Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (5): 1007-1018.doi: 10.3864/j.issn.0578-1752.2023.05.015

• RESEARCH NOTES • Previous Articles    

Curcumin Alleviates Zearalenone-Induced Oxidative Damage in Porcine Renal Epithelial Cells via SIRT1/FOXO1 Pathway

CUI HongJie1,2(), LU ChunTing1, PAN LiQin1, HU Hui1, ZHONG PeiYun1, ZHU JieYing1, ZHANG KaiZhao1,2, HUANG XiaoHong1,2()   

  1. 1 College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002
    2 University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2021-10-21 Accepted:2022-05-17 Online:2023-03-01 Published:2023-03-13

Abstract:

【Objective】 The purpose of this study was to investigate the protective effect of curcumin (Cur) on zearalenone (ZEA)-induced oxidative damage in porcine renal epithelial cells (PK-15), and to elucidate the protective mechanism based on SIRT1/FOXO1 signaling pathway. 【Method】 The experiment was divided into 5 groups: control group, ZEA group (36.55 μg·mL-1 ZEA), Cur6.25 group (36.55 μg·mL-1 ZEA+6.25 μmol·L-1 Cur), Cur12.5 group (36.55 μg·mL-1 ZEA+12.5 μmol·L-1 Cur), and Cur25 group (36.55 μg·mL-1 ZEA +25 μmol·L-1 Cur). MTT assay was used to determine the half inhibitory concentration of ZEA and the maximum safe concentration of Cur on PK-15 cells. The morphological changes were observed by inverted microscope. The levels of intracellular reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were detected by the reagent kits. Real-time quantitative PCR was used to detect the mRNA levels of SIRT1, FOXO1, CAT and Mn-SOD. The expression levels of SIRT1, FOXO1 and Acetyl-FOXO1 proteins were detected by Western Blot. 【Result】 The IC50 of ZEA was 36.55 μg·mL-1, and the maximum safe concentration of Cur was 25 μmol·L-1. Compared with the control group, ZEA significantly decreased the cell viability of PK-15 cells (P<0.01), significantly increased the levels of ROS and MDA (P<0.01), and significantly decreased the activities of SOD and CAT (P<0.01). Compared with ZEA group, the different concentrations of Cur (6.25, 12.5, 25 μmol·L-1) significantly increased the cell viability of PK-15 cells (P<0.05) and improved the cell morphology. ROS and MDA levels induced by ZEA were also significantly reduced by Cur (P<0.01). Moreover, SOD and CAT activities in cells were significantly increased (P<0.01). qRT-PCR results showed that, compared with the control group, ZEA decreased SIRT1 mRNA expression, significantly increased FOXO1 mRNA expression (P<0.01), increased Mn-SOD mRNA expression, and significantly decreased CAT mRNA expression (P<0.01). Compared with ZEA group, mRNA expression levels of SIRT1 and CAT were increased in different degrees, FOXO1 mRNA expression levels were significantly decreased (P<0.01), and Mn-SOD mRNA expression levels were significantly increased (P<0.01) in all Cur groups. Western Blot results showed that ZEA significantly reduced SIRT1 protein expression (P<0.05), and significantly increased Acetyl-FOXO1 protein expression (P<0.01). Compared with ZEA group, SIRT1 protein expression was significantly increased (P<0.01), while Acetyl-FOXO1 protein expression was significantly decreased (P<0.01) in all Cur groups.【Conclusion】 Cur could up-regulate the expression of SIRT1, reduce the acetylation level of FOXO1, and induce the expression of antioxidant enzymes Mn-SOD and CAT, thereby eliminating ROS, reducing the level of MDA, and alleviating the oxidative damage of ZEA on PK-15 cells.

Key words: curcumin, zearalenone, oxidative stress, silencing information regulator 1 (SIRT1)

Table 1

Primer sequences for Real-time PCR"

基因 Target gene 登录号 Accession No. 引物序列Primer sequence (5′→3′) 片段长度 Product length (bp)
SIRT1 NM_001145750.2 F:CGGCAGGAGAAGGAAACAATGGG
R:TCGTCGTCGTCGTCGTAGAAGTC
88
FOXO1 NM_214014.3 F:TGTCCTACGCCGACCTCATCAC
R:GCACGCTCTTGACCATCCACTC
96
CAT NM_214301.2 F:CGCCTATTTGCCTATCCTGACACTC
R:GCACGGAAGGGACAGTTCACAG
83
Mn-SOD NM_214127.2 F:TTTCTGGACAAATCTGAGCCCTAACG
R:CGACGGATACAGCGGTCAACTTC
122
β-Actin NC_010445.4 F:CAAGGACCTCTACGCCAACAC
R: TGGAGGCGCGATGATCTT
130

Table 2

Real-time PCR reaction system"

试剂
Reagent
体积
Volume (μL)
TB Green Premix Ex Taq П 10
上游引物 Upstream Primer 0.8
下游引物 Travelling Primer 0.8
Rox Reference Dye П (50×) 0.4
DNA模板 DNA template 2
灭菌水 Sterile water 6
总体系 Overall system 20

Table 3

PCR reaction procedure"

步骤 Step 循环数 Number of cycles 温度Temperature (℃) 时间Time (s)
预变性 Pre-denaturation 1 95 30
PCR反应PCR reaction 40 95 5
40 60 34

Fig. 1

Inhibitory effect of ZEA on PK-15 cell viability"

Fig. 2

Effect of curcumin on the viability of PK-15 cells Compared with control group, * means significant difference (P<0.05), ** means extremely significant difference (P<0.01)"

Fig. 3

Effect of different concentration of Cur on PK-15 cell morphology (Scale =100 μm)"

Fig. 4

Effect of different concentrations of Cur on ZEA-induced morphological changes of PK-15 cells (Scale =100 μm)"

Fig. 5

Effects of different concentrations of Cur on cell viability of PK-15 cells induced by ZEA Compared with control group, * means significant difference (P<0.05), and ** means extremely significant difference (P<0.01); compared with control group, # means significant difference (P<0.05), and ## means extremely significant difference (P<0.01). The same as below"

Fig. 6

Effect of curcumin on ZEA-induced ROS in PK-15 cells(Scale = 100 μm)"

Fig. 7

Relative fluorescence intensity of reactive oxygen species"

Fig. 8

Effects of Cur and ZEA on oxidative stress index in PK-15 cells A: Sod activity B: Cat activity C: MDA content"

Fig. 9

Cur and Zea effect on the expression of oxidative stress-related gene mRNA in PK-15 cells A: SIRT1 mRNA expression; b: FOXO1 mRNA expression; C: Mn-SOD mRNA expression; D: CAT mRNA expression"

Fig. 10

Cur and Zea effect on the expression of oxidative stress related gene protein in PK-15 cells A: SIRT1, Acetyl-FOXO1 and FOXO1 protein band; B: SIRT1 protein expression; C: Acetyl-FOXO1 protein expression"

[1]
ZINEDINE A, SORIANO J M, MOLTÓ J C, MAÑES J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of Zearalenone: An oestrogenic mycotoxin. Food and Chemical Toxicology, 2007, 45(1): 1-18. doi:10.1016/j.fct.2006.07.030.

doi: 10.1016/j.fct.2006.07.030 pmid: 17045381
[2]
ALSHANNAQ A, YU J H. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health, 2017, 14(6): 632. doi:10.3390/ijerph14060632.

doi: 10.3390/ijerph14060632
[3]
GRUBER-DORNINGER C, JENKINS T, SCHATZMAYR G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins, 2019, 11(7): 375. doi:10.3390/toxins11070375.

doi: 10.3390/toxins11070375
[4]
王国强, 刘耀东, 段胜和. 2019年上半年饲料及饲料原料霉菌毒素污染及调查报告. 养猪, 2019(6): 17-20. doi:10.13257/j.cnki.21-1104/s.2019.06.008.

doi: 10.13257/j.cnki.21-1104/s.2019.06.008
WANG G Q, LIU Y D, DUAN S H. Mycotoxin contamination and investigation of feed and feed materials in the first half of 2019. Swine Production, 2019(6): 17-20. doi:10.13257/j.cnki.21-1104/s.2019.06. 008.(in Chinese)

doi: 10.13257/j.cnki.21-1104/s.2019.06. 008
[5]
ROPEJKO K, TWARUŻEK M. Zearalenone and its metabolites- general overview, occurrence, and toxicity. Toxins, 2021, 13(1): 35. doi:10.3390/toxins13010035.

doi: 10.3390/toxins13010035
[6]
KNUTSEN H K, ALEXANDER J, BARREGÅRD L, BIGNAMI M, BRÜSCHWEILER B, CECCATELLI S, COTTRILL B, DINOVI M, EDLER L, GRASL-KRAUPP B, et al. Risks for animal health related to the presence of Zearalenone and its modified forms in feed. EFSA Journal, 2017, 15(7): e04851. doi:10.2903/j.efsa.2017.4851.

doi: 10.2903/j.efsa.2017.4851
[7]
姜淑贞, 孙华, 黄丽波, 杨在宾, 王淑静, 刘法孝, F. CHI. 不同水平玉米赤霉烯酮对断奶仔猪血清代谢产物和肝肾组织病理学影响. 中国农业科学, 2014, 47(18): 3708-3715. doi:10.3864/j.issn.0578-1752.2014.18.019.

doi: 10.3864/j.issn.0578-1752.2014.18.019
JIANG S Z, SUN H, HUANG L B, YANG Z B, WANG S J, LIU F X, F. CHI. Effects of Zearalenone contaminated diets on serum metabolite and histopathology of liver and kidney in weaned piglets. Scientia Agricultura Sinica, 2014, 47(18): 3708-3715. doi:10.3864/j.issn.0578-1752.2014.18.019.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2014.18.019
[8]
LIANG Z, REN Z H, GAO S, CHEN Y, YANG Y Y, YANG D, DENG J L, ZUO Z C, WANG Y, SHEN L H. Individual and combined effects of deoxynivalenol and Zearalenone on mouse kidney. Environmental Toxicology and Pharmacology, 2015, 40(3): 686-691. doi:10.1016/j.etap.2015.08.029.

doi: 10.1016/j.etap.2015.08.029 pmid: 26407231
[9]
WANG N, LI P, PAN J W, WANG M Y, LONG M, ZANG J, YANG S H. Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by Zearalenone in mice. Scientific Reports, 2018, 8(1): 13646. doi:10.1038/s41598-018-32006-z.

doi: 10.1038/s41598-018-32006-z
[10]
ZHENG W L, WANG B J, LI X, WANG T, ZOU H, GU J H, YUAN Y, LIU X Z, BAI J F, BIAN J C, LIU Z P. Zearalenone promotes cell proliferation or causes cell death? Toxins, 2018, 10(5): 184. doi: 10.3390/toxins10050184.

doi: 10.3390/toxins10050184
[11]
ZHENG W L, WANG B J, SI M X, ZOU H, SONG R L, GU J H, YUAN Y, LIU X Z, ZHU G Q, BAI J F, BIAN J C, LIU Z P. Zearalenone altered the cytoskeletal structure via ER stress- Autophagy-oxidative stress pathway in mouse TM4 sertoli cells. Scientific Reports, 2018, 8: 3320. Doi:10.1038/S41598-018-21567-8.

doi: 10.1038/S41598-018-21567-8
[12]
YU J J, AUWERX J. The role of sirtuins in the control of metabolic homeostasis. Annals of the New York Academy of Sciences, 2009, 1173: E10-E19. doi:10.1111/j.1749-6632.2009.04952.x.

doi: 10.1111/j.1749-6632.2009.04952.x
[13]
ZHANG X J, JIANG L S, LIU H M. Forkhead box protein O1: Functional diversity and post-translational modification, a new therapeutic target? Drug Design, Development and Therapy, 2021, 15: 1851-1860. doi:10.2147/DDDT.S305016.

doi: 10.2147/DDDT.S305016 pmid: 33976536
[14]
LICZBIŃSKI P, MICHAŁOWICZ J, BUKOWSKA B. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research. Phytotherapy Research, 2020, 34(8): 1992-2005. doi:10.1002/ptr.6663.

doi: 10.1002/ptr.6663 pmid: 32141677
[15]
SIKORA-POLACZEK M, BIELAK-ZMIJEWSKA A, SIKORA E. Molecular and cellular mechanisms of curcumin action: Beneficial effect on organism. Postepy Biochemii, 2011, 57(1): 74-84.
[16]
BEN SALEM I, PROLA A, BOUSSABBEH M, GUILBERT A, BACHA H, ABID-ESSEFI S, LEMAIRE C. Crocin and Quercetin protect HCT116 and HEK293 cells from Zearalenone-induced apoptosis by reducing endoplasmic reticulum stress. Cell Stress & Chaperones, 2015, 20(6): 927-938. doi:10.1007/s12192-015-0613-0.

doi: 10.1007/s12192-015-0613-0
[17]
CAO L, ZHAO J, MA L, CHEN J W, XU J R, RAHMAN S U, FENG S B, LI Y, WU J J, WANG X C. Lycopene attenuates Zearalenone- induced oxidative damage of piglet Sertoli cells through the nuclear factor erythroid-2 related factor 2 signaling pathway. Ecotoxicology and Environmental Safety, 2021, 225: 112737. doi:10.1016/j.ecoenv.2021.112737.

doi: 10.1016/j.ecoenv.2021.112737
[18]
LECOMTE S, LELONG M, BOURGINE G, EFSTATHIOU T, SALIGAUT C, PAKDEL F. Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation. Toxicology and Applied Pharmacology, 2017, 325: 61-70. doi:10.1016/j.taap.2017.04.005.

doi: S0041-008X(17)30154-0 pmid: 28396216
[19]
KHOSROKHAVAR R, RAHIMIFARD N, SHOEIBI S, HAMEDANI M P, HOSSEINI M J. Effects of zearalenone and alpha-zearalenol in comparison with raloxifene on t47d cells. Toxicology Mechanisms and Methods, 2009, 19(3): 246-250. doi:10.1080/15376510802455347.

doi: 10.1080/15376510802455347 pmid: 19730705
[20]
ZONG S H, ZENG G F, FANG Y, PENG J Z, ZOU B, GAO T H, ZHAO J M. The effects of α-Zearalanol on the proliferation of bone-marrow-derived mesenchymal stem cells and their differentiation into osteoblasts. Journal of Bone and Mineral Metabolism, 2016, 34(2): 151-160. doi:10.1007/s00774-015-0659- 1.

doi: 10.1007/s00774-015-0659-1 pmid: 25944420
[21]
CORTINOVIS C, CALONI F, SCHREIBER N B, SPICER L J. Effects of fumonisin B1 alone and combined with deoxynivalenol or Zearalenone on porcine granulosa cell proliferation and steroid production. Theriogenology, 2014, 81(8): 1042-1049. doi:10.1016/j.theriogenology.2014.01.027.

doi: 10.1016/j.theriogenology.2014.01.027 pmid: 24576714
[22]
ZHENG W L, PAN S Y, WANG G G, WANG Y J, LIU Q, GU J H, YUAN Y, LIU X Z, LIU Z P, BIAN J C. Zearalenone impairs the male reproductive system functions via inducing structural and functional alterations of Sertoli cells. Environmental Toxicology and Pharmacology, 2016, 42: 146-155. doi:10.1016/j.etap.2016.01.013.

doi: 10.1016/j.etap.2016.01.013 pmid: 26851377
[23]
SANG Y Q, LI W Z, ZHANG G Y. The protective effect of resveratrol against cytotoxicity induced by mycotoxin, Zearalenone. Food & Function, 2016, 7(9): 3703-3715. doi:10.1039/c6fo00191b.

doi: 10.1039/c6fo00191b
[24]
QIN X S, CAO M J, LAI F N, YANG F, GE W, ZHANG X F, CHENG S F, SUN X F, QIN G Q, SHEN W, LI L. Oxidative stress induced by Zearalenone in porcine granulosa cells and its rescue by curcumin in vitro. PLoS ONE, 2015, 10(6): e0127551. doi:10.1371/journal.pone.0127551.

doi: 10.1371/journal.pone.0127551
[25]
WANG J J, LI M M, ZHANG W, GU A X, DONG J W, LI J P, SHAN A S. Protective effect of N-acetylcysteine against oxidative stress induced by Zearalenone via mitochondrial apoptosis pathway in SIEC02 cells. Toxins, 2018, 10(10): 407. doi:10.3390/toxins10100407.

doi: 10.3390/toxins10100407
[26]
ZHENG S Z, FU Y M, CHEN A P. De novo synthesis of glutathione is a prerequisite for curcumin to inhibit hepatic stellate cell (HSC) activation. Free Radical Biology and Medicine, 2007, 43(3): 444-453. doi:10.1016/j.freeradbiomed.2007.04.016.

doi: 10.1016/j.freeradbiomed.2007.04.016 pmid: 17602960
[27]
SAHIN K, ORHAN C, TUZCU Z, TUZCU M, SAHIN N. Curcumin ameloriates heat stress via inhibition of oxidative stress and modulation of Nrf2/HO-1 pathway in quail. Food and Chemical Toxicology, 2012, 50(11): 4035-4041. doi:10.1016/j.fct.2012.08.029.

doi: 10.1016/j.fct.2012.08.029 pmid: 22939939
[28]
张婧菲. 姜黄素对动物线粒体氧化损伤的保护作用及其抗氧化机制研究[D]. 南京: 南京农业大学, 2015.
ZHANG J F. The protective effects of curcumin on mitochondrial oxidant damages in animals and the potential antioxidant mechanism[D]. Nanjing: Nanjing Agricultural University, 2015.(in Chinese)
[29]
李光辉, 钟秀伶, Aamir Nawab, 赵一, 效梅, 刘文超, 兰瑞霞, 吴江, 安立龙. 姜黄素对罗曼蛋鸡血液和组织抗氧化性能的影响. 安徽农业科学, 2018, 46(21): 96-99. doi:10.3969/j.issn.0517-6611.2018.21.027.

doi: 10.3969/j.issn.0517-6611.2018.21.027
LI G H, ZHONG X L, NAWAB A, ZHAO Y, XIAO M, LIU W C, LAN R X, WU J, AN L L. Effects of curcumin on the antioxidant properties in the blood and tissues of Roman laying hens. Journal of Anhui Agricultural Sciences, 2018, 46(21): 96-99. doi:10.3969/j.issn.0517-6611.2018.21.027.(in Chinese)

doi: 10.3969/j.issn.0517-6611.2018.21.027
[30]
姜春晖, 孙旭东, 唐燕, 罗胜缤, 徐闯, 陈媛媛. 姜黄素通过Nrf2信号通路对H2O2诱导奶牛乳腺上皮细胞氧化应激的缓解. 中国农业科学, 2021, 54(8): 1787-1794. doi:10.3864/j.issn.0578-1752.2021.08.017.

doi: 10.3864/j.issn.0578-1752.2021.08.017
JIANG C H, SUN X D, TANG Y, LUO S B, XU C, CHEN Y Y. Curcumin alleviates H2O2-induced oxidative stress in bovine mammary epithelial cells via the Nrf2 signaling pathway. Scientia Agricultura Sinica, 2021, 54(8): 1787-1794. doi:10.3864/j.issn.0578-1752.2021.08.017.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.08.017
[31]
CARAFA V, ROTILI D, FORGIONE M, CUOMO F, SERRETIELLO E, HAILU G S, JARHO E, LAHTELA-KAKKONEN M, MAI A, ALTUCCI L. Sirtuin functions and modulation: from chemistry to the clinic. Clinical Epigenetics, 2016, 8: 61. doi:10.1186/s13148-016-0224-3.

doi: 10.1186/s13148-016-0224-3 pmid: 27226812
[32]
CHEN J Y, LU Y, TIAN M Y, HUANG Q R. Molecular mechanisms of FOXO1 in adipocyte differentiation. Journal of Molecular Endocrinology, 2019, 62(3): R239-R253. doi:10.1530/JME-18-0178.

doi: 10.1530/JME-18-0178
[1] XI MengXue, SHEN Dan, SHI YiFan, LI ChunMei. Effects of TBHQ on Pyroptosis, Necroptosis and Inflammatory Damage of Chicken Embryonic Lung Tissues Induced by PM2.5 from Chicken Houses [J]. Scientia Agricultura Sinica, 2023, 56(4): 779-787.
[2] TAO WenJing, ZHANG ZiTing, LIU Yuan, SONG Dan, LI XiangChen. Inhibitory Effect of N-acetylcysteine on Bisphenol A-Induced Apoptosis and Inflammatory Response in Porcine Kidney Cells [J]. Scientia Agricultura Sinica, 2023, 56(3): 549-558.
[3] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[4] JIANG ChunHui,SUN XuDong,TANG Yan,LUO ShengBin,XU Chuang,CHEN YuanYuan. Curcumin Alleviates H2O2-Induced Oxidative Stress in Bovine Mammary Epithelial Cells Via the Nrf2 Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(8): 1787-1794.
[5] HUANG LiBo,WANG JinQuan,GAO WenBo,CHEN HongJu,HOU YanMeng,YUAN XueJun,WANG ChunYang. Effects of Dietary Zearalenone Adsorbent on the Distribution and Expression of LC3 and PCNA in the Uterus of Gilts [J]. Scientia Agricultura Sinica, 2021, 54(18): 4008-4017.
[6] LÜ ChuYang,DENG PingChuan,ZHANG XiaoLi,SUN YuChao,LIANG WuSheng,HU DongWei. Transcriptomic Analysis of Sclerotia Formation Induced by Low Temperature in Villosiclava virens [J]. Scientia Agricultura Sinica, 2020, 53(22): 4571-4583.
[7] LI HanTong,JIA ChengLi,ZHANG ShuWen,LU Jing,PANG XiaoYang,LIU Lu,LÜ JiaPing. Chromium (III) Stress Alleviation by Sulfur Compounds During Chromium Bio-enrichment by Saccharomyces cerevisiae [J]. Scientia Agricultura Sinica, 2019, 52(6): 1078-1089.
[8] ZHOU Min, ZHOU XueMei, YANG LiJie, HUANG LiBo, FENG Lei, SHAO MingHui, YANG Chen, YANG WeiRen, YANG ZaiBin, JIANG ShuZhen. Effects of Zearalenone on Expression of Heat Shock Protein 70 and Morphology of Uterus Tissues of Post-Weaning Piglets [J]. Scientia Agricultura Sinica, 2018, 51(4): 778-788.
[9] DU Jiao, WANG YaBo, LI XueHua, HUANG ZhiQiang, YANG YuHeng, BI ChaoWei, YU Yang. Function analysis ofγ-glutamyl phosphate reductase-encoded gene SsGPR1 in Sclerotinia sclerotiorum [J]. Scientia Agricultura Sinica, 2018, 51(19): 3694-3703.
[10] JIANG Shu-zhen, SUN Hua, HUANG Li-bo, YANG Zai-bin, WANG Shu-jing, LIU Fa-xiao, F. Chi. Effects of Zearalenone Contaminated Diets on Serum Metabolite and Histopathology of Liver and Kidney in Weaned Piglets [J]. Scientia Agricultura Sinica, 2014, 47(18): 3708-3715.
[11] TANG Qin, DENG Yuan-yuan, ZHANG Rui-fen, ZHANG Yan, ZHANG Ming-wei, WEI Zhen-cheng, TANG Xiao-jun, LIU Lei, TI Hui-hui, MA Yong-xuan. Effect of Momordica charantia Fruit Aqueous Extract on Serum Lipids Metabolic Disorder in Restraint Mice [J]. Scientia Agricultura Sinica, 2014, 47(16): 3300-3307.
[12] ZHAO Jiao, ZHOU Zhao-Hong, LIANG Xiao-Fang, MAO Xiang-Bing, CHEN Dai-Wen, YU Bing. Effects of GSPs and VE on Growth Performance, Serum Redox Status and Hepatic Oxidative Damage in Piglets Under Oxidative Stress [J]. Scientia Agricultura Sinica, 2013, 46(19): 4157-4164.
[13] LUO Jin-Xiang, DING Wei, ZHANG Yong-Qiang, YANG Zhen-Guo, LI Yang, DING Li-Juan. Acaricidal Activity of Bisdemethoxycurcumin and N-methylpyrazolebisdemethoxycurcumin Against Tetranychus cinnabarinus (Boisduval) and Their Effects on Enzymes Activity in the Mite [J]. Scientia Agricultura Sinica, 2013, 46(13): 2833-2844.
[14] SONG Gui-Fang-., FAN Wei-Li, WANG Jun-Juan, WANG De-Long, WANG Shuai, ZHOU Kai, YE Wu-Wei. Cloning and Characterization of Drought-stress Responsive Gene GhGR in Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2012, 45(8): 1644-1652.
[15] JIANG Shu-Zhen, YANG Wei-Ren, YANG Zai-Bin, WANG Shu-Jing, LIU Fa-Xiao, ChiF . Effects of Feeding Purified Zearalenone Contaminated Diets with or Without Modified Montmorillonite on Immunological Measurements of Postweaning Piglets [J]. Scientia Agricultura Sinica, 2012, 45(16): 3382-3390.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!