Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (7): 1346-1358.doi: 10.3864/j.issn.0578-1752.2022.07.007

• PLANT PROTECTION • Previous Articles     Next Articles

Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province

WANG WenJuan(),SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan()   

  1. Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640
  • Received:2021-11-01 Accepted:2021-12-20 Online:2022-04-01 Published:2022-04-18
  • Contact: XiaoYuan ZHU E-mail:juanlook@163.com;zhuxy@gdppri.com

Abstract:

【Objective】The objective of this study is to analyze the pathogenicity and variation patterns of avirulence genes (Avr genes) genotype of Magnaporthe oryzae, which was collected from a high-quality rice variety Meixiangzhan 2 widely cultivated in Guangdong, and to provide a reference for the rational layout of Meixiangzhan 2 in different rice ecological areas. 【Method】The pathogenicity of single-spore strains was determined using 9 M. oryzae monogenic differentials. The DNA of the single-spore M. oryzae strains collected from Meixiangzhan 2 in different rice areas and in different years from 2013 to 2018 was subjected to PCR amplification using the functional markers of 8 Avr genes. The PCR products of Avr genes with promotor sequences or CDS regions were analyzed by agarose gel electrophoresis and the PCR products of representative strains were sequenced, and their sequences were compared to corresponding Avr genes, respectively. The corresponding M. oryzae monogenic differentials were used to determine the pathogenicity of M. oryzae strains with different mutation types of the Avr genes. According to two mating types MAT1-1 and MAT1-2 molecular markers of M. oryzae, the possible mating type of M. oryzae strains isolated from Meixiangzhan 2 was detected. 【Result】The pathogenicity analysis with a set of monogenic differentials showed that 52 rice blast strains collected from Meixiangzhan 2 from 2013 to 2018 were avirulent to IRBL9-W (Pi9), IRBLzt-T (Piz-t), NIL-e1 (Pi50) and IRBLkh-K3 (Pikh). The tested strains showed high frequencies (>57%) of virulence to IRBLz-Fu (Piz), IRBLkp-K60 (Pikp) and IRBLi-F5 (Pii), and the frequency of virulence to IRBLz-Fu (Piz) showed significant differences in different years, suggesting that the M. oryzae population in the field of Meixiangzhan 2 planted area had a higher frequency of virulent strains of avrPiz, avrPikp and avrPii. AvrPiz-t, AvrPi9 and AvrPik-CDE fragments were almost present in all tested strains, but none of Avr1-CO39, AvrPia or AvrPii was amplified in any strain. Only 4 strains could amplify the fragment of AvrPita, and only 3 strains could amplify the fragment of AvrPik-ABF. Amplicon sequencing of the 7 strains revealed that the sequences of AvrPi9 and AvrPiz-t were identical to those of the corresponding Avr genes. Of the 7 sequenced strains in AvrPik-CDE, 4 strains were almost identical to each other, and 3 strains had a ‘CTTT' in the coding region of AvrPik. Four different amplification types of AvrPib (expected size bands, bands with transposon Pot3 insertion, bands with transposon Mg-SINE insertion, and non-amplified bands) were detected by electrophoresis analysis and 5 different haplotypes (AvrPib-AP1-1, AvrPib-AP1-2, avrPib-AP2, avrPib-AP3 and avrPib-AP2+avrPib-AP3) were detected by sequencing PCR products. The genotypes AvrPib-AP1-1 and AvrPib-AP1-2 were avirulent, while avrPib-AP2 and avrPib-AP3 showing insertions of transposon Pot3 or Mg-SINE with different insertion sites were virulent. A double haplotype of avrPib-AP2+avrPib-AP3 was detected in one strain. The result of mating type analysis with molecular markers showed that all of 52 tested strains belonged to the mating type of MAT1-2, two strains (GD18-009 and GD18-185) from Shaoguan, Guangdong were also detected with MAT1-1 mating type, indicating that these two strains had dual mating types. 【Conclusion】Among the strains from the high-quality rice variety of Meixiangzhan 2 in Guangdong, the Avr genes of AvrPiz-t, AvrPi9, AvrPi50 and AvrPikh distribute widely. The variation types of AvrPib are abundant. The results of this study will provide useful information for the rational layout of Meixiangzhan 2 and the deployment of other rotation varieties with different genotypes of rice blast resistance.

Key words: Meixiangzhan 2, Magnaporthe oryzae, genotype of avirulence gene, mating type

Table 1

Information of 52 M. oryzae strains collected from Guangdong"

采集地
Sampling location
菌株编号
Strain number
采集地
Sampling location
菌株编号
Strain number
韶关Shaoguan GD13-012 韶关Shaoguan GD16-187
韶关Shaoguan GD13-027 韶关Shaoguan GD16-189
韶关Shaoguan GD13-354 韶关Shaoguan GD16-196
韶关Shaoguan GD13-358 韶关Shaoguan GD17-001
韶关Shaoguan GD13-369 河源Heyuan GD17-125
韶关Shaoguan GD13-382 惠州Huizhou GD17-165
韶关Shaoguan GD13-389 惠州Huizhou GD17-171
韶关Shaoguan GD13-394 惠州Huizhou GD17-181
韶关Shaoguan GD13-395 韶关Shaoguan GD17-312
河源Heyuan GD13-452 韶关Shaoguan GD17-313
阳江Yangjiang GD13-591 韶关Shaoguan GD17-314
河源Heyuan GD14-073 惠州Huizhou GD17-380
韶关Shaoguan GD14-186 韶关Shaoguan GD18-009
云浮Yunfu GD14-295 惠州Huizhou GD18-094
清远Qingyuan GD15-074 韶关Shaoguan GD18-185
清远Qingyuan GD15-076 韶关Shaoguan GD18-188
惠州Huizhou GD15-097 韶关Shaoguan GD18-189
韶关Shaoguan GD15-195 韶关Shaoguan GD18-191
韶关Shaoguan GD15-196 韶关Shaoguan GD18-192
韶关Shaoguan GD15-198 韶关Shaoguan GD18-193
韶关Shaoguan GD15-205 韶关Shaoguan GD18-194
韶关Shaoguan GD15-206 韶关Shaoguan GD18-196
韶关Shaoguan GD15-214 惠州Huizhou GD18-269
韶关Shaoguan GD16-006 惠州Huizhou GD18-271
河源Heyuan GD16-034 惠州Huizhou GD18-272
韶关Shaoguan GD16-185 增城Zengcheng GD18-361

Table 2

Primers used for the PCR detection of Avr genes and mating type in this study"

引物
Primer
引物序列
Sequence (5′-3′)
预期片段大小
Expected fragment size (bp)
目的
Purpose
Avr1-CO39 F TGCCGCATTTTGCTAACCG 994 检测Avr1-CO39启动子及CDS
To detect Avr1-CO39 promoter and CDS
Avr1-CO39 R GCGAATCCATAGACAAGGAC
AvrPita F CAGGCATACATTGGAGAGCC 1549 检测AvrPita启动子及CDS
To detect AvrPita promoter and CDS
AvrPita R CCCTCCATTCCAACACTAAC
AvrPii F GGTAGATATCCGCTGACTGG 839 检测AvrPii启动子及CDS
To detect AvrPii promoter and CDS
AvrPii R ACTGTCCGCCGCTCGTTTGG
AvrPi9 F ATGCAGTTCTCTCAGATCCTC 342 检测AvrPi9 CDS To detect AvrPi9 CDS
AvrPi9 R CTACCAGTGCGTCTTTTCGAC
MGG-AvrPiz-t F AACCCGCAGCAGCATAAAAG 1621 检测AvrPiz-t启动子及CDS
To detect AvrPiz-t promoter and CDS
MGG-AvrPiz-t R GAAAAGTGGCTCGTTCCTAATTG
AvrPia F CAGAGAAACGGACTTGGAGG 1220 检测AvrPia启动子及CDS
To detect AvrPia promoter and CDS
AvrPia R GGTATACACGTACGGTAGGG
AvrPik-CDE F TCCTGCTGCTAACTCCATTC ~1000 检测AvrPik-CDE型启动子及CDS
To detect AvrPik-CDE promoter and CDS
AvrPik-CDE R GGGTACAGGAATACCAGG
AvrPik-ABF F TCCTGCTGCTAACTCCATTC ~1000 检测AvrPik-ABF型启动子及CDS
To detect AvrPik-ABF promoter and CDS
AvrPik-ABF R GGGTACAGGAATATCAGC
MGG-AvrPib F2 GGCCTATCGCATGTTTATATTGAG 633 检测AvrPib启动子及部分CDS
To detect AvrPib promoter and some CDS
MGG-AvrPib R2 AGGCGATAGTGATAAAAGTGGTTG
MAT1-1F GACATCAAGGCTCGTCGAC 650 交配型分析 Mating type analysis
MAT1-1R GAGTGCGCCATTAGGAAGC
MAT1-2F GGACCTCGAATTCGTCGAC 300 交配型分析 Mating type analysis
MAT1-2R GGCATCTTTCAGGATAGACC

Table 3

The frequency of the strains virulent to a set of monogenic rice blast differentials in the populations of M. oryzae during the period of 2013-2018 (%)"

年份(菌株数)
Year (Number of strains)
IRBL9-W IRBLzt-T NIL-e1 IRBLkh-K3 IRBL1-CL IRBLta2-Re IRBLz-Fu IRBLkp-K60 IRBLi-F5 CK
Pi9 Piz-t Pi50 Pikh Pi1 Pita2 Piz Pikp Pii LTH
2013 (11) 0 0 0 0 0 9.09 81.82 81.82 72.73 100.00
2015 (9) 0 0 0 0 0 33.33 88.89 88.89 77.78 100.00
2016 (6) 0 0 0 0 16.67 16.67 100.00 66.67 83.33 100.00
2017 (9) 0 0 0 0 33.33 22.22 77.78 88.89 77.78 100.00
2018 (14) 0 0 0 0 14.29 21.43 57.14 78.57 78.57 100.00
χ2 for homogeneity 59.61*** 15.25** 12.37** 4.16 0.73

Fig. 1

Detection of Avr genes in M. oryzae strains using molecular markers of avirulence genes"

Fig. 2

Allelic variation of avirulence gene AvrPib of M. oryzae from Meixiangzhan 2"

Fig. 3

Characterization of variation at AvrPib alleles of M. oryzae from Meixiangzhan 2"

Table 4

Characterization of AvrPib haplotypes of 15 representative strains"

AvrPib等位基因的核苷酸多态性Nucleotide polymorphisms of AvrPib allelesa
-269 bp -266 bp/-232 bp/-228 bp/-52 bp -216 bp -124 bp -71 bp
单倍型
Haplotype
频率
Frequency (%)
表型
Pathotype to IRBLb-B (Pib)
- - - - - - - -
AvrPib-AP1-1 20.00 A - - - - C AAC
AvrPib-AP1-2 6.67 A TAAC C AAC
avrPib-AP2 33.33 V - - - -或TAAC Pot3
avrPib-AP3 33.33 V - - - - C AAC Mg-SINE
avrPib-AP2+avrPib-AP3 6.67 V - - - - Pot3 C AAC Mg-SINE

Fig. 4

Detection of mating types in M. oryzae strains with molecular markers of mating genes"

[1] KHUSH G S, JENA K K. Current status and future prospects for research on blast resistance in rice (Oryza sativa L.)//WANG G L, VALENT B. Advances in Genetics, Genomics and Control of Rice Blast Disease. New York: Springer, 2009: 1-10.
[2] ZHANG H F, ZHENG X B, ZHANG Z G. The Magnaporthe grisea species complex and plant pathogenesis. Molecular Plant Pathology, 2016, 17(6):796-804.
doi: 10.1111/mpp.12342
[3] SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, ESKER P, MCROBERTS N, NELSON A. The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution, 2019, 3(3):430-439.
doi: 10.1038/s41559-018-0793-y
[4] ASHKANI S, RAFII M Y, SHABANIMOFRAD M, MIAH G, SAHEBI M, AZIZI P, TANWEER F A, AKHTAR M S, NASEHI A. Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Frontiers in Plant Science, 2015, 6:886.
[5] TANWEER F A, RAFII M Y, SIJAM K, RAHIM H A, AHMED F, LATIF M A. Current advance methods for the identification of blast resistance genes in rice. Comptes Rendus Biologies, 2015, 338(5):321-334.
doi: 10.1016/j.crvi.2015.03.001
[6] KIRZINGER M W, STAVRINIDES J. Host specificity determinants as a genetic continuum. Trends in Microbiology, 2012, 20(2):88-93.
doi: 10.1016/j.tim.2011.11.006
[7] 赵雷, 周少川, 王重荣, 李宏, 黄道强, 王志东, 周德贵, 陈宜波, 吴玉坤. 绿色广适性优质稻品种的系谱分析及育种应用研究. 生命科学, 2018, 30(10):1100-1107.
ZHAO L, ZHOU S C, WANG C R, LI H, HUANG D Q, WANG Z D, ZHOU D G, CHEN Y B, WU Y K. Pedigree analysis and breeding and application of green widely adaptive good quality rice varieties. Chinese Bulletin of Life Sciences, 2018, 30(10):1100-1107. (in Chinese)
[8] 汪文娟, 苏菁, 杨健源, 陈深, 鲁国东, 朱小源. 侵染优质稻美香占2号的稻瘟病菌生理小种鉴定及无毒基因分析. 植物保护学报, 2020, 47(3):572-582.
WANG W J, SU J, YANG J Y, CHEN S, LU G D, ZHU X Y. Identification of physiological race and analysis avirulent genes for isolates of rice blast infecting from rice variety of Meixiangzhan 2. Journal of Plant Protection, 2020, 47(3):572-582. (in Chinese)
[9] FLOR H H. Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971, 9:275-296.
doi: 10.1146/annurev.py.09.090171.001423
[10] ORBACH M J, FARRALL L, SWEIGARD J A, CHUMLEY F G, VALENT B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. The Plant Cell, 2000, 12(11):2019-2032.
doi: 10.1105/tpc.12.11.2019
[11] VALENT B, KHANG C H. Recent advances in rice blast effector research. Current Opinion in Plant Biology, 2010, 13(4):434-441.
doi: 10.1016/j.pbi.2010.04.012
[12] DODDS P N, LAWRENCE G J, CATANZARITI A M, TEH T, WANG C A, AYLIFFE M A, KOBE B, ELLIS J G. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proceedings of National Academy of Sciences of the United States of America, 2006, 103(23):8888-8893.
[13] YOSHIDA K, SAITOH H, FUJISAWA S, KANZAKI H, MATSUMURA H, YOSHIDA K, TOSA Y, CHUMA I, TAKANO Y, WIN J, KAMOUN S, TERAUCHI R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. The Plant Cell, 2009, 21(5):1573-1591.
doi: 10.1105/tpc.109.066324
[14] KANZAKI H, YOSHIDA K, SAITOH H, FUJISAKI K, HIRABUCHI A, ALAUX L, FOURNIER E, THARREAU D, TERAUCHI R. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. The Plant Journal, 2012, 72(6):894-907.
doi: 10.1111/j.1365-313X.2012.05110.x
[15] WU J, KOU Y J, BAO J D, LI Y, TANG M Z, ZHU X L, PONAYA A, XIAO G, LI J B, LI C Y, et al. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytologist, 2015, 206(4):1463-1475.
doi: 10.1111/nph.13310
[16] ZHANG S L, WANG L, WU W H, HE L Y, YANG X F, PAN Q H. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Scientific Reports, 2015, 5:11642.
doi: 10.1038/srep11642
[17] RAY S, SINGH P K, GUPTA D K, MAHATO A K, SARKAR C, RATHOUR R, SINGH N K, SHARMA T R. Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54. Frontiers in Plant Science, 2016, 7:1140.
[18] WANG B H, EBBOLE D J, WANG Z H. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes. Journal of Integrative Agriculture, 2017, 16(12):2746-2760.
doi: 10.1016/S2095-3119(17)61746-5
[19] SELISANA S M, YANORIA M J, QUIME B, CHAIPANYA C, LU G, OPULENCIA R, WANG G L, MITCHELL T, CORRELL J, TALBOT N J, LEUNG H, ZHOU B. Avirulence (AVR) gene-based diagnosis complements existing pathogen surveillance tools for effective deployment of resistance (R) genes against rice blast disease. Phytopathology, 2017, 107(6):711-720.
doi: 10.1094/PHYTO-12-16-0451-R
[20] OLUKAYODE T, QUIME B, SHEN Y C, YANORIA M J, ZHANG S B, YANG J Y, ZHU X Y, SHEN W C, VON TIEDEMANN A, ZHOU B. Dynamic insertion of Pot3 in AvrPib prevailing in a field rice blast population in the Philippines lead to the high virulence frequency against the resistance gene Pib in rice. Phytopathology, 2019, 109(5):870-877.
doi: 10.1094/PHYTO-06-18-0198-R
[21] WANG W J, SU J, CHEN K L, YANG J Y, CHEN S, WANG C Y, FENG A Q, WANG Z H, WEI X Y, ZHU X Y, LU G D, ZHOU B. Dynamics of the rice blast fungal population in the field after deployment of an improved rice variety containing known resistance genes. Plant Disease, 2021, 105(4):919-928.
doi: 10.1094/PDIS-06-20-1348-RE
[22] LATORRE S M, REYES-AVILA C S, MALMGREN A, WIN J, KAMOUN S, BURBANO H A. Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus. BMC Biology, 2020, 18(1):88.
doi: 10.1186/s12915-020-00818-z
[23] YOSHIDA K, SAUNDERS D G, MITSUOKA C, NATSUME S, KOSUGI S, SAITOH H, INOUE Y, CHUMA I, TOSA Y, CANO L M, KAMOUN S, TERAUCHI R. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics, 2016, 17:370.
doi: 10.1186/s12864-016-2690-6
[24] XING J, JIA Y, CORRELL J C, LEE F N, CARTWRIGHT R, CAO M, YUAN L. Analysis of genetic and molecular identity among field isolates of the rice blast fungus with an international differential system, Rep-PCR, and DNA sequencing. Plant Disease, 2013, 97(4):491-495.
doi: 10.1094/PDIS-04-12-0344-RE
[25] CHEN Q H, WANG Y C, ZHENG X B. Genetic diversity of Magnaporthe grisea in China as revealed by DNA fingerprint haplotypes and pathotypes. Journal of Phytopathology, 2006, 154(6):361-369.
doi: 10.1111/j.1439-0434.2006.01106.x
[26] GEORGE M L, NELSON R J, ZEIGLER R S, LEUNG H. Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences. Phytopathology, 1998, 88(3):223-229.
doi: 10.1094/PHYTO.1998.88.3.223
[27] THUAN N T N, BIGIRIMANA J, ROUMEN E D, VAN DER STRAETEN D, HÖFTE M. Molecular and pathotype analysis of the rice blast fungus in North Vietnam. European Journal of Plant Pathology, 2006, 114(4):381-396.
doi: 10.1007/s10658-006-0002-8
[28] IMAM J, ALAM S, MANDAL N P, SHUKLA P, SHARMA T R, VARIAR M. Molecular identification and virulence analysis of AVR genes in rice blast pathogen, Magnaporthe oryzae from Eastern India. Euphytica, 2015, 206:21-31.
doi: 10.1007/s10681-015-1465-5
[29] LE M T, ARIE T, TERAOKA T. Population dynamics and pathogenic races of rice blast fungus, Magnaporthe oryzae in the Mekong Delta in Vietnam. Journal of General Plant Pathology, 2010, 76:177-182.
doi: 10.1007/s10327-010-0231-8
[30] TSUNEMATSU H, YANORIA M J T, EBRON L A, HAYASHI N, ANDO I, KATO H, IMBE T, KHUSH G S. Development of monogenic lines of rice for rice blast resistance. Breeding Science, 2000, 50(3):229-234.
doi: 10.1270/jsbbs.50.229
[31] WANG J C, CORRELL J C, JIA Y. Characterization of rice blast resistance genes in rice germplasm with monogenic lines and pathogenicity assays. Crop Protection, 2015, 72:132-138.
doi: 10.1016/j.cropro.2015.03.014
[32] WANG J C, JIA Y, WEN J W, LIU W P, LIU X M, LI L, JIANG Z Y, ZHANG J H, GUO X L, REN J P. Identification of rice blast resistance genes using international monogenic differentials. Crop Protection, 2013, 45:109-116.
doi: 10.1016/j.cropro.2012.11.020
[33] ZHANG Y L, WANG J Y, YAO Y X, JIN X H, CORRELL J, WANG L, PAN Q H. Dynamics of race structures of the rice blast pathogen population in Heilongjiang Province, China from 2006 through 2015. Plant Disease, 2019, 103(11):2759-2763.
doi: 10.1094/PDIS-10-18-1741-RE
[34] ZHU X Y, CHEN S, YANG J Y, ZHOU S C, ZENG L X, HAN J L, SU J, WANG L, PAN Q H. The identification of Pi50 (t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theoretical and Applied Genetics, 2012, 124(7):1295-1304.
doi: 10.1007/s00122-012-1787-9
[35] 马军韬, 张国民, 张丽艳, 邓凌韦, 王永力, 王英. 黑龙江省水稻种质抗瘟性及稻瘟病菌致病性分析. 植物保护学报, 2017, 44(2):209-216.
MA J T, ZHANG G M, ZHANG L Y, DENG L W, WANG Y L, WANG Y. Analysis of blast-resistance of rice germplasm and pathogenicity of rice blast fungus Magnaporthe oryzae in Heilongjiang Province. Journal of Plant Protection, 2017, 44(2):209-216. (in Chinese)
[36] 朱小源, 杨祁云, 杨健源, 雷财林, 王久林, 凌忠专. 抗稻瘟病单基因系对籼稻稻瘟病菌小种鉴别力分析. 植物病理学报, 2004, 34(4):361-368.
ZHU X Y, YANG Q Y, YANG J Y, LEI C L, WANG J L, LING Z Z. Differentiation ability of monogenic lines to Magnaporthe grisea in indica rice. Acta Phytopathologica Sinica, 2004, 34(4):361-368. (in Chinese)
[37] WU W H, WANG L, ZHANG S, LIANG Y Q, ZHENG X L, YI K X, HE C P. Assessment of sensitivity and virulence fitness costs of the AvrPik alleles from Magnaporthe oryzae to isoprothiolane. Genetics and Molecular Research, 2014, 13(4):9701-9709.
doi: 10.4238/2014.November.24.1
[38] LI J, WANG Q, LI C, BI Y, FU X, WANG R. Novel haplotypes and networks of AVR-Pik alleles in Magnaporthe oryzae. BMC Plant Biology, 2019, 19:204.
doi: 10.1186/s12870-019-1817-8
[39] 孟峰, 张亚玲, 靳学慧, 张晓玉, 姜军. 黑龙江省稻瘟病菌无毒基因AVR-PibAVR-PikAvrPiz-t的检测与分析. 中国农业科学, 2019, 52(23):4262-4273.
MENG F, ZHANG Y L, JIN X H, ZHANG X Y, JIANG J. Detection and analysis of Magnaporthe oryzae avirulence genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang Province. Scientia Agricultura Sinica, 2019, 52(23):4262-4273. (in Chinese)
[40] XIAO G, YANG J Y, ZHU X Y, WU J, ZHOU B. Prevalence of ineffective haplotypes at the rice blast resistance (R) gene loci in Chinese elite hybrid rice varieties revealed by sequence-based molecular diagnosis. Rice, 2020, 13(1):6.
doi: 10.1186/s12284-020-0367-x
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China [J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
[3] SUN XiaoFang,LIU Min,PAN TingMin,GONG GuoShu. Mating Type and Fertility of Cochliobolus heterostrophus Causing Southern Corn Leaf Blight in Sichuan Province [J]. Scientia Agricultura Sinica, 2021, 54(12): 2547-2558.
[4] DAI YuLi,GAN Lin,TENG ZhenYong,YANG JingMin,QI YueYue,SHI NiuNiu,CHEN FuRu,YANG XiuJuan. Establishment and Application of a Multiple PCR Method to Detect Mating Types of Exserohilum turcicum and Bipolaris maydis [J]. Scientia Agricultura Sinica, 2020, 53(3): 527-538.
[5] MENG Feng,ZHANG YaLing,JIN XueHui,ZHANG XiaoYu,JIANG Jun. Detection and Analysis of Magnaporthe oryzae Avirulence Genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4262-4273.
[6] WANG WenJuan,SU Jing,YANG JianYuan,WEI XiaoYan,CHEN KaiLing,CHEN Zhen,CHEN Shen,ZHU XiaoYuan. Analysis of Magnaporthe oryzae Avirulent Genes in the Infected Hybrid Rice Combinations Derived from a Sterile Line of Guang 8 A [J]. Scientia Agricultura Sinica, 2018, 51(24): 4633-4646.
[7] LI Hong-Hao, PENG Hua-Xian, XI Ya-Dong, WANG Xiao-Li, LIU Bo-Wei. Characteristics of Mating Types, Physiological Races, Metalaxyl Sensitivity and mtDNA Haplotypes of Phytophthora infestans in Sichuan Province [J]. Scientia Agricultura Sinica, 2013, 46(4): 728-736.
[8] GUO Li-Yuan-1, JIA Hui-1, CAO Zhi-Yan-1, GU Shou-Qin-1, SUN Shu-Qin-2, DONG Jin-Gao-1. Analysis on Mating Type and Parasitic Fitness Diversity in Sexual Hybridization Offsprings of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2013, 46(19): 4058-4065.
[9] SHEN Ying1, LI Cheng-yun2. Current Research Status and Future Prospects of Genetic Diversity of Magnaporthe grisea Fungus [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3100-3106.
[10] . Review on the Genetic Structure of Potato Late Blight Pathogen (Phytophthora infestans(de Bary) Population [J]. Scientia Agricultura Sinica, 2007, 40(9): 1936-1942 .
[11] . Population Genetics of Phytophthora infeseans:Ⅱ—Characteristics of Mating Type,Metalaxyl Sensitivity, Mitochondrial DNA Halpotype and Replacing of Populations in Yunnan During 2000 to 2003 [J]. Scientia Agricultura Sinica, 2007, 40(4): 727-734 .
[12] ,. Mating Type and Fertility of the Rice Blast Fungus Population Derived from Guangdong Province, China [J]. Scientia Agricultura Sinica, 2005, 38(04): 837-842 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!