Scientia Agricultura Sinica

Previous Articles    

Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize

ZHANG Chuan1, LIU Dong1, WANG HongZhang1, REN Hao1, ZHAO Bin1, ZHANG JiWang1, REN BaiZhao1, LIU CunHui2, LIU Peng1   

  1. 1State Key Laboratory of Crop Biology/College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong; 2Shandong Seed Management station, Ji'nan 250100
  • Online:2022-07-27 Published:2022-07-27

Abstract: 【ObjectiveWith the global warming, summer high temperature weather occurs more frequently and more intensely, and the duration of high temperature is more longer, which is the main abiotic stress limiting the improvement of summer maize yield in Huang-Huai-Hai region. In this study, the effects of high temperature stress on dry matter production performance and grain yield of summer maize were investigated by analyzing the differences of photosynthetic characteristics, carbon assimilate accumulation and distribution and grain yield of two different heat sensitive summer maize varieties under high temperature stress at V12 stage and VT stage, respectively. 【MethodIn this study, heat resistant maize variety Zhengdan 958 (ZD958) and heat sensitive maize variety Xianyu 335 (XY335) were used as materials. The high temperature stress treatments (day 3812 h/night 2812 h) were set at V12 and VT stage, respectively, at the same time, thenormal temperature treatment (day 3212 h /night 2212 h) was set as the control. High temperature greenhouse equipped with automatic temperature and humidity control facilities was used to simulate the effect of natural field high temperature. The dynamic characteristics of leaf area index (LAI), carbon metabolism enzyme activities, photosynthetic rate and carbon assimilate accumulation and allocation were compared after high temperature stress, aimed to determine the response mechanism of dry matter production performance and grain yield to high temperature stress. 【ResultAfter high temperature stress, LAI, carbon metabolism enzyme activities, net photosynthetic rate and dry matter accumulation of two cultivars were significantly decreased. LAI, RuBP carboxylase activity, PEP carboxylase activity, net photosynthetic rate and dry matter accumulation of ZD958 and XY335 decreased by 2.98%-4.21%, 40.38%-54.46%, 16.88%-30.60%, 18.14%-25.49%, 12.83%-19.38% and 3.80%-5.07%, 56.56%-76.16%, 26.33%-33.66%, 22.37%-34.62%, 22.07%-26.72%, respectively. The decrease range of high temperature stress in VT stage was larger than that in V12 stage. After high temperature stress, transpiration rate of summer maize leaves increased, while leaf water use efficiency decreased significantly. Under high temperature stress, 13C assimilation of ZD958 and XY335 decreased by 18.48% and 22.82%, respectively, and the proportion of 13C assimilation in grains decreased. The high temperature stress significantly decreased grain number per spike and grain yield, although 1000 grain weight increased slightly. After V12 high temperature stress, 1 000 grain weight of ZD958 and XY335 increased by 2.36% and 3.17%,respectively, while thegrain number per spike and yield decreased by 62.53% and 70.50%, 45.87% and 62.87%%, respectively. After VT high temperature stress, grain number per spike and yield decreased by 70.53% and 85.41%, 66.89% and 80.61%%, respectively. The decrease range of high temperature stress in VT stage was larger than that in V12 stage, andXY335 decreased more than ZD958. 【ConclusionThe high temperature stress reduced LAI, RuBP carboxylase and PEP carboxylase activities, and significantly reduced photosynthetic rate and dry matter production performance of summer maize. Under high temperature stress, thegrain number per spike decreased significantly, which inhibited the transportation of carbohydrate from leaf and stem to grain, resulting in lower grain yield. The effects of high temperature stress on dry matter performance and grain yield of summer maize in VT stage was significantly greater than that in V12 stage. The decrease of heat sensitive variety XY335 was significantly greater than that of heat resistant variety ZD958 in two periods. 


Key words: Summer summermaize, High hightemperature stress, Carbon carbonmetabolism enzyme activity, Carbon carbonassimilate accumulation and distribution, Yieldyield

[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[4] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[5] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[6] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[7] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[8] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[9] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[10] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[11] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[12] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[13] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[14] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[15] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!