Scientia Agricultura Sinica

Previous Articles    

Resources Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China

QIAO Yuan1,2YANG Huan1LUO JinLin1WANG SiXian1LIANG LanYue1CHEN XinPing1,2ZHANG WuShuai1,2 #br#   

  1. 1College of Resources and Environment, Southwest University, Chongqing 400715; 2Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715
  • Published:2021-07-19

Abstract: ObjectiveNorthwest China is rich in land resources and is one of the four major maize production areas in China. It is critical to clarify the resource inputs and ecological environmental risks of maize production in this region.Method Based on the life cycle assessment (LCA) method to evaluate resource inputs (fertilizer, pesticide, diesel, mulch, seed, and labor) and ecological environment risks (greenhouse gas emissions, soil acidification, water eutrophication and human toxicity) of maize production in six provinces (Xinjiang, Shaanxi, Shanxi, Ningxia, Inner Mongolia, Gansu) of Northwest China during the past 15 years (2004-2018), and quantitatively evaluate the resource inputs, ecological environmental risks and spatiotemporal variations of maize production per unit area (per hectare) in this resources.ResultResource inputs and ecological environment risks of maize production were high in Northwest China. The average fertilizer input in past 15 years was 233.1 kg N·hm-2, 106.3 kg P2O5·hm-2, 23.3 kg K2O·hm-2, the pesticide, diesel, mulch, seed and labor inputs were 6.5 kg ·hm-2, 93.2 L·hm-2, 13.7 kg·hm-2, 38.8 kg·hm-2 and 120.1 h·hm-2, the average yield was 7.9 t·hm-2. The averaged greenhouse gas emissions was 4188 kg CO2-eq·hm-2, the soil acidification potential was 155.3 kg SO2-eq·hm-2, the water eutrophication 52.6 kg PO4-eq·hm-2, and the human toxicity was 2.9 kg 1, 4-DCB-eq·hm-2. Compared with 2004, the overall resource input for maize production of Northwest China in 2018 was increased, showing an overall increased trend. The rates of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer per unit area increased by 9.2%, 52.7% and 203.7%, respectively; and the rate of pesticide, diesel oil and mulch per unit area increased by 303%, 143% and 108%, respectively. The rates of seed and labor per unit area decreased by 38.6% and 50.8%, while the planting area and maize yield increased by 79% and 26.9%, respectively. On the whole, the multiple ecological environment risks showed a first increased and then decreased trend, in which the greenhouse gas emissions, soil acidification potential, water eutrophication potential and human toxicity per unit area increased by 13.6%, 15.8%, 2.6% and 302.5%, respectively. Among the 15 years of maize production in Northwest China, the highest nitrogen fertilizer input and greenhouse gas emissions per unit area were observed in 2016, and the lowest were observed in 2007. The resources inputs and ecological environment risks of maize production in different provinces of Northwest China were significantly different. In terms of unit area, the rate of nitrogen fertilizer, mulch and labor input was highest in Gansu, and lowest in Shanxi, Shaanxi and Inner Mongolia, respectively. The rate of phosphorus fertilizer and diesel was highest in Xinjiang, and the lowest was Shaanxi. The rate of potassium fertilizer was highest in Shanxi and lowest in Xinjiang. The rate of pesticides and seeds was highest in Ningxia and Xinjiang, and lowest in Shanxi. The planting area and maize grain yield were highest in Inner Mongolia and Xinjiang, and lowest in Ningxia and Shaanxi, respectively. Simultaneously, the greenhouse gas emission and soil acidification potential were highest in Gansu, the water eutrophication potential was highest in Shaanxi, and the human toxicity was highest in Ningxia and lowest in Shanxi. The comprehensive value of resources inputs and ecological environment risks for maize production in Northwest China was highest in Ningxia. Shanxi achieved the lowest comprehensive value of ecological environment risks for maize production in Northwest China. ConclusionMaize production in Northwest China is characterized by "high input, high yield and high risk", the resource inputs and ecological environment risk are quite different in different spatiotemporal scale. During 2004 to 2018, the planting area, grain yield, and resources input were totally increased slightly, while the ecological environment risk showed a first increased and then decreased trend. Maize production can be considered to incline to high-yield and low-environmental risk areas in the future. Simultaneously, optimizing the fertilizers rate, applying enhanced efficiency fertilizers, and adopting systematic management strategies would lead to achieve high yields and low ecological environment risks.

Key words: Northwest China, life cycle assessment, maize, resource input, ecological environment risk

[1] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[2] MA HongXia, SUN Hua, GUO Ning, LIU ShuSen, ZHANG HaiJian, SHI Jie. Early Molecular Diagnosis of Southern Corn Rust Based on Conventional PCR and Nested PCR Assays [J]. Scientia Agricultura Sinica, 2023, 56(9): 1686-1695.
[3] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[4] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[5] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[6] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[7] FAN Xin, LI YuXin, KUANG JiWei, YANG Ting, LIU MiaoMiao, CAO YunGang, HUANG JunRong. Preparation of Ultrasound-Assisted Zein Ethylene Scavenger Film and Its Preservation Property of Bananas [J]. Scientia Agricultura Sinica, 2023, 56(8): 1574-1584.
[8] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[9] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[10] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[11] CUI HongJie, LU ChunTing, PAN LiQin, HU Hui, ZHONG PeiYun, ZHU JieYing, ZHANG KaiZhao, HUANG XiaoHong. Curcumin Alleviates Zearalenone-Induced Oxidative Damage in Porcine Renal Epithelial Cells via SIRT1/FOXO1 Pathway [J]. Scientia Agricultura Sinica, 2023, 56(5): 1007-1018.
[12] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[13] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[14] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[15] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!