Scientia Agricultura Sinica

Previous Articles     Next Articles

Current Research Status and Future Prospects of Genetic Diversity of Magnaporthe grisea Fungus

SHEN Ying1, LI Cheng-yun2   

  1. 1、China National Rice Research Institute, Hangzhou 310006;
    2、Key Laboratory for Agricultural Biodiversity and Pest Management of China Education Ministry, Yunnan Agricultural University, Kunming 650201
  • Online:2007-12-31 Published:2007-12-31

Abstract: Four hundred and fifty-five isolates belonging to 48 different pathotypes of Magnaporthe grisea in China have been classified into 56 separate lineages using a digest combination MGR586/EcoR1. The mating type and genetic diversity of 522 M. grisea isolates from China, India, Nepal, Bangladeshi, and Vietnam were detected with 4 international standard isolates. The SSR analysis was firstly used to detect the genetic diversity of 125 rice blast isolates from Yanxi blast nursery in Hunan Province for 3 years and the interaction between blast fungus and rice varieties, 6 genetic lineages were presented among 105 tested isolates. The pathogenicity of 30 representative isolates belonging to 21 races and 9 lineages from 18 provinces in China was tested on 159 rice cultivars from both home and abroad collaborated with CIRAD, the corresponding relationship between races and cultivars and resistance range was exploited. A set of 13 isolates CH63, CH72, PH14, PH14D3C12No.7, 101/1/1, 101/4/8 was selected as a recognized isolates. Seventeen cultivars with known resistance genes, 26 cultivars/lines with new deduced resistance gene Pi-33(t)and 12 parental materials with broad-spectrum resistance were identified. Five crosses of M. grisea were analyzed by our joint research for analysis the avirulence genes. Three combinations of 2539×Guyll, CH63×TH16, 95-23-4a×94-64-1b were tested with 346 pairs of SSR primers for study on their polymorphism and map construction, that integrated the marker number of blast mapping increasing from 152 in 1997 to 306 and also made the density and finesse greatly improved. Based on the pathogenicity test of the parents of the later two combinations to 12 rice cultivars including K59, the avirulence genes were mapped onto No.1, No.4, and No.7 chromosome according to their linked SSR markers respectively. Avr-Xiu was mapped by using RAPD markers. It will facilitate the studies of new avirulence gene analysis, gene mapping and genetic map construction of M. grisea in China. After making a domestic and international cooperation and combining with the results of other researchers’, the authors in present paper looked back the research achivements on genetic diversity of Magnaporthe grisea fungus and discussed its future prospects also.

Key words: Magnaporthe grisea , Hermaphroditic isolates , Mating type , Genetic diversity , RFLP , SSR , Avirulence gene

[1]Hamer J E, Farrall L, Orbach M J, Valent B, Chumley F G. Host-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proceedings of the National Academy of Sciences, 1989, 86: 9981-9985.
[2]Chen D H, Zeigler R S, Leung H, Nelson A J. Population structure of Pyricularia grisea at two screening sites in the Philippines. Phytopathology, 1995, 85: 1011-1020.
[3]沈  瑛, 朱培良, 袁筱萍. 中国稻瘟病菌的遗传多样性. 植物病理学报, 1993, 23(4): 309-313.
[4]沈  瑛, 朱培良, 袁筱萍, 赵新华, Manry J, Rojas C, Shahjaham A K M, Levy M. 我国稻瘟病菌的遗传多样性及其地理分布. 中国农业科学, 1996, 29(4): 39-46.
[5]沈  瑛, 袁筱萍, 王艳丽. 分子探针在稻瘟病流行病学中的应用研究. 西南农业大学学报, 1998, 20(5): 401-408.
[6]Zeiglar R S, Cuoc L X,Scott R P, Bernardo M A, Chen D H, Valent B, Nelson R J. The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Genetics, 1995, 85(4): 443-451.
[7]Notteghem J L, Silue D. Distrubution of the mating type alleles in Magnaporthe grisea populations pathogenic on rice. Phytopathology, 1992, 82(4): 423-426.
[8]沈  瑛, 袁筱萍, 金敏忠, 柴荣耀. 稻瘟病菌有性世代初步研究. 云南农业大学报, 1989, 4(3): 216-221.
[9]李成云, 李家瑞, 藤田佳克. 云南省稻瘟病菌有性世代研究Ⅱ. 稻瘟病两性菌株的初步研究. 西南农业学报, 1991, 4(4): 84-89.
[10]Tharreau D, Lebrun M H, Talbot N J, Notteghem J L. New tools for resistance gene characterization in rice. In: Tharreau D, Lebrun M H, Talbot N, Notteghem J L L (eds). Advances in Rice Blast Research. Proceedings of the 2nd International Rice Blast Conference, August 4~8, 1998. Montpellier, France. Kluwer Academic Publishers, Wageningen, The Netherlands, 2000: 54-62.
[11]沈  瑛, Notteghem J L, Milazzo J, 袁筱萍, 赵新华, 王艳丽, Tharreau D. 中国稻瘟病菌交配型的地理分布及其能育菌株的亲缘关系. 中国农业科学, 2002, 1(6): 648-656.
[12]沈  瑛, Milazzo J, 袁筱萍, Adreit H, 王艳丽. 亚洲部分稻瘟病菌的交配型和雌性能育菌株的遗传多样性分析. 中国农业科学, 2003, 2(12): 1321-1326.
[13]Shinji Kawasaki. Mating type alleles, female fertility and genetic diversity of Magnaporthe grisea populations pathogenic to rice from some Asian countries. In: Shen Y, Milazzo J, Yuan X P, Adreit H, Wang Y L, Notteghem J L, Tharreau D. Rice Blast: Interaction with Rice and Control. Wageningen, Netherlands: Kluwer Academic Publishers, 2004: 271-279.
[14]沈  瑛, Frouin J, 何月秋, Xiao F H, Kaye C, 刘二明, Tharreau D. 湖南烟溪病谱稻瘟病菌的交配型和微卫星(SSR)标记遗传多样性的分析. 中国水稻科学, 2004, 18(3): 262-268.
[15]沈  瑛, Kaye C, Frouin J, 邓一文, Tharreau D. 用微卫星(MS)标记分析稻瘟病菌的有性生殖和遗传多样性. 中国农业科学, 2004, (2): 215-221.
[16]刘二明, 张志飞, 罗  峰, 罗  宽, 杨  静, 朱有勇. 湖南稻瘟病菌群体遗传多样性研究. 湖南农业大学学报(自然科学版), 2002, 28(5): 391-394.
[17]刘二明, 刘志贤, 魏  林, 叶华志, 朱有勇, 罗  峰. 湖南两类稻瘟病生态系病菌遗传多样性研究. 湖南农业大学学报(自然科学版), 2003, 29(3): 211-215.
[18]Couch B C, Fudal I, Lebrun M H, Tharreau D, Valent B, Kim P, Nottéghem J L, Kohn L M. Origins of host-specific populations of the blast pathogen, Magnaporthe oryzae, in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics, 2005, 170(2): 613-630.
[19]沈  瑛, 袁筱萍, 赵新华, 王艳丽, 李成云, 罗朝喜. 稻瘟病菌的菌丝融合现象及其后代的致病性. 中国农业科学, 1997, 30(6): 16-22.
[20]後藤和夫, 山中達. イモチ病菌のに関する研究. 宇都宮大農学報, 1968, 7: 27-71.
[21]Dai L Y, Liu X L, Xiao Y H, Wang G L. Recent advances in cloning and characterization of disease resistance genes in rice. Journal of Integrative Plant Biology, 2007, 49: 112-119.
[22]李成云, 沈  瑛, 袁筱萍, 罗朝喜, 赵兴华. 稻瘟病菌两个陆稻菌株的致病性遗传研究. 中国农业科学, 1997, 30(4): 30-36.
[23]Shen Y, Adreit H, Zhu X D, Milazzo J, Chen H Q, Tharreau D. 我国部分杂交稻和常规早籼、晚粳品种(系)的抗瘟性. 中国农业科学, 2004, 37(3): 362-369.
[25]Shinji Kawasaki. Resistance evaluation of some hybrid rice, conventional early indica and late japonica rice to Magnaporthe grisea. In: Shen Y, Adreit H, Zhu XD, Tharreau D. Rice Blast: Interaction with Rice and Control. Wageningen, Netherlands: Kluwer Academic Publishers, 2004: 241-250.
[25]Zhu X D, Shen Y, Adreit H, Frouin J, Tharreau D. Resistance evaluation of some Chinese leading rice maintainer restorer lines and their hybrids to Magnaporthe grisea. Rice Science, 2004, 11(3): 101-105.
[26]李成云, 李进斌, 周晓罡, 董爱荣, 许明辉. 稻瘟病菌阅读框架中SSR频率、分布和所在基因功能. 中国水稻科学, 2005, 19(2): 167-173.
[27]王艳丽, Kaye C, Bordat A, Adreit H, Millazzo J, 郑小波, 沈  瑛, Tharreau D. 稻瘟菌株CH63和TH16杂交组合的遗传图谱构建及无毒基因定位. 中国水稻科学, 2005, 19(2): 160-166.
[28]李成云, 罗朝喜, 李进斌, 沈  瑛, 伊势一男. 稻瘟病菌菌无毒基因的分子标记. 中国农业科学, 2000, 33(3): 49-53.
[29]李成云, 李进斌, 周晓罡, 董爱荣, 许明辉. 稻瘟病菌基因组中微卫星序列的频率和分布. 中国水稻科学, 2004, 18(3): 269-273.
[30]Kaye C, Milazzo J, Rozenfeld S, Lebrun M H, Tharreau D. The development of simple sequence repeat (SSR) markers for Magnaporthe grisea and their integration into an established genetic linkage map. Fungal Genetics and Biology, 2003, 40(3): 207-214.
[31]Dodds P N, Lawrence G J, Catanzariti A, Ayliffe M A, Ellis J G. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell, 2004, 16(3): 755-768.
[32]Dangl, J L. Plant pathogens and integrated defense responses to infection. Nature, 2001, 411(6839): 826-833.
[33]Jia Y L, McAdams S A, Bryan G T, Hershey H P, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 2000, 19: 4004-4014.
[34]Bryan G T, Wu K S, Farrall L. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2033-2045.
[35]Jia Y, Bryan G T, Farrall L, Valent B. Natural variation at the Pitarice blast resistance locus. Phytopathology, 2003, 93: 1452-1459.
[36]Jantasuriyarat C, Gowda M, Haller K, Hatfield J, Lu G, Stahlberg E, Zhou B, Li H, Kim H, Yu Y, Dean R A, Wing R A, Soderlund C, Wang G L. Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiology, 2005, 138: 105-115.
[37]Kim S, Ahn I P, Rho H S, Lee Y H. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Molecular Microbiology, 2005, 57: 1224-1237.
[38]Li L, Xue C, Bruno K, Nishimura M, Xu J R. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2004, 17: 547-556.
[39]Balhadere P V, Talbot N J. PDE1 Encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 2001, 13: 1987-2004.
[40]Gilbert M G, Thornton1 C R, Wakley G E, Talbot N J. A P-type ATPase required for rice blast disease and induction of host resistance. Nature, 2006, 440: 535-539.
[41]Veneault-Fourrey C, Barooah M, Egan M, Wakley K, Talbot N J. Altophagic fungal cell death is necessary for infection by rice blast fungus. Science, 2006, 312: 580-583.
[42]Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan H, Read N D, Lee Y H, Carbone I, Brown D, Oh YY, Donofrio N, Jeong J S, Soanes D M, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L J, Nicol R, Purcell S, Nusbaum C, Galagan J E, Birren B W. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434: 980-986.
[43]Jeon J, Park S Y, Chi M H, Choi J, Park J, Rho H S, Kim S, Goh J, Yoo S, Choi J, Park J Y, Yi M, Yang S, Kwon M J, Han S S, Kim B R, Khang C H, Park B, Lim S E, Jung K, Kong S, Karunakaran M, Oh H S, Kim H, Kim S, Park J, Kang S, Choi W B, Kang S, Lee Y H. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nature Genetics, 2007, 39: 561-565.
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[3] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[4] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[5] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[6] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[9] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[10] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[11] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[12] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[13] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[14] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[15] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!