Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3168-3182.doi: 10.3864/j.issn.0578-1752.2021.15.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping QTL for Soybean Fatty Acid Composition Based on RIL and CSSL Population

QU KeXin(),HAN Lu,XIE JianGuo,PAN WenJing,ZHANG ZeXin,XIN DaWei,LIU ChunYan,CHEN QingShan(),QI ZhaoMing()   

  1. Soybean Genetic Improvement Laboratory, College of Agriculture, Northeast Agricultural University, Harbin 150030
  • Received:2021-02-03 Accepted:2021-03-22 Online:2021-08-01 Published:2021-08-10
  • Contact: QingShan CHEN,ZhaoMing QI E-mail:18145648226@163.com;qshchen@126.com;qizhaoming1860@126.com

Abstract:

【Objective】 Soybeans (Glycine max) originated from China. High-quality soybeans are widely used in various processing industries such as food, feeding, textiles, etc. Therefore, high-quality soybean breeding is a key point for soybean breeders and producers. This study conducted QTL mapping of each component of soybean fatty acid and screening of candidate genes, which would lay the molecular foundation for soybean quality improvement. 【Method】 A recombinant inbred lines (RILs) population crossed by Charleston (American soybean varieties ) and Dongnong 594, and a chromosome segment substitution lines (CSSLs) population crossed by Suinong 14 (cultivated soybean) and ZYD00006 (wild soybean) were used for QTL mapping. We used gas chromatography to determine the fatty acid content of these two populations. As the genetic maps have been published by the soybean genetic improvement laboratory of the Agricultural College of Northeast Agricultural University before, QTL mapping of soybean fatty acid components in RIL and CSL populations were performed by the Windows QTL Cartographer 2.5 and ICIMapping software. And the candidate genes were screened from the QTL interval. 【Result】 Based on 2017 to 2018 years data, 34 and 20 QTLs related to fatty acid components were mapped in the RIL population and the CSSL population, respectively. These QTLs distribute in 13 linkage groups except B2, C1, G, H, J, M, and O. QTL mapping of the two populations was compared that ten pairs of QTLs were detected in the two populations. We found that QTLs distributed in the A1, C2, D1a, F, K, and N linkage groups were related to the content of multiple fatty acids components. An overlapping QTL related to linoleic acid and oil content was detected on the A1 linkage group, QTL related to stearic acid and oil content on the C2, QTL related to stearic acid and oil content on the D1a, QTLs related to palmitic acid, stearic acid and oil content on the F, QTLs related to linoleic acid and linolenic acid content on the K, QTLs related to palmitic acid and oil content, and QTL related to oleic acid and linoleic acid content on the N. Candidate genes were screened out from QTL intervals. In total, 485 candidate genes were screened from the gene annotation data set and 271 of them annotated within GO annotations. GO enrichment analysis showed that 15 candidate genes involved in fatty acids pathway. These genes affect synthesis of fatty acids mainly through encoding plant acyl carrier protein (ACP) thioesterase, fatty acid desaturase, phospholipase D1, fatty acid-hydroxylase and pyruvate kinase, participating in the biosynthesis of acyl-CoA, and regulating the extension of fatty acid chain. 【Conclusion】 54 QTLs related to soybean fatty acid were detected, and 10 pairs QTLs were stable detected from the two mapping populations. We used the confidence intervals from QTL mapping to screen candidate genes, and 15 candidate genes related to fatty acids pathway were screened out. These stable QTLs and candidate genes can be used for molecular marker-assisted selection of soybean fatty acid improvement.

Key words: soybean, introduction line, gas chromatography, QTL mapping, gene mining, enrichment analysis

Fig. 1

Distribution histogram of the 5 fatty acids content in the RILs population in 2017 The X-axis represents the percentage of each fatty acid component to the total oil content, the Y-axis represents the plant coefficient of the percentage of each fatty acid component in the total oil content, and the black solid line represents the normal curve of the RILs population. The frequency distribution of the five fatty acid content of the RILs population in 2018 is the same as the 2017 results, showing continuous normal distribution, so only the 2017 results are shown here. The same as below"

Fig. 2

Distribution histogram of the 5 fatty acids content in the CSSLs population in 2017 Black solid line means normal curve of the CSSLs population"

Fig. 3

Distribution histogram of total oil in the RILs and CSSLs populations in 2017-2018 The black arrow represents the oil content of the male parent Charleston and wild bean (ZYD00006) in the RILs and CSSLs populations, and the red arrow represents the oil content of the female parent Dongnong 594 and Suinong 14 of the RILs and CSSLs groups"

Table 1

Descriptive statistics of fatty acids content for parents and individuals in two population"

性状
Trait
群体
Population
亲本Parent 群体Population
父本
Male
母本
Female
最小值
Minimum
最大值
Maximum
平均值
Mean
标准差
SD
变异系数
CV
偏度
Skewness
峰度
Kurtosis
棕榈酸
PA (%)
17-RIL 12.80 13.15 11.48 13.98 13.05 0.42 3.21 -0.76 1.82
17-CSSL 12.75 13.17 12.62 13.33 13.03 0.15 1.13 -0.18 -0.61
18-RIL 12.74 13.09 12.11 13.27 12.90 0.18 1.42 -0.63 -1.04
18-CSSL 12.81 13.12 12.70 13.60 13.05 0.15 1.16 -0.09 -0.05
硬脂酸
SA (%)
17-RIL 4.09 4.28 3.59 5.19 4.40 0.31 6.99 -0.43 0.15
17-CSSL 3.94 4.17 3.64 4.95 4.19 0.17 4.17 0.21 1.19
18-RIL 4.03 4.23 3.92 4.99 4.53 0.27 5.88 -0.28 -0.86
18-CSSL 4.04 4.15 3.80 4.68 4.23 0.17 3.91 0.28 -0.01
油酸
OA (%)
17-RIL 19.19 20.35 17.00 23.53 19.33 1.12 5.78 0.84 1.59
17-CSSL 19.10 20.71 17.00 22.20 19.61 1.17 5.94 0.16 -0.63
18-RIL 19.13 20.06 18.09 22.25 19.53 0.83 4.25 0.64 0.59
18-CSSL 19.29 20.72 17.03 22.25 19.45 0.98 5.03 0.43 -0.13
亚油酸
LA (%)
17-RIL 54.81 53.35 51.15 57.37 54.28 1.16 2.13 0.12 0.46
17-CSSL 55.17 53.19 51.59 57.37 54.20 1.25 2.31 -0.07 -0.62
18-RIL 54.97 53.76 51.47 56.12 54.10 0.95 1.76 -0.14 -0.06
18-CSSL 54.85 53.14 51.65 57.09 54.27 1.06 1.95 -0.29 -0.29
亚麻酸
LNA (%)
17-RIL 9.11 8.87 7.75 10.87 8.94 0.40 4.51 0.47 3.93
17-CSSL 9.04 8.76 8.52 9.63 8.98 0.20 2.25 0.22 -0.42
18-RIL 9.13 8.86 8.29 9.34 8.93 0.19 2.11 -0.81 0.37
18-CSSL 9.01 8.87 8.30 9.63 8.99 0.19 2.12 -0.26 0.96
油分
OIL (%)
17-RIL 20.25 21.62 19.82 24.26 21.94 0.99 4.53 -0.08 -0.44
17-CSSL 20.79 21.34 19.74 23.35 21.70 0.96 4.40 -0.24 -0.97
18-RIL 20.11 21.46 19.66 23.38 21.58 1.04 4.83 -0.11 -1.04
18-CSSL 20.53 21.19 19.87 23.33 21.74 1.00 4.59 -0.36 -0.93

Table 2

Correlation analysis of fatty acid content in RILs population"

性状 Traits 棕榈酸PA 硬脂酸SA 油酸OA 亚油酸LA 亚麻酸LNA
棕榈酸PA 1 0.388** -0.387** 0.582** 0.261**
硬脂酸SA 0.301** 1 -0.561** 0.714** 0.605**
油酸OA -0.015 -0.171* 1 -0.939** -0.790**
亚油酸LA 0.336** 0.398** -0.853** 1 0.717**
亚麻酸LNA 0.301** 0.275** -0.352** 0.230** 1

Table 3

Correlation analysis of fatty acid content in CSSLs population"

性状 Traits 棕榈酸PA 硬脂酸SA 油酸OA 亚油酸LA 亚麻酸LNA
棕榈酸PA 1 0.649** -0.846** 0.873** 0.855**
硬脂酸SA 0.815** 1 -0.651** 0.726** 0.684**
油酸OA -0.862** -0.778** 1 -0.987** -0.883**
亚油酸LA 0.895** 0.830** -0.991** 1 0.868**
亚麻酸LNA 0.843** 0.771** -0.881** 0.864** 1

Table 4

QTL mapping of fatty acid content in RIL population"

性状
Trait
年份
Year
QTL名称
QTL name
染色体
Chromosome
起始位置
Start position (Mb)
终止位置
End position (Mb)
距离
Size (Mb)
LOD 贡献率
R2 (%)
加性效应
Additive effect
棕榈酸
PA
2017 qPA-N-1 3 14.80 18.50 3.70 4.00 9.56 0.15
2017 qPA-C2-1 6 20.47 21.61 1.14 4.44 10.51 -0.05
2017 qPA-C2-2 6 27.37 27.84 0.46 3.74 8.95 -0.04
2017 qPA-E-1 15 33.29 33.49 0.21 2.64 6.66 -0.06
2017 qPA-E-2 15 32.53 32.61 0.07 5.60 13.50 -0.09
2017 qPA-E-3 15 28.34 28.72 0.37 3.84 9.05 0.07
2017 qPA-E-4 15 22.73 22.77 0.04 2.70 6.47 0.05
2018 qPA-D1b-1 2 42.46 42.49 0.03 3.73 8.99 -0.05
2018 qPA-A1-1 5 34.54 34.55 0.01 2.89 6.96 -0.04
2018 qPA-F-1 13 15.74 15.83 0.09 5.32 13.16 0.09
硬脂酸
SA
2017 qSA-N-1 3 40.50 44.10 3.60 2.98 7.62 -0.03
2018 qSA-D1b-1 2 42.61 42.62 0.01 2.84 6.90 -0.03
2018 qSA-F-1 13 15.74 15.83 0.09 4.51 11.11 0.06
2018 qSA-D2-1 17 38.23 38.91 0.68 3.20 7.73 0.03
油酸
OA
2017 qOA-D1a-1 1 13.87 14.26 0.39 3.24 7.71 0.10
2017 qOA-N-1 3 23.25 23.29 0.04 3.86 9.09 -0.11
2017 qOA-N-2 3 24.72 24.96 0.24 3.89 9.17 -0.11
2017 qOA-A1-1 5 38.94 39.09 0.15 2.65 5.64 0.10
2017 qOA-D2-1 17 36.95 37.10 0.16 2.94 7.40 0.10
2018 qOA-A1-2 5 38.94 39.09 0.15 3.65 7.64 0.13
2018 qOA-D2-2 17 36.95 37.10 0.16 3.94 9.43 0.12
亚油酸
LA
2017 qLA-N-1 3 23.05 23.11 0.06 2.76 6.99 -0.24
2017 qLA-N-2 3 28.10 28.27 0.17 3.25 8.29 0.26
2017 qLA-K-1 9 33.51 33.52 0.01 3.26 8.34 -0.19
2017 qLA-L-1 19 42.92 43.49 0.57 2.86 7.26 0.19
2018 qLA- A1-1 5 0.03 0.80 0.77 3.10 8.03 0.17
2018 qLA-I-1 20 24.43 24.44 0.02 2.54 6.40 -0.16
亚麻酸
LNA
2017 qLNA-N-1 3 37.15 37.22 0.07 4.19 10.13 0.05
2017 qLNA-K-1 9 33.51 33.52 0.01 5.46 13.49 -0.05
2017 qLNA-B1-1 11 38.31 38.71 0.39 3.25 7.74 -0.04
2018 qLNA -B1-2 11 38.31 38.71 0.39 4.25 9.89 -0.07
2018 qLNA-I-1 20 45.55 45.74 0.19 3.20 8.16 0.03
油分
OIL
2017 qOIL- D1b-1 2 6.25 6.51 0.25 2.67 6.95 -0.60
2018 qOIL-F-1 13 15.74 15.83 0.09 3.79 10.04 0.58

Table 5

QTL mapping of fatty acid content in CSSL population"

性状
Trait
年份
Year
QTL名称
QTL name
染色体
Chromosome
起始位置
Start position (Mb)
终止位置
End position (Mb)
距离
Size (Mb)
LOD值
LOD
贡献率
PVE (%)
加性效应
Additive effect
棕榈酸
PA
2017 qPA-N-2 3 18.57 19.23 0.66 2.86 4.62 0.16
2018 qPA-N-3 3 18.57 19.23 0.66 6.87 7.75 0.16
硬脂酸
SA
2017 qSA-C2-1 6 49.19 49.24 0.05 1.78 3.21 0.41
2018 qSA-D1a-1 1 5.71 5.79 0.08 2.95 5.00 0.27
油酸
OA
2017 qOA-F-1 13 13.72 13.81 0.09 9.60 8.80 0.30
2017 qOA-E-1 15 40.66 40.67 0.01 3.98 5.22 0.29
2018 qOA-D2-3 17 14.17 14.25 0.09 2.75 4.49 0.22
亚油酸
LA
2017 qLA-A1-2 5 0.51 0.53 0.02 11.65 22.09 0.33
2018 qLA-A1-3 5 0.51 0.53 0.02 2.59 4.28 1.02
亚麻酸
LNA
2017 qLNA-A1-1 5 34.40 34.44 0.04 3.80 3.93 0.05
2017 qLNA-A2-1 8 2.45 2.49 0.03 4.43 4.73 0.03
2018 qLNA-K-2 9 2.35 2.40 0.05 2.31 2.92 0.23
2018 qLNA-F-1 13 0.80 0.82 0.02 2.96 2.97 0.07
2018 qLNA-F-2 13 11.48 11.55 0.07 5.51 5.86 -0.04
2018 qLNA-E-1 15 49.40 49.44 0.03 2.97 3.01 0.04
油分
OIL
2017 qOIL- D1a-1 1 5.71 5.79 0.08 3.59 7.96 0.43
2017 qOIL-N-1 3 18.57 19.23 0.66 3.37 7.44 0.31
2017 qOIL-C2-1 6 49.19 49.24 0.05 3.67 8.14 0.52
2018 qOIL-A1-1 5 0.51 0.53 0.02 1.84 3.02 1.43
2018 qOIL-F-2 13 31.17 31.19 0.02 2.74 3.71 0.36

Fig. 4

The linkage group distribution of QTLs of RILs and CSSLs population in 2017-2018 : QTLs mapped to the RIL population in 2017; : QTLs mapped to the RIL population in 2018; : QTLs mapped to the CSSL population in 2017; : QTLs mapped to the CSSL population in 2018"

Table 6

Annotation of candidate genes"

基因
Gene
KO注释
KO annotation
GO注释
GO annotation
同源基因
Homologous gene
基因功能
Gene description
Glyma.02G073800 GO:0016747 Glyma.06G211200 乙醇-乙酰基转移酶Alcohol-acetyltransferase
Glyma.13G044100
Glyma.02G074000 GO:0008080 酰基辅酶a/酰基转移酶Acyl-CoA/N-acyltransferases (NAT)
Glyma.03G070200 K00167 GO:0008152 α-酮酸脱羧酶E1β亚基Alpha-keto acid decarboxylase E1 beta subunit
Glyma.05G007700 GO:0016788 Glyma.13G044500 脂肪酶/酰基水解酶Lipase/Acyl hydrolase
Glyma.19G171000
Glyma.20G221200
Glyma.05G008100 K00326 GO:0016491 FAD/NAD(P)结合氧化还原酶 FAD/NAD(P)-binding oxidoreductase
Glyma.05G208900 K15398 GO:0055114 脂肪酸ω-羟化酶(CYP86A4S)Fatty acid omega-hydroxylase (CYP86A4S)
Glyma.05G000700 K00873 GO:0030955 丙酮酸激酶家族蛋白Pyruvate kinase family protein
Glyma.06G211300 K10781 GO:0006633 脂肪酰基-ACP硫酯酶B Fatty acyl-ACP thioesterases B
Glyma.17G219100 磷脂酶D1 Phospholipase D1
Glyma.17G228400 K13076 GO:0006629 脂肪酸去饱和酶Fatty acid desaturase
[1] QI Z M, ZHANG Z G, WANG Z Y, YU J Y, Qin H T, MAO X R, JIANG H W, XIN D W, YIN Z G, ZHU R S, LIU C Y, YU W, HU Z B, WU X X, LIU J, CHEN Q S. Meta-analysis and transcriptome profiling reveal HUB genes for soybean seed storage composition during seed development. Plant Cell & Environment, 2018, 41(9):2109-2127.
[2] WILSON R F. Soybean: Market driven research needs//Genetics and Genomics of Soybean. NewYork: Springer, 2008: 3-15.
[3] BELLALOUI N, BRUNS H A, ABBAS H K, MENGISTU A, FISHER D K, REDDY K N. Agricultural practices altered soybean seed protein, oil, fatty acids, sugars and minerals in the Midsouth USA. Frontiers in Plant Science, 2015, 6(31):31-44.
[4] SPENCER M, PANTALONE V, MEYER E, LANDAU-ELLIS D, HYTEN D. Mapping the FAS locus controlling stearic acid content in soybean. Theoretical and Applied Genetics, 2003, 106(4):615-619.
doi: 10.1007/s00122-002-1086-y
[5] 左进华, 董海洲, 侯汉学. 大豆蛋白生产与应用现状. 粮食与油脂, 2007, 5(5):12-15.
ZUO J H, DONG H Z, HOU H X. Current status of soy protein production and application. Grains and Fats, 2007, 5(5):12-15. (in Chinese)
[6] 王连铮. 国内外大豆生产的现状和大豆品种创新问题. 中国食物与营养, 2006, 7(6):6-9.
WANG L Z. The status quo of soybean production at home and abroad and the innovation of soybean varieties. Chinese Food and Nutrition, 2006, 7(6):6-9. (in Chinese)
[7] 任波, 李毅. 大豆种子脂肪酸合成代谢的研究进展. 分子植物育种, 2005(3):301-306.
REN B, LI Y. Research progress on fatty acid synthesis and metabolism of soybean seeds. Molecular Plant Breeding, 2005(3):301-306. (in Chinese)
[8] WHIGHAM L D, WATRAS A C, SCHOELLER D A. Efficacy of conjugated linoleic acid for reducing fat mass: A meta-analysis in humans. American Journal of Clinical Nutrition, 2007(5):1203-1211.
[9] TOMPKINS C, PERKINS E G. Frying performance of low-linolenic acid soybean oil. Journal of the American Oil Chemists’ Society, 2000, 77(3):223-229.
doi: 10.1007/s11746-000-0036-2
[10] SLOVER H T, LANZA E. Quantitative analysis of food fatty acids by capillary gas chromatography. Journal of the American Oil Chemists’ Society, 1979, 56(12):933-943.
doi: 10.1007/BF02674138
[11] STOFFEL W, CHU F, AHRENS JR E H. Analysis of long-chain fatty acids by gas-liquid chromatography. Analytical Chemistry, 1959, 31(2):307-308.
doi: 10.1021/ac60146a047
[12] PAZDERNIK D L, KILLAM A S, ORF J H. Analysis of amino and fatty acid composition in soybean seed, using near infrared reflectance spectroscopy. Agronomy Journal, 1997, 89(4):679-685.
doi: 10.2134/agronj1997.00021962008900040022x
[13] SATO T, KAWANO S, IWAMOTO M. Near infrared spectral patterns of fatty acid analysis from fats and oils. Journal of the American Oil Chemists’ Society, 1991, 68(11):827-833.
doi: 10.1007/BF02660596
[14] WOOD R, LEE T. High-performance liquid chromatography of fatty acids: quantitative analysis of saturated, monoenoic, polyenoic and geometrical isomers. Journal of Chromatography A, 1983, 254(JAN):237-246.
doi: 10.1016/S0021-9673(01)88338-2
[15] AVELDANO M I, VANR OLLINS M, HORROCKS L A. Separation and quantitation of free fatty acids and fatty acid methyl esters by reverse phase high pressure liquid chromatography. Journal of Lipid Research, 1983, 24(1):83-93.
doi: 10.1016/S0022-2275(20)38027-5
[16] 范胜栩, 李斌, 孙君明, 韩粉霞, 闫淑荣, 王岚. 气相色谱方法定量检测大豆5种脂肪酸. 中国油料作物学报, 2015, 37(4):548.
FAN S X, LI B, SUN J M, HAN F X, YAN S R, WANG L. Gas chromatography method for quantitative detection of 5 fatty acids in soybean. Chinese Journal of Oil Crops, 2015, 37(4):548. (in Chinese)
[17] 王芹, 冯景春, 冯开. 气相色谱法及其应用. 广东化工, 2014, 41(12):202-208.
WANG Q, FENG J C, FENG K. Gas chromatography and its application. Guangdong Chemical Industry, 2014, 41(12):202-208. (in Chinese)
[18] LI H H, YE G Y, WANG J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175(1):361-374.
doi: 10.1534/genetics.106.066811
[19] JANSEN R C. Interval mapping of multiple quantitative trait loci. Genetics, 1993, 135(1):205-211.
doi: 10.1093/genetics/135.1.205
[20] KAO C H, ZENG Z B, TEASDALE R D. Multiple interval mapping for quantitative trait loci. Genetics, 2004, 152(3):1987-2002.
[21] RODOLPHE F, LEFORT M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 1993, 134(4):1277-1288.
doi: 10.1093/genetics/134.4.1277
[22] LI H H, RIBAUT J M, LI Z L, WANG J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theoretical & Applied Genetics, 2008, 116(2):243-260.
[23] 李慧慧. 数量性状基因的完备区间作图方法[D]. 北京: 北京师范大学, 2009.
LI H H. A complete interval mapping method for quantitative trait genes[D]. Beijing: Beijing Normal University, 2009. (in Chinese)
[24] WELLER J I. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics, 1986, 42(3):627-640.
doi: 10.2307/2531212
[25] AKOND M, LIU S, BONEY M, KANTARTZI S K, KASSEM M A. Identification of quantitative trait loci (QTL)underlying protein, oil, and five major fatty acids' contents in soybean. American Journal of Plant Sciences, 2014, 5(1):158-167.
doi: 10.4236/ajps.2014.51021
[26] QIN H T, LIU Z X, WANG Y Y, XU M Y, QI Z M. Meta-analysis and overview analysis of quantitative trait locis associated with fatty acid content in soybean for candidate gene mining. Plant Breed, 2018, 137(2):181-193.
doi: 10.1111/pbr.2018.137.issue-2
[27] LI B, FAN S X, YU F K, CHEN Y, ZHANG S R, HAN F X, YAN S R, WANG L Z, SUN J M. High-resolution mapping of QTL for fatty acid composition in soybean using specific locus amplified fragment sequencing. Theoretical & Applied Genetics, 2017, 130(7):1467-1479.
[28] XIA N, WU D P, ZHAN Y H, LIU Y, SUN M Y, ZHAO X, TENG W L, HAN Y P. Dissection of genetic architecture for oil content in soybean seed using two backcross populations. Plant Breed, 2017, 136(7):365-371.
doi: 10.1111/pbr.2017.136.issue-3
[29] FAN S X, LI B, YU F K, HAN F X, YAN S R, WANG L Z, SUN J M. Analysis of additive and epistatic quantitative trait loci underlying fatty acid concentrations in soybean seeds across multiple environments. Euphytica, 201, 206(3):689-700.
[30] 盛英华, 张延瑞, 戴亚楠, 昝光敏, 周凯, 王贤智. 不同群体中大豆脂肪酸组分QTL定位研究. 中国油料作物学报, 2020(5):796-806.
SHENG Y H, ZHANG Y R, DAI Y N, ZAN G M, ZHOU K, WANG X Z. QTL mapping of soybean fatty acid components in different populations. Chinese Journal of Oil Crops, 2020(5):796-806. (in Chinese)
[31] CHEN Q S, ZHANG Z C, LIU C Y, XIN D W, QIU H M, SHAN D P, SHAN C Y, HU G H. QTL analysis of major agronomic traits in soybean. Scientia Agriculture Sinica, 2007, 6(4):399-405.
[32] QI Z M, HUANG L, ZHU R S, XIN D W, LIU C Y, HAN X, JIANG H W, HONG W G, HU G H, ZHENG H K, CHEN Q S. A high-density genetic map for soybean based on specific length amplified fragment sequencing. PLoS ONE, 2014, 9(8):e104871.
doi: 10.1371/journal.pone.0104871
[33] XIN D W, QI Z M, JIANG H W, ZHANG Z G, ZHU R S, HU J H, HAN H Y, HU G H, LIU C Y, CHEN Q S. QTL locationand epistatic effect analysis of 100-seed weight using wild soybean (Glycine soja Sieb. & Zucc.) chromosome segment substitution lines. PLoS ONE, 2016, 11(3):e0149380.
doi: 10.1371/journal.pone.0149380
[34] MCCOUCH S R, CHO Y G, YANO M, PAUL E, BLINSTRUB M, MORISHIMA H, KINOSITA T. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14:11-13.
[35] JIANG H W, LI Y Y, QIN H T, LI Y L, QI H D, LI C D, WANG N N, LI R C, ZHAO Y Y, HAUNG S Y, YU J Y, WANG X Y, ZHU R S, LIU C Y, HU Z B, QI Z M, XIN D W, WU X X, CHEN Q S. Identification of major QTLs associated with first pod height and candidate gene mining in soybean. Frontiers in Plant Science, 2018, 9:1280
doi: 10.3389/fpls.2018.01280
[36] WANG X Y, LI Q Y, ZHANG Q, YU J Y, QIN H T, QI H D, LI Y L, LI Y Y, YIN Z G, HAN X, WU X X, XIN D W, CHEN Q S, QI Z M. Identification of soybean genes related to fatty acid content based on a soybean genome collinearity analysis. Plant Breeding, 2019, 138(6):696-707.
doi: 10.1111/pbr.v138.6
[37] BAUD S, GUYON V, KRONENBERGER J, WUILLEME S, MIQUEL M, CABOCHE M, LEPINIEC L, ROCHAT C. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. The Plant Journal, 2010, 33(1):75-86.
doi: 10.1046/j.1365-313X.2003.016010.x
[38] GOETTEL W, RAMIREZ M, UPCHURCH R G, CHARLES Y Q. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis. Theoretical and Applied Genetics, 2016, 129(8):1577-1593.
doi: 10.1007/s00122-016-2725-z
[39] PETTITT T R, MARTIN A, HORTON T, LIOSSIS C, LORD J M, WAKELAM M. Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions phospholipase d-derived diacylglycerol does not activate protein kinase c in porcine aortic endothelial cells. Journal of Biological Chemistry, 1997, 272(28):17354-17359.
doi: 10.1074/jbc.272.28.17354
[40] WILSON C H, SHALINI S, FILIPOVSKA A, RICHMAN T R, KUMAR S. Age-related proteostasis and metabolic alterations in Caspase-2-deficient mice. Cell Death & Disease, 2015, 6(1):e1597.
[41] BARTLEY I M, STOKER P G, MARTIN A D E, HATFIELD S G S, KNEE M. Synthesis of aroma compounds by apples supplied with alcohols and methyl esters of fatty acids. Journal of the Science of Food and Agriculture, 1985, 36:567-574.
doi: 10.1002/(ISSN)1097-0010
[42] KOTELES J. Fatty acid ω-hydroxylases in soybean[D]. Canada Ontario: The University of Western Ontario, 2012.
[43] AMBASHT P K, KAYASTHA A M. Plant pyruvate kinase. Biologia Plantarum, 2002, 45(1):1-10.
[44] ANDRE C, FROEHLICH J E, MOLL M R, BENNING C. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. The Plant Cell, 2007, 19(6):2006-2022.
doi: 10.1105/tpc.106.048629
[45] HUANG P Y, LUO L J. Effect on pyruvate kinase in high plants. Journal of Anhui Agricultural Sciences, 2009, 37(20):9352-9354.
[46] 蒋洪蔚, 刘春燕, 高运来, 李灿东, 张闻博, 胡国华, 陈庆山. 作物QTL定位常用作图群体. 生物技术通报, 2008, 1(20):12-17.
JIANG H W, LIU C Y, GAO Y L, LI C D, ZHANG W B, HU G H, CHEN Q S. Crop QTL mapping is often used as a map population. Biotechnology Bulletin, 2008, 1(20):12-17. (in Chinese)
[47] MA X, CHEN X P, ZHAO J, WANG S S, TAN L B, SUN C Q, LIU F X. Identification of QTLs related to cadmium tolerance from wild rice (Oryza nivara) using a high-density genetic map for a set of introgression lines. Euphytica, 2019, 215(12):1-12.
doi: 10.1007/s10681-018-2319-8
[48] 李晶晶, 王利锋, 马娟, 曹言勇, 王浩, 王丽艳, 贾腾蛟, 董春林, 李会勇. 基于昌7-2导入系发掘干旱胁迫下玉米产量相关QTL位点. 玉米科学, 2019, 27(4):64-70.
LI J J, WANG L F, MA J, CAO Y Y, WANG H, WANG L Y, JIA T J, DONG C L, LI H Y. Discovery of QTLs related to maize yield under drought stress based on Chang 7-2 introduced line. Maize Science, 2019, 27(4):64-70. (in Chinese)
[49] 于福宽. 大豆种质脂肪酸主要组分鉴定与QTL标记定位[D]. 北京: 中国农业科学院, 2011.
YU F K. Identification of the main fatty acid components of soybean germplasm and QTL mapping[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[50] 朱明月. 利用回交导入系群体定位大豆蛋白质、脂肪含量及脂肪酸含量QTL[D]. 北京: 中国农业科学院, 2017.
ZHU M Y. Using backcross introduction line population to locate soybean protein, fat content and fatty acid content QTL[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[51] DIERS B W, KEIM P, FEHR W R, SHOEMAKER R C. RFLP analysis of soybean seed protein and oil content. Theoretical and Applied Genetics, 1992, 83(5):608-612.
[52] HYTEN D L, PANTALONE V R, SAXTON A M, SCHMIDT M E, SAMS C E. Molecular mapping and identification of soybean fatty acid modifier quantitative trait loci. Journal of the American Oil Chemists Society, 2004, 81(12):1115-1118.
doi: 10.1007/s11746-004-1027-z
[53] 叶桑, 崔翠, 郜欢欢, 雷维, 王刘艳, 王瑞莉, 陈柳依, 曲存民, 唐章林, 李加纳. 基于SNP遗传图谱对甘蓝型油菜部分脂肪酸组成性状的QTL定位. 中国农业科学, 2019, 52(21):26-40.
YE S, CUI C, GAO H H, LEI W, WANG L Y, WANG R L, CHEN L Y, QU C M, TANG Z L, LI J N. QTL mapping of some fatty acid composition traits in Brassica napus based on SNP genetic map. China Agricultural Sciences, 2019, 52(21):26-40. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[6] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[7] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[8] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[9] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[10] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[11] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[12] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[13] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[14] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[15] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!