Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (9): 1686-1695.doi: 10.3864/j.issn.0578-1752.2023.09.006

• PLANT PROTECTION • Previous Articles     Next Articles

Early Molecular Diagnosis of Southern Corn Rust Based on Conventional PCR and Nested PCR Assays

MA HongXia(), SUN Hua, GUO Ning, LIU ShuSen, ZHANG HaiJian, SHI Jie()   

  1. Plant Protection Institute of Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs/IPM Centre of Hebei Province, Baoding 071000, Hebei
  • Received:2022-12-25 Accepted:2023-03-03 Online:2023-05-01 Published:2023-05-10

Abstract:

【Objective】The objective of this study is to establish a rapid detection method for Puccinia polysora during the incubation period based on the nested PCR, and to provide support for prediction and control of southern corn rust.【Method】The nested PCR primers for the specific detection of P. polysora were designed using the variant region of the ITS sequence, including outer primer NX471-F/ITS4 and inner primer NX255-F/NX255-R. For amplification, the 20 µL PCR reaction mixture contained: Ex Taq DNA polymerase (5 U·μL-1) 0.15 μL, 10×Ex Taq Buffer (Mg2+ plus) 2 μL, dNTP Mixture (2.5 mmol·L-1 each) 1.6 μL, forward and reverse primers (10 μmol·L-1) 0.3 μL each, template DNA 1 μL, ddH2O 14.65 μL. The PCR program was performed as follows: the outer primer NX471-F/ITS4 was used for the first amplification and denaturation at 95℃ for 7 min, 30 cycles of denaturation at 95℃ for 30 s, annealing at 55℃ for 30 s, extension at 72℃ for 45 s, and a final extension at 72℃ for 7 min. The product was diluted 20 times and used as the template for the second run of the nested PCR, which was amplified with the inner primer NX255-F/NX255-R, and the PCR program was denaturation at 95℃ for 7 min; 30 cycles of 95℃ for 30 s, 66℃ for 30 s, and 72℃ for 26 s; 72℃ for 7 min. At the same time, the inner primer was selected for conventional PCR, in which the reaction mixture was the same as the nested PCR, and the amplification conditions were the same as the second run, except that the number of reaction cycles was 38. Under these conditions, the specificity was detected for P. polysora, Puccinia sorghi, Melampsora laricipopulina and seven other common maize pathogens, and the sensitivity of nested PCR was tested using genomic DNA of P. polysora and DNA from artificially inoculated leaves.【Result】Nested PCR could specifically detect P. polysora from all tested fungi, with a 255 bp target fragment. The lowest detection limit of the nested PCR was 10 fg·μL-1, and the sensitivity was 500 times that of the conventional PCR. For the samples containing 500-2.5×104 urediniospores per gram of artificially inoculated leaves, the detection rates of conventional PCR and nested PCR were 0 and 85.71%, respectively. Nested PCR could detect at least 1 000 urediniospores. For the samples containing 1-7 uredia per gram of artificially inoculated leaves, the detection rates of conventional PCR and nested PCR were 76.19% and 100%, respectively. Conventional PCR and nested PCR could detect at least 2 and 1 uredia, respectively. For the samples containing 1-7 infection sites per gram of artificially inoculated leaves, the detection rates of conventional PCR and nested PCR were 14.29% and 66.67%, respectively. Conventional PCR and nested PCR could detect at least 6 and 3 infection sites, respectively.【Conclusion】With NX471-F/ITS4 as the outer primer and NX255-F/NX255-R as the inner primer, a detection method for P. polysora was established based on the nested PCR, which could quickly, efficiently and accurately detect the P. polysora during the incubation period in maize leaves.

Key words: southern corn rust, Puccinia polysora, conventional PCR, nested PCR

Fig. 1

Primers position and sequence comparison of ITS"

Fig. 2

Specificity test of nested PCR detection for P. polysora"

Fig. 3

Sensitivity of conventional PCR and nested PCR detection for P. polysora"

Fig. 4

Results of detection of artificial diseased leave by conventional PCR and nested PCR"

[1]
王晓鸣, 石洁, 晋齐鸣, 李晓, 孙世贤. 玉米病虫害田间手册——病虫害鉴别与抗性鉴定. 北京: 中国农业科学技术出版社, 2010: 27.
WANG X M, SHI J, JIN Q M, LI X, SUN S X. Field Manual of Maize Pests and Diseases—Identification and Evaluation on the Resistance to Insect Pest and Disease. Beijing: China Agricultural Science and Technology Press, 2010: 27. (in Chinese)
[2]
隋鹏飞, 王琰, 张茹琴, 夏淑春, 王志奎, 鄢洪海. 山东省玉米南方锈病菌遗传多样性及初侵染来源分析//彭友良,李向东.中国植物病理学会2017年学术年会论文集. 北京: 中国农业科学技术出版社, 2017.
SUI P F, WANG Y, ZHANG R Q, XIA S C, WANG Z K, YAN H H. Genetic diversity and analysis of initial infection sources of Puccinia polysora causing southern rust of maize in Shandong Province//PENG Y L, LI X D. Proceedings of the 2017 Annual Meeting of Chinese Society for Plant Pathology. Beijing: China Agricultural Science and Technology Press, 2017. (in Chinese)
[3]
郭云燕, 陈茂功, 孙素丽, 武小菲, 江凯, 朱振东, 李洪杰, 何月秋, 王晓鸣. 中国玉米南方锈病病原菌遗传多样性. 中国农业科学, 2013, 46(21): 4523-4533. doi: 10.3864/j.issn.0578-1752. 2013.21.015.

doi: 10.3864/j.issn.0578-1752.2013.21.015
GUO Y Y, CHEN M G, SUN S L, WU X F, JIANG K, ZHU Z D, LI H J, HE Y Q, WANG X M. Genetic diversity of Puccinia polysora Underw. in China. Scientia Agricultura Sinica, 2013, 46(21): 4523-4533. doi: 10.3864/j.issn.0578-1752.2013.21.015. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2013.21.015
[4]
刘杰, 姜玉英, 曾娟, 纪国强, 刘莉, 邱坤, 徐永伟. 2015年我国玉米南方锈病重发特点和原因分析. 中国植保导刊, 2016, 36(5): 44-47.
LIU J, JIANG Y Y, ZENG J, JI G Q, LIU L, QIU K, XU Y W. Analysis of characters and factors on outbreak of southern corn rust in China in 2015. China Plant Protection, 2016, 36(5): 44-47. (in Chinese)
[5]
杨久涛, 张辉, 张继波, 邢晓飞, 韩伟, 国栋. 2021年山东省玉米南方锈病暴发流行原因分析与防控对策. 农业灾害研究, 2022, 12(6): 5-6, 9.
YANG J T, ZHANG H, ZHANG J B, XING X F, HAN W, GUO D. Outbreak of southern maize rust in Shandong Province in 2021 cause analysis and prevention and control countermeasures. Journal of Agricultural Catastrophology, 2022, 12(6): 5-6, 9. (in Chinese)
[6]
胡务义, 郑明祥, 阮义理, 潘飞云, 余北疆, 余英凤, 何万娥. 玉米南方型锈病发生规律与防治技术初步研究. 中国植保导刊, 2003, 23(12): 9-12.
HU W Y, ZHENG M X, RUAN Y L, PAN F Y, YU B J, YU Y F, HE W E. Preliminary studies on the incidences rules of Puccinia polysora and its control technique. China Plant Protection, 2003, 23(12): 9-12. (in Chinese)
[7]
谭华, 邹成林, 郑德波, 韦新兴, 黄爱花, 蒋维萍, 韦慧, 黄开健. 分子标记辅助选择抗南方玉米锈病材料. 广东农业科学, 2016, 43(7): 6-10.
TAN H, ZOU C L, ZHENG D B, WEI X X, HUANG A H, JIANG W P, WEI H, HUANG K J. Selection of materials with resistance to southern corn rust (SCR) by marker-assistant selection (MAS) in maize (Zea mays L.). Guangdong Agricultural Sciences, 2016, 43(7): 6-10. (in Chinese)
[8]
ZHANG Y, XU L, ZHANG D F, DAI J R, WANG S C. Mapping of southern corn rust-resistant genes in the W2D inbred line of maize (Zea mays L.). Molecular Breeding, 2010, 25(3): 433-439.

doi: 10.1007/s11032-009-9342-3
[9]
蒋雅娟, 贺岩, 张登峰, 徐丽, 苏胜宝, 戴景瑞, 王守才. 玉米抗南方型锈病基因共分离分子标记的研究. 作物学报, 2007, 33(5): 849-852.
JIANG Y J, HE Y, ZHANG D F, XU L, SU S B, DAI J R, WANG S C. Co-segregation molecular marker for southern corn rust resistance trait. Acta Agronomica Sinica, 2007, 33(5): 849-852. (in Chinese)
[10]
ZHOU C J, CHEN C X, CAO P X, WU S W, SUN J W, JIN D M, WANG B. Characterization and fine mapping of RppQ, a resistance gene to southern corn rust in maize. Molecular Genetics and Genomics, 2007, 278(6): 723-728.

doi: 10.1007/s00438-007-0288-z
[11]
陈翠霞, 邢全华, 梁春阳, 于元杰, 梁凤山, 王洪刚, 王振林, 王斌. 南方玉米锈病抗病基因的定位及不同遗传背景对基因标记的比较分析. 遗传学报, 2003, 30(4): 341-344.
CHEN C X, XING Q H, LIANG C Y, YU Y J, LIANG F S, WANG H G, WANG Z L, WANG B. Genetic mapping of resistant gene to southern corn rust and the tagging analysis on different genetic background. Acta Genetica Sinica, 2003, 30(4): 341-344. (in Chinese)
[12]
ZHAO P F, ZHANG G B, WU X J, LI N, SHI D Y, ZHANG D F, JI C F, XU M L, WANG S C. Fine mapping of Rppp25, a southern rust resistance gene in maize. Journal of Integrative Plant Biology, 2013, 55(5): 462-472.

doi: 10.1111/jipb.12027
[13]
鄢洪海, 王琰, 张茹琴, 夏淑春, 王志奎, 宋希云. 基于ISSR-PCR对山东玉米多堆柄锈菌遗传多样性的研究及其初侵染菌源的推测. 菌物学报, 2018, 37(2): 157-165.
YAN H H, WANG Y, ZHANG R Q, XIA S C, WANG Z K, SONG X Y. Genetic diversity and deduction of primary infection source of Puccinia polysora in Shandong Province based on ISSR-PCR. Mycosystema, 2018, 37(2): 157-165. (in Chinese)
[14]
王晓鸣, 刘骏, 郭云燕, 段灿星, 朱振东, 孙素丽, 杨知还. 中国玉米南方锈病初侵染源的多源性. 玉米科学, 2020, 28(3): 1-14, 30.
WANG X M, LIU J, GUO Y Y, DUAN C X, ZHU Z D, SUN S L, YANG Z H. Multiorigins of initial infection sources of Puccinia polysora causing southern rust of maize in China. Journal of Maize Sciences, 2020, 28(3): 1-14, 30. (in Chinese)
[15]
邢国珍, 魏馨, 李晶晶, 李闯, 刘娜, 蒋士君, 李春奇, 郑文明. 玉米南方锈病和普通锈病分子检测技术研究. 中国农业大学学报, 2017, 22(3): 6-11.
XING G Z, WEI X, LI J J, LI C, LIU N, JIANG S J, LI C Q, ZHENG W M. Molecular detection of Puccinia polysora Underw. and P. sorghi Schw. Journal of China Agricultural University, 2017, 22(3): 6-11. (in Chinese)
[16]
于凯. 玉米南方锈病的分子检测与玉米抗病性机制的研究[D]. 杨凌: 西北农林科技大学, 2010.
YU K. Molecule detection of Puccinia polysora and resistance mechanism to southern corn rust in maize[D]. Yangling: Northwest A & F University, 2010. (in Chinese)
[17]
CROUCH J A, SZABO L J. Real-time PCR detection and discrimination of the southern and common corn rust pathogens Puccinia polysora and Puccinia sorghi. Plant Disease, 2011, 95(6): 624-632.

doi: 10.1094/PDIS-10-10-0745
[18]
张克瑜, 李磊福, 谷医林, 孙秋玉, 马占鸿. 多堆柄锈菌潜育期侵染量实时荧光定量PCR检测体系的建立. 植物保护学报, 2022, 49(3): 832-839.
ZHANG K Y, LI L F, GU Y L, SUN Q Y, MA Z H. Establishment of quantitative real-time PCR detection system for latent infection of southern corn rust pathogen Puccinia polysora. Journal of Plant Protection, 2022, 49(3): 832-839. (in Chinese)
[19]
汤春蕾. 小麦叶片上潜伏期条锈菌的巢式PCR检测及小麦与条锈菌互作中相关激酶类基因的表达谱分析[D]. 杨凌: 西北农林科技大学, 2008.
TANG C L. Detection of Puccinia striiformis in latent infected wheat leaves by nested PCR and expression profiles analysis of protein kinase during interaction between wheat and stripe rust[D]. Yangling: Northwest A & F University, 2008. (in Chinese)
[20]
傅华英, 葛丹凤, 李晓燕, 吴小斌, 陈如凯, 高三基. 甘蔗赤条病菌巢式PCR检测. 植物保护学报, 2017, 44(2): 276-282.
FU H Y, GE D F, LI X Y, WU X B, CHEN R K, GAO S J. Nested-PCR detection of Acidovorax avenae subsp. avenae, the pathogen of red stripe on sugarcane. Journal of Plant Protection, 2017, 44(2): 276-282. (in Chinese)
[21]
王楠, 李志勇, 董立, 白辉, 朱彦彬, 全建章, 董志平. 谷子锈菌巢式PCR检测体系的建立. 植物病理学报, 2015, 45(4): 438-442.
WANG N, LI Z Y, DONG L, BAI H, ZHU Y B, QUAN J Z, DONG Z P. Establishment of a nested PCR detection system of Uromyces setariae-italicae. Acta Phytopathologica Sinica, 2015, 45(4): 438-442. (in Chinese)
[22]
吴伟怀, 刘宝慧, 鹿鹏鹏, 梁艳琼, 贺春萍, 李锐, 易克贤. 甘蔗褐锈病菌单管巢式PCR检测体系的建立. 中国糖料, 2022, 44(3): 1-7.
WU W H, LIU B H, LU P P, LIANG Y Q, HE C P, LI R, YI K X. Establishment of single tube nested PCR detection system for Puccinia melanocephala. Sugar Crops of China, 2022, 44(3): 1-7. (in Chinese)
[23]
WILSON A, SIMPSON D, CHANDLER E, JENNINGS P, NICHOLSON P. Development of PCR assays for the detection and differentiation of Fusarium sporotrichioides and Fusarium langsethiae. FEMS Microbiology Letters, 2004, 233(1): 69-76.

doi: 10.1016/j.femsle.2004.01.040
[24]
徐鑫, 边勇, 陈哲, 孙悦, 刘子璐, 胡渤洋, 武扬, 张国庆. 基于DNA条形码的桑黄真菌分子鉴定. 北京农学院学报, 2019, 34(1): 20-27.
XU X, BIAN Y, CHEN Z, SUN Y, LIU Z L, HU B Y, WU Y, ZHANG G Q. Molecular identification of ‘Sang Huang’ by DNA barcoding. Journal of Beijing University of Agriculture, 2019, 34(1): 20-27. (in Chinese)
[25]
田擎. 平头炭疽菌、黑白轮枝菌、大丽轮枝菌及大豆根部病原菌的LAMP检测[D]. 南京: 南京农业大学, 2016.
TIAN Q. LAMP detection of Colletetrichum truncatum, Verticillium albo-atrum, V. dahliae and soybean root pathogens[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
[26]
程云方. 基于真菌基因组同源性分析的曲霉属特异性分子标记筛选[D]. 荆州: 长江大学, 2012.
CHENG Y F. Screening of Aspergillus specific molecular markers based on homology analysis of fungal genomes[D]. Jingzhou: Yangtze University, 2012. (in Chinese)
[27]
刘国霞, 谭晴晴, 齐军山, 王福玉, 陈雪燕, 范阳阳, 胡悦, 步迅, 张全芳. 基于EF-1α序列位点特异性PCR快速鉴定小麦茎基腐病优势病原菌假禾谷镰孢菌. 农业生物技术学报, 2021, 29(5): 985-994.
LIU G X, TAN Q Q, QI J S, WANG F Y, CHEN X Y, FAN Y Y, HU Y, BU X, ZHANG Q F. Rapid identification of main pathogen Fusarium pseudograminearum of wheat crown rot using site-specific PCR based on EF-1α sequence. Journal of Agricultural Biotechnology, 2021, 29(5): 985-994. (in Chinese)
[28]
XU C N, ZHANG H J, CHI F M, JI Z R, DONG Q L, CAO K Q, ZHOU Z S. Species-specific PCR-based assays for identification and detection of Botryosphaeriaceae species causing stem blight on blueberry in China. Journal of Integrative Agriculture, 2016, 15(3): 573-579.

doi: 10.1016/S2095-3119(15)61177-7
[29]
KANG H X, PENG Y, HUA K Y, DENG Y F, BELLIZZI M, GUPTA D R, MAHMUD N U, URASHIMA A S, PAUL S K, PETERSON G, ZHOU Y L, ZHOU X P, ISLAM M T, WANG G L. Rapid detection of wheat blast pathogen Magnaporthe oryzae triticum pathotype using genome-specific primers and cas12a-mediated technology. Engineering, 2021, 7(9): 1326-1335.

doi: 10.1016/j.eng.2020.07.016
[30]
周永进, 马鸿翔, 余桂红, 孙晓波, 张旭, 李杨瑞. 禾谷镰刀菌与亚细亚镰刀菌种型特异性的SCAR标记. 江苏农业学报, 2012, 28(5): 979-985.
ZHOU Y J, MA H X, YU G H, SUN X B, ZHANG X, LI Y R. Development of species-specific SCAR markers identifying Fusarium graminearum and Fusarium asiaticum. Jiangsu Journal of Agricultural Sciences, 2012, 28(5): 979-985. (in Chinese)
[31]
康健, 张林, 张梦雅, 闫红飞, 刘大群. 小麦叶锈菌特异分子标记建立. 河北农业大学学报, 2016, 39(4): 63-67.
KANG J, ZHANG L, ZHANG M Y, YAN H F, LIU D Q. Development of specific molecular markers in Puccinia triticina. Journal of Agricultural University of Hebei, 2016, 39(4): 63-67. (in Chinese)
[32]
徐静静, 蔺宇, 董立明, 王晓鸣, 武小菲, 朱振东. 用SSR标记和巢式PCR快速检测大豆疫霉菌. 中国农业科学, 2009, 42(5): 1624-1630. doi: 10.3864/j.issn.0578-1752.2009.05.015.

doi: 10.3864/j.issn.0578-1752.2009.05.015
XU J J, LIN Y, DONG L M, WANG X M, WU X F, ZHU Z D. Rapid detection of Phytophthora sojae using SSR marker and nested PCR. Scientia Agricultura Sinica, 2009, 42(5): 1624-1630. doi: 10.3864/j. issn.0578-1752.2009.05.015. (in Chinese)

doi: 10.3864/j. issn.0578-1752.2009.05.015
[33]
HONG Y, LUO Y, YI J, HE L, DAI L, YI T. Screening nested-PCR primer for ‘Candidatus Liberibacter asiaticus’ associated with citrus Huanglongbing and application in Hunan, China. PLoS ONE, 2019, 14(2): e0212020.

doi: 10.1371/journal.pone.0212020
[34]
COSTA S S, MOREIRA G M, PFENNING L H. Development of a PCR protocol for the identification and detection of Fusarium solani f. sp. piperis from soil and roots of black pepper (Piper nigrum). Tropical Plant Pathology, 2017, 42(1): 55-59.

doi: 10.1007/s40858-016-0124-2
[35]
夏菲, 周江鸿, 车少臣, 仲丽, 赵正楠. 黄栌枯萎病菌巢式PCR检测方法的建立. 上海农业学报, 2021, 37(3): 47-51.
XIA F, ZHOU J H, CHE S C, ZHONG L, ZHAO Z N. Development of a nested PCR detection method for Verticillium dahliae causing verticillium wilt of Cotinus coggygria. Acta Agriculturae Shanghai, 2021, 37(3): 47-51. (in Chinese)
[1] WANG BingWei, QIN JiaMing, SHI ChengQiao, ZHENG JiaXing, QIN YongAi, HUANG AnXia. QTL Mapping and Genetic Analysis of a Gene with High Resistance to Southern Corn Rust [J]. Scientia Agricultura Sinica, 2019, 52(12): 2033-2041.
[2] XIE Li-xue, ZHENG Shan, ZHANG Li-jie, ZHANG Xiao-yan, LI Tao. Development of IC-RT-nested PCR for the Detection of Blueberry shock virus [J]. Scientia Agricultura Sinica, 2016, 49(22): 4366-4374.
[3] LI Guan-nan, XIA Xue-juan, SENDEGEYA Parfait, HE Shi-bao, GUO Dong-dong, ZHU Yong. Screening and Identification of Silkworm Probiotic Bacillus SWL-19 and Its Effect on Intestinal Microflora Diversity [J]. Scientia Agricultura Sinica, 2015, 48(9): 1845-1853.
[4] GUO Yun-Yan-12, CHEN Mao-Gong-2, SUN Su-Li-2, WU Xiao-Fei-2, JIANG Kai-2, ZHU Zhen-Dong-2, LI Hong-Jie-2, HE Yue-Qiu-1, WANG Xiao-Ming-2. Genetic Diversity of Puccinia polysora Underw. in China [J]. Scientia Agricultura Sinica, 2013, 46(21): 4523-4533.
[5] SHI Jing-Dong, ZHANG Xiao-Juan, HUANG Li-Li, HAN De-Jun, KANG Zhen-Sheng. Isolation and Mapping of NBS-LRR Resistance Gene Homology Sequences from Wheat [J]. Scientia Agricultura Sinica, 2013, 46(10): 2022-2031.
[6] WANG Jie,TIAN Guo-zhong,XU Qi-cong,LIU Yong-guang,GAO Rui,LI Xiang-dong,ZHU Xiao-ping
. Molecular Detection of Phytoplasma Strains From Several Plants Around Diseased Paulownia Infected with Paulownia Witches’-broom Phytoplasma
[J]. Scientia Agricultura Sinica, 2010, 43(2): 304-312 .
[7]

.

Rapid Detection of Phytophthora sojae Using SSR Marker and Nested PCR

[J]. Scientia Agricultura Sinica, 2009, 42(5): 1624-1630 .
[8] . Development and application of nested PCR assay for detection of dairy cattle-derived Cyclospora sp. [J]. Scientia Agricultura Sinica, 2007, 40(9): 2073-2078 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!