Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (23): 4764-4776.doi: 10.3864/j.issn.0578-1752.2020.23.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Intercropped Wheat Straw Retention on Canopy Temperature and Photosynthetic Physiological Characteristics of Intercropped Maize Mulched with Plastic During Grain Filling Stage

YIN Wen(),CHAI Qiang(),YU AiZhong,ZHAO Cai,FAN ZhiLong,HU FaLong,FAN Hong,GUO Yao   

  1. Gansu Provincial Key Laboratory of Arid Land Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070
  • Received:2020-02-22 Accepted:2020-06-05 Online:2020-12-01 Published:2020-12-09
  • Contact: Qiang CHAI E-mail:yinwen@gsau.edu.cn;chaiq@gsau.edu.cn

Abstract:

【Objective】The photosynthetic and physiological characteristics are important factors affecting the yield of crops. The canopy temperature reflects the energy balance of crops, which is closely related to the photosynthetic physiology and yield formation of the crop. Study on crop canopy temperature, photosynthetic and physiological characteristics, and yield formation under different straw and plastic mulching methods is of great significance for optimizing cropping system and improving crop production potential in arid oasis irrigation areas. 【Method】The field experiment was conducted in Hexi oasis irrigation region from 2014 to 2016, to determine the effects of straw retention and plastic mulching approaches on canopy temperature and photosynthetic physiological characteristics of maize in wheat-maize intercopping. 【Result】Intercropping could reduce the canopy temperature of maize in the grain filling stage, compared to sole cropping. No-tillage with 25 to 30 cm straw mulching in wheat strip and two-year plastic mulching in maize strip (NTSI2) and no-tillage with 25 to 30 cm straw standing in wheat strip and two-year plastic mulching in maize strip (NTSSI2) had significant effect at reducing the canopy temperature of maize, and reduced the canopy temperature of maize by 10.3% and 7.5%, respectively, compared to sole maize with annual new plastic mulching (CTM), which reduced canopy temperature by 7.6% and 4.7%, respectively, compared to conventional tillage without straw retention in wheat strip and annual new plastic mulching in maize strip (CTI). According to canopy-air temperature difference, it could be seen that NTSI2 treatment had less changes in canopy temperature with air temperature during maize filling stage, which could reduce the adverse effect of temperature change on the growth and development of maize. Intercropping could increase the photosynthetic rate (Pn), transpiration rate (Tr) and leaf water use efficiency (WUEL) during the grian-filling stage of maize, compared to sole cropping. The treatments on NTSI2 and NTSSI2 had greater Pn of maize by 23.0% and 18.1% than that of CTM, and greater Pn by 13.4% and 8.9% than that of CTI, respectively. Also, NTSI2 and NTSSI2 had greater Tr of maize by 7.9% and 5.8% than that of CTM, and greater Tr by 6.1% and 4.1% than that of CTI, respectively. Thus, NTSI2 and NTSSI2 increased WUEL of maize by 14.4% and 12.0% than that of CTM, and increased WUEL by 7.2% and 4.9% than that of CTI, respectively. The treatment on NTSI2 had the highest increasing effect on WUEL, it also had the potential for efficient use of water. Intercropping increased maize grain yield by 52.2% over sole cropping. The grain yield of NTSI2 and NTSSI2 was 57.2% and 53.4% greater than that of CTM treatment, and was 17.6% and 14.7% greater than that of CTI treatment, respectively. 【Conclusion】 No tillage and 25 to 30 cm straw retention combined with two-year plastic film mulching was the most feasible technology for realizing high yield and efficient utilization of resources of wheat-maize intercropping in the oasis irrigation region.

Key words: wheat-maize intercropping, straw retention, plastic mulching, canopy temperature, photosynthetic physiology, yield

Table 1

Experiment design and treatment code"

种植模式
Cropping pattern
处理代码
Treatment code
处理设计
Treatment design
单作小麦
Sole wheat
NTSW 25—30 cm高茬收割秸秆覆盖免耕 No-tillage with 25 to 30 cm straw mulching
NTSSW 25—30 cm高茬收割立茬免耕 No-tillage with 25 to 30 cm straw standing
CTSW 25—30 cm高茬收割秸秆翻耕 Conventional with 25 to 30 cm straw incorporation
CTW 传统翻耕无秸秆还田 Conventional tillage without straw retention
单作玉米
Sole maize
NTM2 免耕地膜2年覆盖 No-tillage with two-year plastic mulching
CTM 传统翻耕每年覆新膜 Conventional tillage with annual new plastic mulching
小麦间作玉米
Wheat-maize intercropping
NTSI2 小麦带25—30 cm高茬收割秸秆覆盖免耕 No-tillage with 25 to 30 cm straw mulching in wheat strip
玉米带免耕地膜2年覆盖 No-tillage with two-year plastic mulching in maize strip
NTSSI2 小麦带25—30 cm高茬收割立茬免耕 No-tillage with 25 to 30 cm straw standing in wheat strip
玉米带免耕地膜2年覆盖 No-tillage with two-year plastic mulching in maize strip
CTSI 小麦带25—30 cm高茬收割秸秆翻耕 Conventional with 25 to 30 cm straw incorporation in wheat strip
玉米带传统翻耕每年覆新膜 Conventional tillage with annual new plastic mulching in maize strip
CTI 小麦带传统翻耕无秸秆还田 Conventional tillage without straw retention in wheat strip
玉米带传统翻耕每年覆新膜 Conventional tillage with annual new plastic mulching in maize strip

Table 2

Irrigation stages and amounts of different cropping patterns (m3·hm-2)"

种植模式
Cropping pattern
冬储灌
Winter irrigation
玉米生育时期 Maize growth stage 总量
Total
苗期
Seedling
拔节期
Jointing
大喇叭口期
Big flare opening
抽雄吐丝期
Tasseling
开花期
Flowering
灌浆期
Filling
小麦间作玉米
Wheat-maize intercropping
1200 750 900 750 900 750 750 6000
单作玉米 Sole maize 1200 900 750 900 750 750 5250

Table 3

Canopy temperature of maize at grain-filling stage with different treatments and cropping patterns (℃)"

处理
Treatment
灌浆前期 Early-filling 灌浆中期 Mid-filling 灌浆后期 Late-filling
2014 2015 2016 2014 2015 2016 2014 2015 2016
间作 Intercropping
NTSI2 27.39b 29.53d 30.36b 24.39b 24.30c 22.96d 19.12d 23.42d 20.18c
NTSSI2 28.34ab 30.26d 31.40ab 24.90b 24.90bc 23.99cd 19.64cd 24.06cd 21.03bc
CTSI 29.73a 30.69cd 31.75ab 25.01ab 25.58b 24.47bc 20.51bc 24.67c 21.38b
CTI 30.42a 31.59bc 32.26a 25.03ab 26.71a 25.22ab 20.86b 25.97ab 21.74ab
单作 Sole cropping
NTM2 30.25a 31.93ab 32.29a 25.33ab 25.93ab 25.12bc 20.51bc 25.13bc 21.42b
CTM 32.96a 32.96a 32.92a 26.38a 26.81a 26.31a 21.81a 26.50a 22.55a
显著Significance
年份Year (Y) NS NS NS
处理Treatment (T) 0.000 0.002 0.000
年份×处理 Y×T NS NS NS

Table 4

Canopy-air temperature difference of maize at grain-filling stage with different treatments and cropping patterns (℃)"

年份
Year
处理
Treatment
灌浆前期
Early-filling stage
灌浆中期
Middle-filling stage
灌浆后期
Late-filling stage
平均
Average
2014 间作 Intercropping
NTSI2 0.99e 2.19d 0.72d 1.30e
NTSSI2 1.94d 2.70c 1.24c 1.96d
CTSI 3.33c 2.81bc 2.11b 2.75c
CTI 4.02ab 2.83bc 2.46b 3.10b
单作 Sole cropping
NTM2 3.85bc 3.13b 2.11b 3.03bc
CTM 4.45a 4.18a 3.41a 4.02a
2015 间作 Intercropping
NTSI2 1.73e 1.90d 1.52f 1.72e
NTSSI2 2.46d 2.50c 2.16e 2.37d
CTSI 2.89c 3.18b 2.77d 2.95c
CTI 3.79b 4.31a 4.07b 4.05b
单作 Sole cropping
NTM2 4.13b 3.53b 3.23c 3.63b
CTM 5.16a 4.41a 4.60a 4.72a
2016 间作 Intercropping
NTSI2 2.01d 1.67e 1.08e 1.59d
NTSSI2 3.05c 2.70d 1.93d 2.56c
CTSI 3.40bc 3.18c 2.28c 2.95bc
CTI 3.91b 3.93b 2.64b 3.49b
单作 Sole cropping
NTM2 3.94b 3.83b 2.32bc 3.36b
CTM 4.57a 5.02a 3.45a 4.35a
显著性 Significance
年份Year (Y) NS NS NS NS
处理Treatment (T) 0.000 0.001 0.000 0.000
年份×处理 Y×T NS NS NS NS

Table 5

The photosynthetic characteristics of maize at grain-filling stage with different treatments and cropping patterns"

灌浆时期
Grain filling stage
处理
Treatment
光合速率
Pn (μmol·m-2·s-1)
蒸腾速率
Tr (mmol·m-2·s-1)
叶片水分利用效率
WUEL (μmol·mmol-1)
2014 2015 2016 2014 2015 2016 2014 2015 2016
灌浆前期
Early-filling stage
间作 Intercropping
NTSI2 31.42a 31.58a 34.00a 4.01a 4.04a 4.19ab 7.83a 7.83a 8.11a
NTSSI2 29.95ab 30.26ab 32.68ab 3.90ab 3.90a 4.09a 7.67a 7.75a 7.98a
CTSI 30.22ab 30.64ab 33.27ab 3.98a 3.98a 4.28a 7.59a 7.69ab 7.78a
CTI 29.01b 29.76abc 32.52abc 3.84ab 3.96a 4.17ab 7.55a 7.51abc 7.81a
单作 Sole cropping
NTM2 27.75bc 28.92bc 30.81c 3.89ab 3.95a 4.18ab 7.14b 7.31bc 7.36b
CTM 26.82c 28.12c 31.50bc 3.78b 3.91a 4.35a 7.09b 7.20c 7.25b
显著性 Significance
年份Year (Y) NS NS 0.029
处理Treatment (T) 0.020 0.043 0.002
年份×处理 Y×T 0.031 NS 0.023
灌浆中期
Middle-filling stage
间作 Intercropping
NTSI2 28.98a 29.99a 29.55a 3.74a 3.84a 3.71a 7.76a 7.82a 7.97a
NTSSI2 27.99a 28.85ab 28.88a 3.67a 3.75a 3.75a 7.62ab 7.69ab 7.71ab
CTSI 26.32b 27.38bc 27.70ab 3.58ab 3.71a 3.73a 7.35b 7.39bc 7.43b
CTI 24.84c 26.89c 25.75bc 3.40b 3.73a 3.52b 7.30bc 7.20c 7.31b
单作 Sole cropping
NTM2 25.27bc 24.08d 26.59b 3.59ab 3.35b 3.75a 7.05cd 7.20c 7.08bc
CTM 22.93d 22.18e 24.73c 3.35b 3.25b 3.66ab 6.84d 6.82d 6.75c
显著性 Significance
年份Year (Y) 0.000 NS NS
处理Treatment (T) 0.000 0.030 0.000
年份×处理 Y×T 0.000 NS 0.037
灌浆后期
Late-filling stage
间作 Intercropping
NTSI2 24.27a 24.43a 25.43a 3.33a 3.25a 3.37a 7.30a 7.53a 7.54a
NTSSI2 23.28a 23.08a 24.33a 3.25a 3.15a 3.34a 7.15ab 7.32a 7.29a
CTSI 20.60b 21.27b 21.68bc 2.95b 3.16a 3.25b 6.99b 6.72b 6.68b
CTI 19.34c 19.84bc 20.98c 2.77c 2.93b 3.19bc 6.97b 6.76b 6.57b
单作 Sole cropping
NTM2 19.12 c 21.26b 22.22b 2.80c 3.15a 3.28b 6.82bc 6.74b 6.78b
CTM 16.92 d 18.83c 19.11d 2.57d 3.02ab 3.11c 6.57c 6.23c 6.15c
显著性 Significance
年份Year (Y) 0.012 NS 0.032
处理Treatment (T) 0.000 0.024 0.002
年份×处理 Y×T 0.031 NS 0.020

Fig. 1

Effects of plastic mulching and tillage methods on grain yield of maize"

Fig. 2

Relationship between canopy temperature of grain filling stage, leaf water use efficiency and grain yield of maize"

[1] 程旺大, 姚海根, 赵国平, 张国平 . 冠层温度在作物水分状况探测中的应用. 中国农学通报, 2000,16(5):42-44.
CHENG W D, YAO H G, ZHAO G P, ZHANG G P . Application of canopy temperature in detecting crop moisture status. Chinese Agricultural Science Bulletin, 2000,16(5):42-44. (in Chinese)
[2] 邓强辉, 潘晓华, 石庆华 . 作物冠层温度的研究进展. 生态学杂志, 2009,28(6):1162-1165.
DENG Q H, PAN X H, SHI Q H . Research advances on crop canopy temperature. Chinese Journal of Ecology, 2009,28(6):1162-1165. (in Chinese)
[3] 崔新菊, 赵奇, 尤明山, 王彩荣, 彭云承, 董世磊 . 不同灌溉条件下冬小麦灌浆期冠层温度与产量相关性分析. 作物杂志, 2010(6):51-54.
CUI X J, ZHAO Q, YOU M S, WANG C R, PENG Y C, DONG S L . Correlation analysis of canopy temperature and yield of winter wheat during grain filling stage under different irrigation conditions. Crops, 2010(6):51-54. (in Chinese)
[4] TYAGI P K, SINGH D P, PANNU R K . Effect of post-anthesis desiccation on plant-water relation, canopy temperature, photosynthesis and grain yield in wheat genotypes. Annals of Biology, 2000,16:111-119.
[5] 赵鹏, 王长发, 李小芳, 李永平 . 小麦籽粒灌浆期冠层温度分异动态及其与源库活性的关系. 西北植物学报, 2007,27(4):715-718.
ZHAO P, WANG C F, LI X F, LI Y P . The relationships between diversity of dynamic changes about wheat canopy temperature and source-sink activity in filling stage. Acta Botanica Boreali- Occidentalia Sinica, 2007,27(4):715-718. (in Chinese)
[6] 樊廷录, 宋尚有, 徐银萍, 李兴茂 . 旱地冬小麦灌浆期冠层温度与产量和水分利用效率的关系. 生态学报, 2007,27(11):4491-4497.
FAN T L, SONG S Y, XU Y P, LI X M . Relationship between canopy temperature and water use efficiency/grain yield among dryland winter wheat genotypes during grain filling stage. Acta Ecologica Sinica, 2007,27(11):4491-4497. (in Chinese)
[7] REBETZKE G J, RATTEY A R, FARQUHAR G D, RICHARDS R A, CONDON A G . Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Functional Plant Biology, 2013,40(1):14-33.
doi: 10.1071/FP12184
[8] 李丽, 申双和, 李永秀, 韩小梅, 汪秀敏, 李倩, 邹学智 . 不同水分处理下冬小麦冠层温度, 叶片水势和水分利用效率的变化及相关关系. 干旱地区农业研究, 2012,30(2):68-72.
LI L, SHEN S H, LI Y X, HAN X M, WANG X M, LI Q, ZOU X Z . Variation and interrelationship of winter wheat canopy temperature, leaf water potential and water use efficiency under different water treatments. Agricultural Research in the Arid Areas, 2012,30(2):68-72. (in Chinese)
[9] JARADAT A A, RIEDELL W E . Nutrient densities, carbon: nitrogen ratios, and midday differential canopy temperature impact grain yield of stressed oat. Journal of Plant Nutrition, 2010,33(10):1531-1554.
doi: 10.1080/01904167.2010.489989
[10] 郝影宾, 周春菊, 王长发, 陈倩倩, 张天娇, 王林权 . 氮肥和密度对大穗型冬小麦冠层温度日变化的调控效应. 干旱地区农业研究, 2011,29(4):99-104.
HAO Y B, ZHOU C J, WANG C F, CHEN Q Q, ZHANG T J, WANG L Q . Regulation effect of nitrogen and planting density on canopy temperature diurnal change of heavy-ear winter wheat. Agricultural Research in the Arid Areas, 2011,29(4):99-104. (in Chinese)
[11] 买自珍, 程炳文, 王勇, 罗世武 . 麦草与地膜覆盖对玉米田间生态环境及产量的影响. 中国生态农业学报, 2007,15(2):66-68.
MAI Z Z, CHENG B W, WANG Y, LUO S W . Effect of plastic film and straw mulching on field environment and yield of maize. Chinese Journal of Eco-Agriculture, 2007,15(2):66-68. (in Chinese)
[12] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强 . 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017,43(5):754-762.
doi: 10.3724/SP.J.1006.2017.00754
WANG Y F, QIN Y Z, FENG F X, ZHAO C, YU A Z, LIU C, CHAI Q . Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system. Acta Agronomica Sinica, 2017,43(5):754-762. (in Chinese)
doi: 10.3724/SP.J.1006.2017.00754
[13] 王国宇, 宋尚有, 樊廷录, 李尚中, 赵刚 . 不同基因型玉米冠层温度与产量和水分利用效率的关系. 玉米科学, 2009,17(1):92-95.
WANG G Y, SONG S Y, FAN T L, LI S Z, ZHAO G . Relationship of canopy temperature with grain yield and water use efficiency in various genotypes of maize. Journal of Maize Sciences, 2009,17(1):92-95. (in Chinese)
[14] 宫香伟, 韩浩坤, 张大众, 李境, 王孟, 薛志和, 高小丽, 杨璞, 冯佰利 . 氮肥对糜子籽粒灌浆期农田小气候及产量的调控效应. 中国农业大学学报, 2017,22(12):10-19.
GONG X W, HAN H K, ZHANG D Z, LI J, WANG M, XUE Z H, GAO X L, YANG P, FENG B L . Effects of nitrogen fertilizers on the field microclimate and yield of broomcorn millet at grain filling stage. Journal of China Agricultural University, 2017,22(12):10-19. (in Chinese)
[15] 李全起, 陈雨海, 于舜章, 吴巍, 周勋波, 董庆裕, 余松烈 . 灌溉与秸秆覆盖条件下冬小麦农田小气候特征. 作物学报, 2006,32(2):306-309.
LI Q Q, CHEN Y H, YU S Z, WU W, ZHOU X B, DONG Q Y, YU S L . Micro-climate of winter wheat field under the conditions of irrigation and straw mulching. Acta Agronomica Sinica, 2006,32(2):306-309. (in Chinese)
[16] 聂胜委, 张玉亭, 汤丰收, 何宁, 黄绍敏, 张巧萍, 韦本辉 . 粉垄耕作对潮土冬小麦田间群体微环境的影响. 农业资源与环境学报, 2015,32(2):204-208.
NIE S W, ZHANG Y T, TANG F S, HE N, HUANG S M, ZHANG Q P, WEI B H . Effect of smash ridging tillage on micro-environment of winter-wheat group in fluvo-aquic soil farmlands. Journal of Agricultural Resources and Environment, 2015,32(2):204-208. (in Chinese)
[17] 康绍忠, 蔡焕杰, 梁银丽, 马清林, 胡笑涛, 张富仓 . 大气CO2浓度增加对春小麦冠层温度、蒸发蒸腾与土壤剖面水分动态影响的试验研究. 生态学报, 1997,17(4):412-417.
KANG S Z, CAI H J, LIANG Y L, MA Q L, HU X T, ZHANG F C . Experimental research on effects of the atmospheric CO2 concentration increase on the canopy temperature, evapotranspiration and soil moisture distribution in root zone of spring wheat. Acta Ecologica Sinica, 1997,17(4):412-417. (in Chinese)
[18] MORRIS R, GARRITY D P . Resource capture and utilization in intercropping: water. Field Crops Research, 1993,34:303-317.
doi: 10.1016/0378-4290(93)90119-8
[19] YIN W, YU A Z, GUO Y, WANG Y F, ZHAO C, FAN Z L, HU F L, CHAI Q . Straw retention and plastic mulching enhance water use via synergistic regulation of water competition and compensation in wheat-maize intercropping systems. Field Crops Research, 2018,229:78-94.
doi: 10.1016/j.fcr.2018.10.003
[20] 员学锋, 吴普特, 汪有科, 徐福利 . 免耕条件下秸秆覆盖保墒灌溉的土壤水、热及作物效应研究. 农业工程学报, 2006,22(7):22-26.
YUAN X F, WU P T, WANG Y K, XU F L . Soil moisture conserving irrigation under straw mulch with no-tillage. Transactions of the Chinese Society of Agricultural Engineering, 2006,22(7):22-26. (in Chinese)
[21] 赵财, 陈桂平, 柴强, 于爱忠, 殷文 . 不同灌水水平下少耕地膜覆盖对玉米农田土壤温度和水分利用效率的影响. 干旱地区农业研究, 2017,35(1):152-157.
ZHAO C, CHEN G P, CHAI Q, YU A Z, YIN W . The effect of minimum tillage and mulching on soil temperature and WUE of maize under different irrigation levels. Agricultural Research in the Arid Areas, 2017,35(1):152-157. (in Chinese)
[22] YIN W, CHAI Q, GUO Y, FAN Z L, HU F L, FAN H, ZHAO C, YU A Z, COULTER J A . Straw and plastic management regulate air-soil temperature amplitude and wetting-drying alternation in soil to promote intercrop productivity in arid regions. Field Crops Research, 2020,249:107758.
doi: 10.1016/j.fcr.2020.107758
[23] 殷文, 陈桂平, 柴强, 赵财, 冯福学, 于爱忠, 胡发龙, 郭瑶 . 前茬小麦秸秆处理方式对河西走廊地膜覆盖玉米农田土壤水热特性的影响. 中国农业科学, 2016,49(15):2898-2908.
doi: 10.3864/j.issn.0578-1752.2016.15.004
YIN W, CHEN G P, CHAI Q, ZHAO C, FENG F X, YU A Z, HU F L, GUO Y . Responses of soil water and temperature to previous wheat straw treatments in plastic film mulching maize field at Hexi corridor. Scientia Agricultura Sinica, 2016,49(15):2898-2908. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.15.004
[24] BU L D, ZHU L, LIU J L, LUO S S, CHEN X P, LI S Q . Source-sink capacity responsible for higher maize yield with removal of plastic film. Agronomy Journal, 2013,105(3):591-598.
doi: 10.2134/agronj2012.0459
[25] BIJANZADEH E, EMAM Y . Effect of source-sink manipulation on yield components and photosynthetic characteristic of wheat cultivars (Triticum aestivum and T. durum L.). Journal of Applied Sciences, 2010,10(7):564-569.
doi: 10.3923/jas.2010.564.569
[26] PARRY M A J, REYNOLDS M, SALVUCCI M E, RAINES C, ANDRALOJC P J, ZHU X G, PRICE G D, CONDON A G, FURBANK R T . Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany, 2010,62(2):453-467.
doi: 10.1093/jxb/erq304 pmid: 21030385
[27] ZHANG X, HUANG G, ZHAO Q . Differences in maize physiological characteristics, nitrogen accumulation, and yield under different cropping patterns and nitrogen levels. Chilean Journal of Agricultural Research, 2014,74:326-332.
doi: 10.4067/S0718-58392014000300011
[28] 贺佳, 安曈昕, 韩学坤, 吴伯志 . 间作群体生态生理研究进展. 作物杂志, 2011(4):7-11.
HE J, AN T X, HAN X K, WU B Z . Advances of eco-physiology on intercropping system. Crops, 2011(4):7-11. (in Chinese)
[29] WATIKI J M, FUKAI S, BANDA J A, KEATING B A . Radiation interception and growth of maize/cowpea intercrop as affected by maize plant density and cowpea cultivar. Field Crops Research, 1993,35:123-133.
doi: 10.1016/0378-4290(93)90145-D
[30] 魏珊珊, 王祥宇, 董树亭 . 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014,25(2):441-450.
WEI S S, WANG X Y, DONG S T . Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chinese Journal of Applied Ecology, 2014,25(2):441-450. (in Chinese)
[31] YIN W, CHEN G P, FENG F X, GUO Y, HU F L, CHEN G D, ZHAO C, YU A Z, CHAI Q . Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Research, 2017,204:42-51.
doi: 10.1016/j.fcr.2017.01.005
[32] 陶志强, 陈源泉, 隋鹏, 袁淑芬, 高旺盛 . 华北春玉米高温胁迫影响机理及其技术应对探讨. 中国农业大学学报, 2013,18(4):20-27.
TAO Z Q, CHEN Y Q, SUI P, YUAN S F, GAO W S . Effects of high temperature stress on spring maize and its technologic solutions in North China Plain. Journal of China Agricultural University, 2013,18(4):20-27. (in Chinese)
[33] 殷文, 赵财, 于爱忠, 柴强, 胡发龙, 冯福学 . 秸秆还田后少耕对小麦/玉米间作系统中种间竞争和互补的影响. 作物学报, 2015,41(4):633-641.
doi: 10.3724/SP.J.1006.2015.00633
YIN W, ZHAO C, YU A Z, CHAI Q, HU F L, FENG F X . Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat/maize intercropping system. Acta Agronomica Sinica, 2015,41(4):633-641. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00633
[34] 周明冬, 秦晓辉, 候洪, 岳一兵 . 新疆农田废旧地膜污染治理现状及建议. 环境与可持续发展, 2014,39(5):171-174.
ZHOU M D, QIN X H, HOU H, YUE Y B . Policy and present situation of pollution treatment of recycled plastic film in agricultural fields in Xinjiang. Environment and Sustainable Development, 2014,39(5):171-174. (in Chinese)
[35] ZHANG B, PANG C Q, QIN J T, LIU K L, XU H, LI H X . Rice straw incorporation in winter with fertilizer-N application improves soil fertility and reduces global warming potential from a double rice paddy field. Biology and Fertility of Soils, 2013,49(8):1039-1052.
doi: 10.1007/s00374-013-0805-7
[36] 王幸, 邢兴华, 徐泽俊, 齐玉军, 季春梅, 吴存祥 . 耕作方式和秸秆还田对黄淮海夏大豆产量和土壤理化性状的影响. 中国油料作物学报, 2017,39(6):834-841.
WANG X, XING X H, XU Z J, QIN Y J, JI C M, WU C X . Effects of tillage and straw returning on soybean yield and soil physicochemical properties in Yellow-Huai-Hai Rivers Valley. Chinese Journal of Oil Crop Sciences, 2017,39(6):834-841. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!