportation and Yield of Summer Maize

WANG XuMin(),LUO WenHe,LIU PengZhao,ZHANG Qi,WANG Rui,LI Jun()   

  1. College of Agronomy, Northwest A&F University/Key Laboratory of Crop Physiecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling 712100, Shaanxi
  • Received:2020-10-07 Accepted:2021-01-05 Online:2021-08-01 Published:2021-08-10
  • Contact: Jun LI E-mail:minr.w@nwsuaf.edu.cn;junli@nwsuaf.edu.cn

Abstract:

【Objective】 In order to solve the problems of irrigation water resources scarcity and excessive nitrogen input in current summer maize cropping system, this study analyzed the regulating effects of maize growth and yield response between water-saving, nitrogen reduction mode and conventional water-nitrogen mode, so as to provide a theoretical basis for determining water-saving and nitrogen-reduction cultivation measures of summer maize. 【Method】 A different irrigation and nitrogen application field trial of summer maize was conducted in Yangling, Shaanxi province in 2018-2019. Three irrigation treatments were conventional irrigation (800 m3·hm-2), reduced irrigation (400 m3·hm-2) and no irrigation (0); and five nitrogen treatments were as follows: conventional nitrogen application (300 kg N·hm-2), reduced 25% (225 kg N·hm-2), reduced 50% (150 kg N·hm-2), reduced 75% (75 kg N·hm-2) and no N fertilizer(0), respectively. The study investigated the effects of water saving and nitrogen reduction on maize yield, photosynthetic characteristics, dry matter (nitrogen) accumulation and its transport characteristics.【Result】 (1) Compared with conventional water-nitrogen mode (conventional irrigation and 300 kg N·hm-2), the water-saving and nitrogen reduction mode (reduced irrigation and 225 kg N·hm-2) had no significant effect on maize yield and its components. (2) Compared with conventional water-nitrogen mode, the reduced irrigation and 225 kg N·hm-2 treatment had no impact on maize leaf area index (LAI), its LAI increased obviously before anthesis and decreased slowly after anthesis than that under other treatments. The net photosynthetic rate of ear leaf significantly increased by 10.0% at tasseling stage, and kept a higher net photosynthetic rate till the post anthesis period, this promoted the dry matter accumulation. (3) Reduced irrigation and 225 kg N·hm-2 had no remarkable influence on dry matter accumulation, but the maximum growth rate of dry matter accumulation was significantly increased by 6.3%, and occurred 0.8 days earlier. (4) The dry matter remobilization, remobilization efficiency and contribution of remobilization to grain efficiency in pre-anthesis of reduced irrigation and 225 kg N·hm-2 treatment increased significantly by 36.4%, 40.1% and 28.6%, respectively. The nitrogen remobilization, remobilization efficiency and contribution of nitrogen remobilization to grain efficiency pre-anthesis increased significantly by 30.3%, 22.0% and 42.1%, respectively. However, there was no difference in dry matter (nitrogen) accumulation and contribution efficiency to grain under the two type water and nitrogen modes. 【Conclusion】 Comprehensively, the water-saving and nitrogen reduction mode (400 m3·hm-2 irrigation amount and 225 kg N·hm-2) could effectively coordinate dry matter (nitrogen) accumulation and its transportation, and increased the distribution ratio of dry matter and nitrogen in maize grain, which could achieve the production goal of water saving and nitrogen reduction of summer maize in Guanzhong plain.

Key words: summer maize, water-saving irrigation, reduced nitrogen application, dry matter accumulation, transportation, yield

Table 1

Basic physicochemical properties of the experiment soil (0-20 cm) of 2018 and 2019"

年份
Year
有机质
OM
(g·kg-1)
全氮
Total N
(g·kg-1)
硝态氮
Nitrate N
(mg·kg-1)
全磷
Total P
(g·kg-1)
速效磷
Available P
(mg·kg-1)
全钾
Total K
(g·kg-1)
速效钾
Available K
(mg·kg-1)
2018 17.06 1.24 12.46 0.99 32.59 10.85 223.87
2019 16.95 1.20 14.53 1.04 36.76 9.96 215.19

Fig. 1

Daily rainfall during the growth stage of summer maize"

Table 2

Analysis of variance of irrigation and nitrogen application on physiological indexes, dry matter (nitrogen) transport, yield and components of summer maize"

指标 Indicator 灌溉 Irrigation (I) 施氮 Nitrogen (N) 灌溉×施氮 I×N
叶面积指数LAI 抽雄期VT 208.16*** 1054.94*** 12.60**
成熟期R6 401.31*** 408.48*** 6.97**
净光合速率Pn 抽雄期VT 51668.07*** 64135.53*** 4885.87**
成熟期R6 12623.77*** 61563.93*** 5228.69**
干物质积累
Dry matter accumulation
抽雄期VT 155.34*** 172.16*** 24.82**
成熟期R6 646.58 *** 318.62*** 13.42**
干物质转运
Dry matter remobilization
花前转运量DMR 35.00*** 16.57*** 10.33**
花前转运率DMRE 12.38*** 6.32** 3.84***
花前转运贡献率DMRCG 11.87*** 9.27** 5.38***
花后转运量DMA 79.46*** 67.64*** 5.83***
花后转运贡献率DMAC 11.87*** 9.27*** 5.38***
氮素转运
Nitrogen remobilization
花前转运量NR 314.82* 503.62*** 64.96***
花前转运率NRE 76.54* 80.36*** 20.22**
花前转运贡献率NRCG 32.91** 33.74*** 25.18**
花后转运量NA 110.53*** 380.39*** 18.61***
花后转运贡献率NAC 30.91** 33.74*** 25.18***
产量及构成因素
Yield and components
产量Yield 237.86*** 201.22*** 2.67***
穗数Ear number 35.73*** 8.87*** 9.93***
穗粒数Grains per ear 170.74*** 16.55*** 5.41***
百粒重100-kernel weight 28.21*** 38.18*** 3.08***

Fig. 2

Leaf area index (LAI) of summer maize under different water-saving and nitrogen-reduction treatments VE: Emergence stage; V6: Jointing stage; VT: Tasseling stage; R3: Milk stage; R5: Dough stage; R6: Maturation stage. NS means non-significant, * means significant at 0.05 level, ** means significant at 0.01 level"

Fig. 3

Photosynthetic rate of summer maize ear leaf at tasseling (VT) and maturity (R6) stages under different water-saving and nitrogen-reduction treatments Different lowercase letters indicate that the difference between different nitrogen application rates under the same irrigation treatment is significant at 0.05 level. The same as below"

Fig. 4

Dry matter accumulation of summer maize under different water-saving and nitrogen-reduction treatments The gray area indicates the occurrence and duration of the maximum growth rate of dry matter"

Fig. 5

Dry matter distribution of summer maize in mature stage under different water-saving and nitrogen-reduction treatments"

Table 3

Dry matter transfer before and after flowering and their contribution to grain dry matter as affected under different water-saving and nitrogen-reduction treatments"

处理
Treatment
2018 2019
花前 Pre-anthesis 花后 Post anthesis 花前 Pre-anthesis 花后 Post anthesis
DMR
(kg·hm-2)
DMRE
(%)
DMRCG
(%)
DMA
(kg·hm-2)
DMAC
(%)
DMR
(kg·hm-2)
DMRE
(%)
DMRCG
(%)
DMA
(kg·hm-2)
DMAC
(%)
W0 N0 1066b 18.69b 17.41a 5201e 82.59c 756b 14.34b 14.48a 6104d 85.52b
N75 965b 14.93cd 12.99b 7262d 87.01b 628b 10.97b 8.11b 8443c 91.89a
N150 1378a 22.32a 16.98a 9094a 83.02c 1177a 19.86a 14.58a 8718bc 85.42b
N225 959b 16.34bc 11.91b 8696b 88.09ab 623b 11.56b 7.35a 10063a 92.65a
N300 672c 12.22d 9.51c 7993c 90.49a 847b 14.51b 10.05ab 9458ab 89.95ab
W1 N0 1243c 19.60c 18.13b 6857e 81.87b 1177b 20.01b 15.17b 8068d 84.83b
N75 1671b 23.21b 19.26b 8813d 80.74b 1673a 24.10a 19.20a 8675c 80.80c
N150 2459a 30.10a 25.91a 9314c 74.09c 1727a 25.15a 17.52ab 10429b 82.48bc
N225 1657b 23.36b 17.02b 10752b 82.98b 1638a 21.49b 15.81b 10446b 84.19b
N300 674d 12.33d 7.63c 11602a 92.37a 697c 8.89c 6.51c 12559a 93.49a
W2 N0 1002bc 15.59ab 13.68b 6851d 86.32c 943b 14.43c 13.68b 8424d 86.32b
N75 1423a 17.31a 16.52a 7301c 83.48d 1765a 23.25a 19.05a 8919c 80.95c
N150 1109b 14.20b 11.42c 10285b 88.58bc 1495a 18.99b 14.71b 10434b 85.29b
N225 728d 10.44c 7.27d 11967a 92.73a 905b 11.97c 9.11c 11385a 90.89a
N300 850cd 11.30c 9.81c 9546b 90.19b 1565a 20.67a 15.77b 10839a 84.23b
F-value W 198.1** 134.8* 112.0* 910.7** 112.0** 114.8* 43.8** 26.9** 101.2** 26.9***
N 148.2** 69.0** 106.5** 1630.8* 106.5** 33.3** 27.0** 20.7** 172.0** 20.7***
W*N 47.1** 20.0** 31.8** 156.9** 31.8** 27.9** 26.6** 17.8** 13.6** 17.8**

Fig. 6

Nitrogen distribution in maturation stage of summer maize under different water-saving and nitrogen-reduction treatments"

Table 4

Nitrogen transfer before and after flowering stage and their contribution to grain N as affected under different water-saving and nitrogen-reduction treatment"

处理
Treatment
2018 2019
花前 Pre-anthesis 花后 Post anthesis 花前 Pre-anthesis 花后 Post anthesis
NR
(kg·hm-2)
NRE
(%)
NRCG
(%)
NA
(kg·hm-2)
NAC
(%)
NR
(kg·hm-2)
NRE
(%)
NRCG
(%)
NA
(kg·hm-2)
NAC
(%)
W0 N0 29.35d 45.18a 43.68a 34.23e 56.32b 23.47c 43.01bc 42.51b 49.70c 57.49b
N75 42.29b 42.57a 39.95b 55.30c 60.05a 39.56b 45.85abc 35.81c 67.77b 64.19a
N150 48.12a 43.91a 44.26a 53.33d 55.74c 49.62a 48.87ab 42.72b 57.28b 57.28b
N225 47.47a 43.37a 42.17ab 69.84a 57.83b 52.19a 49.52a 47.07a 67.33b 52.93c
N300 38.44c 38.13b 40.97ab 64.44b 59.03a 40.37b 40.23c 36.64c 87.49a 63.36a
W1 N0 35.73d 42.59c 42.98b 37.14e 57.02b 27.66e 46.90ab 35.92c 58.37b 64.08a
N75 54.60b 44.99b 43.47b 61.25c 56.53b 49.79d 46.35b 47.35ab 40.87d 52.65bc
N150 65.24a 49.01a 48.56a 55.16d 51.44c 65.89c 48.35a 50.11a 52.95c 49.89c
N225 65.74a 47.25a 48.38a 68.94b 51.62c 72.24a 46.55b 48.13ab 61.07b 51.87bc
N300 43.87c 42.74c 35.27c 77.67a 64.73a 61.82b 43.74c 42.73b 84.87a 57.27b
W2 N0 36.47d 38.88b 38.04c 44.68e 61.96b 33.89d 45.92b 37.77b 66.57bc 62.23a
N75 59.37a 42.45a 48.49a 49.30d 51.51d 57.54b 47.88a 49.28a 59.27c 50.72b
N150 58.04a 39.48b 41.27b 65.06c 58.73c 61.94a 44.53b 44.40a 72.50b 55.60b
N225 43.82c 35.24c 32.08d 88.82b 67.92a 47.28c 35.98c 37.46b 74.66b 62.54a
N300 51.32b 38.41b 32.07d 97.66a 67.93a 49.32c 37.91c 35.84b 83.74a 64.16a
F-value W 410.81** 72.3*** 45.94*** 1012.73*** 45.94*** 96.61** 17.81*** 8.79*** 56.53** 8.79**
N 538.88** 9.63*** 41.76** 3509.06*** 41.76*** 203.71** 23.39*** 13.27** 77.25*** 13.27***
W×N 82.21*** 10.23*** 27.78*** 280.55*** 27.78*** 33.61*** 13.93*** 10.73*** 14.65*** 10.73*

Table 5

Effects of water saving and nitrogen reduction on maize yield in 2018-2019"

处理
Treatment
2018 2019
穗数
Ear number
(No./hm2)
穗粒
Grain number
per ear
百粒重
100-kernel
weight (g)
产量
Yield
(kg·hm-2)
穗数
Ear number
(No./hm2)
穗粒
Grain number
per ear
百粒重
100-kernel
weight (g)
产量
Yield
(kg·hm-2)
W0 N0 56984b 405bc 26.89b 6161c 57025c 399de 28.21bc 5252c
N75 57203b 416b 27.74b 7422b 57833b 409d 29.59b 7871b
N150 57714a 460ab 28.24ab 8045a 57826a 448b 30.08b 8482a
N225 58143a 485a 31.79a 8107a 58001a 470a 32.61a 8676a
N300 58006a 424b 30.79b 8257a 58356a 423c 32.41a 8444a
W1
N0 57267c 446c 28.99c 7065c 57205c 426b 29.9c 6865d
N75 57894b 499b 32.02b 8652b 58014b 489a 32.35bc 8705c
N150 58259a 513a 32.73a 9390ab 58509a 497a 32.72b 9556b
N225 58497a 519a 33.41a 9729a 58817a 503a 34.42a 10451a
N300 58123a 517a 32.55b 9619a 58443a 495a 32.67b 10508a
W2 N0 57195b 466b 30.48c 7323c 57963b 463c 31.37bc 6891c
N75 58259a 495ab 32.7ab 8612b 58375a 483b 32.59b 9259b
N150 58251a 508b 34.07a 9707a 58201ab 509a 33.7b 9664ab
N225 58506a 515a 33.25a 10016a 57956b 520a 34.73a 9982a
N300 58212a 520a 32.61b 9802a 58730a 510a 34.18a 9926a
F-value W 11.06** 20.58*** 63.92*** 177.82*** 83.12*** 10.12** 1.02NS 33.93***
N 25.61*** 101.89*** 198.10*** 208.64*** 408.96*** 91.48*** 11.87*** 72.48***
W×N 2.88** 4.78** 16.28*** 3.62** 16.78** 3.90** 2.40* 3.54*

Fig. 7

Relationships between nitrogen application rate and summer maize yield under the same irrigation conditions"

[1] 李欢. 调亏灌溉条件下玉米耗水规律及灌溉方案评价试验研究[D]. 哈尔滨: 东北农业大学, 2016.
LI H. Experimental study on water consumption rule of maize and irrigation scheme evaluation under regulated deficit irrigation model[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese)
[2] 陈磊, 宋书会, 云鹏, 周磊, 高翔, 卢昌艾, 刘荣乐, 汪洪. 连续三年减施氮肥对潮土玉米生长及根际土壤氮素供应的影响. 植物营养与肥料学报, 2019, 25(9):1482-1494.
CHEN L, SONG S H, YUN P, ZHOU L, GAO X, LU C A, LIU R L, WANG H. Effects of reduced nitrogen fertilizer for three consecutive years on maize growth and rhizosphere nitrogen supply in fluvo-aquic soil. Journal of Plant Nutrition and Fertilizer, 2019, 25(9):1482-1494. (in Chinese)
[3] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响. 作物学报, 2020, 46(6):924-936.
LUO W H, SHI Z J, WANG X M, LI J, WANG R. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat. Acta Agronomica Sinica, 2020, 46(6):924-936. (in Chinese)
[4] 常艳丽, 刘俊梅, 李玉会, 孙本华, 张树兰, 杨学云. 陕西关中平原小麦/玉米轮作体系施肥现状调查与评价. 西北农林科技大学学报(自然科学版), 2014, 42(8):51-61.
CHANG Y L, LIU J M, LI Y H, SUN B H, ZHANG S L, YANG X Y. Investigation and evaluation of fertilization under winter wheat and summer maize rotation system in Guanzhong plain, Shaanxi province. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(8):51-61. (in Chinese)
[5] 李萍, 魏晓妹, 降亚楠, 冯东溥. 关中平原渠井双灌区地下水循环对环境变化的响应. 农业工程学报, 2014, 30(18):123-131.
LI P, WEI X M, JIANG Y N, FENG D P. Response of groundwater cycle to environmental changes in Guanzhong plain irrigation district. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18):123-131. (in Chinese)
[6] 徐杰, 陶洪斌, 宋庆芳, 王璞. 水氮配置对华北冬小麦-夏玉米种植体系氮素利用及土壤硝态氮残留的影响. 华北农学报, 2011, 26(4):153-158.
XU J, TAO H B, SONG Q F, WANG P. The effect of water-nitrogen regimes on the nitrogen utilization and soil NO3-_N residue of winter wheat-summer maize system in the North China Plain. Acta Agriculturae Boreali-Sinica, 2011, 26(4):153-158. (in Chinese)
[7] CHRISTOS D. Variation in dry matter and nitrogen accumulation and remobilization in barley as affected by fertilization, cultivar, and source-sink relations. European Journal of Agronomy, 2012, 37(1):3l-42.
[8] 姜丽娜, 马静丽, 方保停, 马建辉, 李春喜, 王志敏, 蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响. 作物学报, 2019, 45(6):957-966.
JIANG L N, MA J L, FANG B T, MA J H, LI C X, WANG Z M, HAO B Z. Effect of lower water and nitrogen supply on grain yield and dry matter remobilization of organs in different layers of winter wheat plant in northern Henan province. Acta Agronomica Sinica, 2019, 45(6):957-966. (in Chinese)
[9] 周英捷, 傅丰贝, 李伏生. 水肥调控下糯玉米生长、产量和水分利用效率研究. 干旱地区农业研究, 2014, 32(3):114-118.
ZHOU Y J, FU F B, LI F S. Research on the growth, yield and water use efficiency of sticky maize under water and fertilizer regulation. Agricultural Research in the Arid Areas, 2014, 32(3):114-118. (in Chinese)
[10] 范虹, 李文娟, 赵财, 樊志龙, 胡才强, 柴强. 绿洲灌区水氮运筹对玉米生长及产量形成的耦合效应. 甘肃农业大学学报, 2019, 54(1):56-64.
FAN H, LI W J, ZHAO C, FAN Z L, HU C Q, CHAI Q. Coupling effects of water and nitrogen management on maize growth and yield components in oasis irrigation areas. Journal of Gansu Agricultural University, 2019, 54(1):56-64. (in Chinese)
[11] 武文明, 陈洪俭, 王世济, 魏凤珍, 李金才. 氮肥运筹对苗期受渍夏玉米干物质和氮素积累与转运的影响. 作物学报, 2015, 41(8):1246-1256.
WU W M, CHEN H J, WANG S J, WEI F Z, LI J C. Effects of nitrogen fertilization application regime on dry matter, nitrogen accumulation and transportation in summer maize under waterlogging at the seedling stage. Acta Agronomica Sinica, 2015, 41(8):1246-1256. (in Chinese)
[12] 董茜, 雍太文, 刘小明, 刘文钰, 徐婷, 宋春, 王小春, 杨文钰. 施氮方式对玉米-大豆套作体系中作物产量及玉米籽粒灌浆特性的影响. 作物学报, 2014, 40(11):2028-2039.
DONG Q, YONG T W, LIU X M, LIU W Y, XU T, SONG C, WANG X C, YANG W Y. Effect of nitrogen application methods on crop yield and grain filling characteristics of maize in maize-soybean relay strip intercropping system. Acta Agronomica Sinica, 2014, 40(11):2028-2039. (in Chinese)
[13] 王小燕, 于振文. 不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响. 中国农业科学, 2008, 41(10):3015-3024.
WANG X Y, YU Z W. Effect of irrigation rate on absorption and translocation of nitrogen under different nitrogen fertilizer rate in wheat. Scientia Agricultura Sinica, 2008, 41(10):3015-3024. (in Chinese)
[14] 王宜伦, 李潮海, 谭金芳, 韩艳来, 张许. 超高产夏玉米植株氮素积累特征及一次性施肥效果研究. 中国农业科学, 2010, 43(15):3151-3158.
WANG Y L, LI C H, TAN J F, HAN Y L, ZHANG X. Studies on plant nitrogen accumulation characteristics and the effect of single application of base fertilizer on super-high-yield summer maize. Scientia Agricultura Sinica, 2010, 43(15):3151-3158. (in Chinese)
[15] 戴明宏, 陶洪斌, 王利纳, 王璞. 不同氮肥管理对春玉米干物质生产、分配及转运的影响. 华北农学报, 2008, 23(1):154-157.
DAI M H, TAO H B, WANG L N, WANG P. Effects of different nitrogen managements on dry matter accumulation, partition and transportation of spring maize (Zea mays L.). Acta Agriculturae Boreali-Sinica, 2008, 23(1):154-157. (in Chinese)
[16] 朱海军, 生静雅, 刘广勤, 陈亚辉, 曹福亮. 基于Logistic模型的薄壳山核桃果实生长发育研究. 西南农业学报, 2015, 28(3):1231-1235.
ZHU H J, SHENG J Y, LIU G Q, CHEN Y H, CAO F L. Study on growth and development of pecan fruit based on logistic model. Southwest China Journal of Agricultural Sciences, 2015, 28(3):1231-1235. (in Chinese)
[17] COX M C, QUALSET C O, RAINS D W. Genetic variation for nitrogen assimilation and translocation in wheat. II. Nitrogen assimilation in relation to grain yield and protein. Crop Science, 1985, 25(3):435-440.
doi: 10.2135/cropsci1985.0011183X002500030003x
[18] CHAI Q, GAN Y T, TURNER N C, ZHANG R Z, YANG C, NIU Y N, SIDDIQUE KH M. Chapter two: Water-saving innovations in Chinese agriculture. Advances in Agronomy, 2014, 126:149-201.
[19] 徐祥玉, 张敏敏, 翟丙年, 李生秀. 施氮对不同基因型夏玉米干物质累积转移的影响. 植物营养与肥料学报, 2009, 15(4):786-792.
XU X Y, ZHANG M M, ZHAI B N, LI S X. Effects of nitrogen application on dry matter accumulation and translocation of different genotypes of summer maize. Journal of Plant Nutrition and Fertilizer, 2009, 15(4):786-792. (in Chinese)
[20] 冯鹏, 王晓娜, 王清郦, 孙启忠, 赵淑芬. 水肥耦合效应对玉米产量及青贮品质的影响. 中国农业科学, 2012, 45(2):376-384.
FENG P, WANG X N, WANG Q L, SUN Q Z, ZHAO S F. Coupling effect of water and fertilizer on yield and silage quality of maize. Scientia Agricultura Sinica, 2012, 45(2):376-384. (in Chinese)
[21] ZHANG X D, YANG L C, XUE X K, KAMRAN M, AHMAD I, DONG Z Y, LIU T N, JIA Z K, ZHANG P, HAN Q F. Plastic film mulching stimulates soil wet-dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region. Field Crops Research, 2019, 233:101-113.
doi: 10.1016/j.fcr.2019.01.002
[22] 邵国庆, 李增嘉, 宁堂原, 蒋保娟, 焦念元. 灌溉与尿素类型对玉米花后穗位叶衰老、产量和效益的影响. 中国农业科学, 2009, 42(10):3459-3466.
SHAO G Q, LI Z J, NING T Y, JIANG B J, JIAO N Y. Effects of irrigation and urea types on ear leaf senescence after anthesis, yield and economic benefit of maize. Scientia Agricultura Sinica, 2009, 42(10):3459-3466. (in Chinese)
[23] 徐明杰, 张琳, 汪新颖, 彭亚静, 张丽娟, 巨晓棠. 不同管理方式对夏玉米氮素吸收、分配及去向的影响. 植物营养与肥料学报, 2015, 21(1):36-45.
XU M J, ZHANG L, WANG X Y, PENG Y J, ZHANG L J, JU X T. Effects of different management patterns on uptake, distribution and fate of nitrogen in summer maize. Journal of Plant Nutrition and Fertilizer, 2015, 21(1):36-45. (in Chinese)
[24] 张忠学, 刘明, 齐智娟. 喷灌条件下水氮用量对玉米氮素吸收转运的影响. 农业机械学报, 2019, 50(8):299-308.
ZHANG Z X, LIU M, QI Z J. Effect of water nitrogen dosage on nitrogen absorption and transformation of maize under sprinkler irrigation condition. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8):299-308. (in Chinese)
[25] 王进军, 柯福来, 白鸥, 黄瑞冬. 不同施氮方式对玉米干物质积累及产量的影响. 沈阳农业大学学报, 2008, 39(4):392-395.
WANG J J, KE F L, BAI O, HUANG R D. Effect of dry weight accumulation and yields of maize under different nitrogen application. Journal of Shenyang Agricultural University, 2008, 39(4):392-395. (in Chinese)
[26] 郭丙玉, 高慧, 唐诚, 刘涛, 褚贵新. 水肥互作对滴灌玉米氮素吸收、水氮利用效率及产量的影响. 应用生态学报, 2015, 26(12):3679-3686.
GUO B Y, GAO H, TANG C, LIU T, CHU G X. Response of water coupling with N supply on maize nitrogen uptake, water and N use efficiency, and yield in drip irrigation condition. Chinese Journal of Applied Ecology, 2015, 26(12):3679-3686. (in Chinese)
[27] 张仁和, 郭东伟, 张兴华, 路海东, 刘建超, 李凤艳, 郝引川, 薛吉全. 吐丝期干旱胁迫对玉米生理特性和物质生产的影响. 作物学报, 2012, 38(10):1884-1890.
ZHANG R H, GUO D W, ZHANG X H, LU H D, LIU J C, LI F Y, HAO Y C, XUE J Q. Effects of drought stress on physiological characteristics and dry matter production in maize silking stage. Acta Agronomica Sinica, 2012, 38(10):1884-1890. (in Chinese)
[28] 陈年来. 作物库源关系研究进展. 甘肃农业大学学报, 2019, 54(1):1-10.
CHEN N L. Research advances on source-sink interaction of the crops. Journal of Gansu Agricultural University, 2019, 54(1):1-10. (in Chinese)
[29] 高占, 张春贵, 刘树堂, 陈延玲. 水氮调控对玉米干物质及氮磷钾累积与转运的影响. 山东农业科学, 2020, 52(10):90-99.
GAO Z, ZHANG C G, LIU S T, CHEN Y L. Effects of water and nitrogen regulation on accumulation and remobilization of dry matter, nitrogen, phosphorus and potassium in maize. Shandong Agricultural Sciences, 2020, 52(10):90-99. (in Chinese)
[30] 邢维芹, 王林权, 骆永明, 李立平, 李生秀. 半干旱地区玉米的水肥空间耦合效应研究. 农业工程学报, 2002, 18(6):46-49.
XING W Q, WANG L Q, LUO Y M, LI L P, LI S X. Effect of spacial coupling between irrigation water and fertilizer on corn in semiarid area. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(6):46-49. (in Chinese)
[31] 谢英荷, 栗丽, 洪坚平, 王宏庭, 张璐. 施氮与灌水对夏玉米产量和水氮利用的影响. 植物营养与肥料学报, 2012, 18(6):1354-1361.
XIE Y H, LI L, HONG J P, WANG H T, ZHANG L. Effects of nitrogen application and irrigation on grain yield, water and nitrogen utilizations of summer maize. Journal of Plant Nutrition and Fertilizer, 2012, 18(6):1354-1361. (in Chinese)
[32] 周磊, 甘毅, 欧晓彬, 王根轩. 作物缺水补偿节水的分子生理机制研究进展. 中国生态农业学报, 2011, 19(1):217-225.
ZHOU L, GAN Y, OU X B, WANG G X. Progress in molecular and physiological mechanisms of water-saving by compensation for water deficit of crop and how they relate to crop production. Chinese Journal of Eco-Agriculture, 2011, 19(1):217-225. (in Chinese)
[33] 王卫杰, 张彦群, 祁鸣笛, 王传娟, 吴忠东, 王建东. 滴灌灌水量对玉米耗水及生长的影响. 排灌机械工程学报, 2020, 38(10):1063-1068.
WANG W J, ZHANG Y Q, QI M D, WANG C J, WU Z D, WANG J D. Effects of drip irrigation amount on water consumption and growth of maize. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(10):1063-1068. (in Chinese)
[34] VASELLATI V, OESTERHELD M, MEDAN D. Effects of flooding and drought on the anatomy of Paspalum diatatum. Annals of Botany, 2011, 88(3):355-360.
doi: 10.1006/anbo.2001.1469
[35] 鱼欢, 邬华松, 王之杰. 利用SPAD和Dualex快速、无损诊断玉米氮素营养状况. 作物学报, 2010, 36(5):840-847.
YU H, WU H S, WANG Z J. Evaluation of SPAD and Dualex for in-season corn nitrogen status estimation. Acta Agronomica Sinica, 2010, 36(5):840-847. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!