Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (2): 339-354.doi: 10.3864/j.issn.0578-1752.2025.02.010

• HORTICULTURE • Previous Articles     Next Articles

Genetic Diversity Analysis of Cymbidium faberi Germplasm Resources Based on Phenotypic Traits

TANG GuiMei1,2,3(), LI WeiDong1,2,3, ZHOU YuXia1, KONG YouHan1,2,3, XIAO XiaoLing1, PENG YingShu1, ZHANG Li1, FU HongYan1, LIU Yang1(), HUANG GuoLin1,2,3()   

  1. 1 Hunan Horticultural Research Institute, Hunan Academy of Agricultural Science, Changsha 410125
    2 Yuelu Mountain Laboratory, Changsha 410125
    3 Hunan Provincial Key Laboratory of Germplasm Innovation and Comprehensive Utilization of Garden Flowers, Changsha 410125
  • Received:2024-06-05 Accepted:2024-07-25 Online:2025-01-21 Published:2025-01-21
  • Contact: LIU Yang, HUANG GuoLin

Abstract:

【Objective】To investigate the variation patterns of phenotypic traits and their relationship to genetic diversity in Cymbidium faberi germplasm, to explore reliable comprehensive evaluation methods for germplasm resources, to screen for superior germplasm, and to provide a critical basis for germplasm innovation and new cultivar breeding in Cymbidium faberi Germplasm. 【Method】Using 102 C. faberi germplasm samples, 38 phenotypic traits were measured. Multiple statistical methods were employed, including the genetic diversity index, principal component analysis (PCA) combined with membership function method, cluster analysis, and correlation analysis, to perform phenotypic genetic diversity analysis and a comprehensive evaluation of the germplasm. Superior C. faberi germplasm was screened based on the comprehensive evaluation F-value and target traits.【Result】The coefficient of variation for quantitative traits in the 102 C. faberi germplasm samples ranged from 13.18% to 28.28%, and the genetic diversity index ranged from 1.52 to 1.97, with higher indices observed for traits such as the number of flowers and sepal shape. Significant or highly significant correlations were found among 46 pairs of traits, with most vegetative organ traits showing a highly significant positive correlation with reproductive organ traits. PCA results indicated that 12 principal components were extracted when the cumulative contribution rate of phenotypic traits reached 74.52%. The comprehensive evaluation F values calculated using the membership function method ranged from -0.45 to 1.26, identifying the top 10 superior C. faberi germplasm resources. Systematic clustering grouped the phenotypic traits and germplasm resources into three categories. R-type clustering visually displayed the associations between different quantitative and qualitative traits, consistent with the correlation analysis results. Q-type clustering revealed the phylogenetic relationships and genetic backgrounds among different C. faberi germplasm; 9 of the top 10 germplasm resources based on the comprehensive evaluation F-value were in the third major category. 【Conclusion】C. faberi germplasm exhibits rich diversity in both quantitative and qualitative traits. Utilization of multivariate statistical analysis methods for comprehensively evaluating C. faberi is feasible. The combination of the membership function method and PCA to calculate phenotypic comprehensive values effectively quantifies the comprehensive traits of C. faberi germplasm. Superior germplasm resources identified include C. faberi Dayipin, C. faberi Jinaosu, C. faberi Chengmei, C. faberi Baohuisu, C. faberi Jiangnanxinjipin, C. faberi Zhengxiaohe, C. faberi Dachenzi, C. faberi Xiuhuimudan, C. faberi Huilanhuban, and C. faberi Duanhuimei, among others. Key traits such as plant type, flower color, sepal, and petal posture can serve as critical indicators for the evaluation of C. faberi germplasm, aiding in the selection of breeding parental materials and innovative utilization of germplasm resources.

Key words: Cymbidium faberi, phenotypic traits, diversity, comprehensive evaluation

Table 1

Quantitative traits and its specific test methods used in experiment"

数量性状
Qualitative traits
测量方法
Measurement methods
株高PH (cm) 自然状态下植株的高度Height of plant in natural state
叶数LN 单株叶片的总数量Total number of leaves per plant
叶长LL (cm) 叶片基部至叶片顶端长度的平均值Average length from the base to the top of the blade
叶宽LW (cm) 中等长度叶片最宽处宽度Width of the widest part of the medium length blade
花序梗长LPL (cm) 花序梗的长度Length of peduncle
花数FN 单株花朵的数量Number of flowers per plant
花长FL (cm) 花朵长度的平均值Average flower length
花宽FW (cm) 花朵宽度的平均值Average flower width
中萼片长MSL (cm) 中萼片最长处长度的平均值Average length of the longest part of the sepals
中萼片宽MSW (cm) 中萼片最宽处宽度的平均值Average width at the widest point of the sepals
侧萼片长LSL (cm) 侧萼片最长处长度的平均值Average length of the longest lateral sepal
侧萼片宽LSW (cm) 侧萼片最宽处宽度的平均值Average width at the widest point of lateral sepals
花瓣长PL (cm) 花瓣最长处长度的平均值Average length of the longest petal
花瓣宽PW (cm) 花瓣最宽处宽度的平均值Average width of the widest petals

Table 2

Qualitative traits and its test methods used in experiment"

质量性状
Qualitative traits
测定标准
Measuremen standard
测量方式
Measurement methods
性状类型
Trait types
叶姿LS 1.直立;2.半直立;3.披散
1. Erect; 2. Semi-erect; 3. Sprawling
目测
Eye-measurement
多元性状
Multivariate traits
叶扭曲LCL 1.无;9.有
1. No; 9. Yes
目测
Eye-measurement
二元性状
Binary trait
叶艺LA 1.无;2.斑点;3.条纹
1. No; 2. Spot; 3. Stripe
目测
Eye-measurement
多元性状
Multivariate traits
叶色LC 1.黎明;2.红唇;3.甜蜜
1. Light green; 2. Medium green; 3. Dark green
比色卡
Colorimetric card
多元性状
Multivariate traits
花色FC 1.白色;2.绿色;3.黄色;4.橙色;5.粉色;6.红色;7.紫色;8.棕色;9.黑色
1. White; 2. Green; 3. Yellow; 4. Orange; 5. Pink; 6. Red; 7. Purple; 8. Brown; 9. Black
比色卡
Colorimetric card
多元性状
Multivariate traits
花被片数TN 1.<6;2.=6;3.>6 目测
Eye-measurement
多元性状
Multivariate traits
萼片及花瓣姿态SPP 1.完全内弯;2.部分内弯,部分平展;3.完全平展;4.部分平展,部分反卷;5.完全反卷;6.部分内卷,部分反卷
1. Completely inward curved; 2. Partially inward curved, partial flat exhibition; 3. Completely flattened; 4. Partially flattened, partially rewound; 5. Completely rewind; 6. Partial involution, partial deconvolution
目测
Eye-measurement
多元性状
Multivariate traits
萼片主色SDC 1.白色;2.绿色;3.黄色;4.橙色;5.粉色;6.红色;7.紫色;8.棕色;9.黑色
1. White; 2. Green; 3. Yellow; 4. Orange; 5. Pink; 6. Red; 7. Purple; 8. Brown; 9. Black
比色卡
Colorimetric card
多元性状
Multivariate traits
萼片条纹SS 1.无;9.有
1. No; 9. Yes
目测
Eye-measurement
二元性状
Binary trait
萼片形状SSH 1.披针形;2.线形;3.长圆形;4.椭圆形;5.倒卵形
1. Lanceolate; 2. Linear; 3. Oblong; 4. Elliptical shape; 5. Inverted shape
目测
Eye-measurement
多元性状
Multivariate traits
萼片纵切面形状
SLS
1.内弯,先端反卷;2.强烈内弯;3.轻微内弯;4.直立;5.轻微反卷;6.强烈反卷;7.反卷,先端内弯
1. Inward bending, apex retrorse; 2. Strong Inward Bending; 3. Slight internal bending; 4. Axial; 5. Slight rewind; 6. Strong rewind; 7. Inverted, with an inward bend at the tip
目测
Eye-measurement
多元性状
Multivariate traits
萼片边缘卷曲程度
SEC
1.无或极弱;3.弱;5.中;7.强;9.极强
1. None or extremely weak; 3. Weak; 5. Intermediate; 7. Strong; 9. Extremely strong
目测
Eye-measurement
多元性状
Multivariate traits
萼片边缘波状程度
SEW
1.无或极弱;3.弱;5.中;7.强;9.极强
1. None or extremely weak; 3. Weak; 5. Intermediate; 7. Strong; 9. Extremely strong
目测
Eye-measurement
多元性状
Multivariate traits
花瓣主色PDC 1.白色;2.绿色;3.黄色;4.橙色;5.粉色;6.红色;7.紫色;8.棕色;9.黑色
1. White; 2. Green; 3. Yellow; 4. Orange; 5. Pink; 6. Red; 7. Purple; 8. Brown; 9. Black
比色卡
Colorimetric card
多元性状
Multivariate traits
花瓣斑点PS 1.无;9.有
1. No; 9. Yes
目测
Eye-measurement
二元性状
Binary trait
花瓣条纹PST 1.无;9.有
1. No; 9. Yes
目测
Eye-measurement
二元性状
Binary trait
花瓣形状PSH 1.线形;2.长圆形;3.椭圆形;4.菱形;5.倒卵形;6.匙形
1. Linear; 2. Oblong; 3. Elliptical shape; 4. Diamond shaped; 5. Inverted; 6. Key shaped
目测
Eye-measurement
多元性状
Multivariate traits
花瓣纵切面形状
PLS
1.内弯,先端反卷;2.强烈内弯;3.轻微内弯;4.直立;5.轻微反卷;6.强烈反卷;7.反卷,先端内弯
1. Inward bending, apex retrorse; 2. Strong inward bending; 3. Slight internal bending; 4. Axial; 5. Slight rewind; 6. Strong rewind; 7. Inverted, with an inward bend at the tip
目测
Eye-measurement
多元性状
Multivariate traits
花瓣边缘卷曲程度
PEC
1.无或极弱;3.弱;5.中;7.强;9.极强
1. None or extremely weak; 3. Weak; 5. Intermediate; 7. Strong; 9. Extremely strong
目测
Eye-measurement
多元性状
Multivariate traits
花瓣边缘波状程度
PEW
1.无或极弱;3.弱;5.中;7.强;9.极强
1. None or extremely weak; 3. Weak; 5. Intermediate; 7. Strong; 9. Extremely strong
目测
Eye-measurement
多元性状
Multivariate traits
唇瓣主色LDC 1.白色;2.绿色;3.黄色;4.橙色;5.粉色;6.红色;7.紫色;8.棕色;9.黑色
1. White; 2. Green; 3. Yellow; 4. Orange; 5. Pink; 6. Red; 7. Purple; 8. Brown; 9. Black
比色卡
Colorimetric card
多元性状
Multivariate traits
唇瓣斑点LSP 1.无;9.有
1. No; 9. Yes
目测
Eye-measurement
二元性状
Binary trait
合蕊柱主色CDC 1.白色;2.绿色;3.黄色;4.橙色;5.粉色;6.红色;7.紫色;8.棕色;9.黑色
1. White; 2. Green; 3. Yellow; 4. Orange; 5. Pink; 6. Red; 7. Purple; 8. Brown; 9. Black
比色卡
Colorimetric card
多元性状
Multivariate traits
合蕊柱斑点CS 1.无;9.有
1. No; 9. Yes
目测
Eye-measurement
二元性状
Binary trait

Table 3

Analysis of quantitative characters of Cymbidium faberi"

性状
Traits
最大值
Max
最小值
Min
平均值±标准差
Mean±SD
变异系数
CV (%)
遗传多样性指数
H´
株高PH (cm) 60.0 28.0 42.71±6.09 14.27 1.85
叶数LN 14.0 3.0 7.64±1.38 18.03 1.52
叶长LL (cm) 85.0 35.0 52.17±8.50 16.29 1.69
叶宽LW (cm) 1.5 0.6 1.04±0.17 16.79 1.70
花序梗长LPL (cm) 80.0 15.0 48.49±8.82 18.20 1.73
花数FN 15.0 3.0 8.81±2.26 25.68 1.97
花长FL (cm) 6.2 2.5 4.39±0.65 14.75 1.87
花宽FW (cm) 7.5 1.2 5.46±0.87 15.89 1.89
中萼片长MSL (cm) 4.0 1.8 2.80±0.37 13.18 1.63
中萼片宽MSW (cm) 3.2 0.6 1.00±0.28 28.28 1.66
侧萼片长LSL (cm) 4.0 0.8 2.87±0.42 14.50 1.77
侧萼片宽LSW (cm) 2.8 0.5 0.99±0.25 25.76 1.64
花瓣长PL (cm) 3.0 0.7 1.96±0.49 25.00 1.82
花瓣宽PW (cm) 1.2 0.5 0.89±0.167 18.51 1.78

Table 4

Quality trait analysis of Cymbidium faberi"

性状
Traits
变异系数
CV (%)
遗传多样
性指数H´
分布频数Distribution frequency
1 2 3 4 5 6 7 8 9
叶姿LS 28.03 0.86 13.73 66.67 19.61
叶扭曲LCL 128.63 0.22 94.12 5.88
叶艺LA 32.95 0.17 96.08 0.98 2.94
叶色LC 23.92 0.79 4.90 64.71 30.39
花色FC 50.22 0.60 2.94 84.31 5.88 0.98 1.96 3.92
花被片数TN 15.74 0.40 0.98 88.24 10.78
萼片及花瓣姿态SPP 73.83 1.38 50.00 16.67 0.98 16.67 4.90 10.78
萼片主色SDC 31.49 0.35 0.98 92.16 4.90 0.98 0.98
萼片条纹SS 125.69 0.48 81.4 18.6
萼片形状SSH 52.11 1.52 24.51 17.65 13.73 9.80 34.31
萼片纵切面形状SLS 34.04 1.32 3.92 1.96 58.82 13.73 12.75 5.88 2.94
萼片边缘卷曲程度SEC 77.30 0.68 77.45 13.73 8.82
萼片边缘波状程度SEW 70.27 0.46 87.25 8.82 3.92
花瓣主色PDC 50.58 0.71 4.90 80.39 7.84 3.92 2.94
花瓣斑点PS 133.98 0.32 90.20 9.80
花瓣条纹PST 133.44 0.36 88.24 11.76
花瓣形状PSH 42.29 1.43 12.75 14.71 33.33 4.90 34.31
花瓣纵切面形状PLS 44.27 1.37 2.94 40.20 37.25 4.90 5.88 6.86 1.96
花瓣边缘卷曲程度PEC 94.55 0.84 73.53 14.71 4.90 5.88 0.98
花瓣边缘波状程度PEW 89.13 0.82 74.51 14.71 5.88 4.90
唇瓣主色LDC 48.80 1.00 2.94 58.82 28.43 6.86 2.94
唇瓣斑点LSP 44.21 0.51 20.59 79.41
合蕊柱主色CDC 50.39 0.79 0.98 75.49 13.73 0.98 5.88 2.94
合蕊柱斑点CS 128.41 0.45 83.33 16.67

Fig. 1

Correlation analysis of phenotypic traits in Cymbidium faberi"

Table 5

PC analysis of phenotypic traits of Cymbidium faberi germplasm resources"

性状
Traits
主成分 Principal component
1 2 3 4 5 6 7 8 9 10 11 12 总载荷量
Total load
株高PH -0.09 -0.08 -0.02 0.11 -0.14 -0.18 0.85 -0.05 0.02 -0.12 0.08 -0.05 0.32
叶数LN -0.03 -0.07 -0.03 -0.02 -0.12 -0.08 -0.01 -0.08 -0.08 -0.16 0.12 0.70 0.13
叶长LL -0.04 -0.02 0.08 0.18 0.32 -0.05 0.74 -0.15 -0.19 0.03 -0.13 0.09 0.86
叶宽LW 0.02 -0.10 -0.07 0.22 0.21 -0.58 0.08 -0.10 -0.09 -0.02 -0.15 0.02 -0.56
花序梗长LPL -0.22 0.02 -0.01 -0.05 0.08 -0.48 0.36 -0.18 -0.26 -0.07 0.07 0.41 -0.34
花数FN -0.21 0.02 -0.20 -0.27 -0.15 -0.36 0.48 0.04 0.14 -0.05 -0.07 0.13 -0.51
花长FL 0.28 0.19 0.17 0.83 0.07 -0.04 0.02 -0.03 -0.05 -0.05 0.10 -0.12 1.37
花宽FW -0.12 0.03 -0.12 0.85 0.07 -0.07 0.14 -0.02 0.03 -0.06 -0.01 0.08 0.80
中萼片长MSL 0.00 -0.08 -0.04 0.05 0.07 0.80 -0.10 0.05 0.00 0.03 0.01 0.11 0.90
中萼片宽MSW 0.02 0.04 0.96 -0.01 -0.04 0.02 -0.01 -0.01 -0.01 -0.05 0.06 0.00 0.96
侧萼片长LSL 0.09 0.02 -0.53 0.53 0.08 -0.19 -0.06 0.05 -0.11 0.14 0.40 -0.05 0.35
侧萼片宽LSW 0.02 -0.02 0.94 -0.01 -0.06 -0.03 0.01 0.01 0.01 -0.06 0.06 -0.02 0.85
花瓣长PL 0.36 0.04 -0.23 0.32 0.10 -0.03 -0.10 0.03 -0.42 0.09 0.58 -0.16 0.60
花瓣宽PW -0.07 -0.02 0.16 0.04 -0.03 0.09 0.00 0.02 -0.01 0.12 0.79 0.25 1.34
叶姿LS 0.06 0.13 -0.11 0.09 0.23 0.14 -0.30 -0.14 0.47 -0.34 0.01 0.12 0.37
叶扭曲LCL 0.70 -0.12 -0.07 0.06 -0.12 0.04 0.07 0.07 0.21 0.00 0.19 -0.19 0.86
叶艺LA -0.04 0.25 0.56 0.03 0.27 0.11 -0.13 -0.39 -0.08 0.27 0.00 -0.21 0.63
叶色LC -0.23 -0.23 -0.06 0.14 -0.17 -0.48 0.18 0.05 0.09 0.10 0.09 0.22 -0.29
花色FC -0.02 0.89 -0.04 0.00 0.18 -0.02 -0.08 -0.04 0.02 0.09 0.05 0.01 1.03
花被片数TN -0.09 -0.07 -0.18 0.22 0.74 -0.10 -0.03 0.15 0.07 -0.06 -0.26 0.05 0.44
萼片及花瓣姿态SPP 0.32 0.14 0.17 -0.28 0.42 0.22 -0.07 0.43 -0.04 0.21 0.11 -0.06 1.56
萼片主色SDC 0.17 0.70 -0.19 0.13 -0.10 0.00 -0.18 -0.15 -0.35 0.02 -0.07 -0.08 -0.11
萼片条纹SS 0.75 0.21 -0.09 -0.11 -0.06 0.00 -0.05 -0.03 -0.23 -0.10 -0.20 0.14 0.23
萼片形状SSH 0.02 -0.11 0.08 -0.18 -0.56 -0.08 -0.23 -0.24 0.40 -0.12 -0.38 0.15 -1.25
萼片纵切面形状SLS 0.27 0.07 -0.01 -0.18 0.09 0.26 -0.12 0.75 -0.08 0.02 -0.04 0.03 1.08
萼片边缘卷曲程度SEC 0.37 -0.05 -0.05 -0.21 -0.04 0.16 -0.11 -0.02 0.28 0.63 0.30 -0.09 1.17
萼片边缘波状程度SEW -0.11 0.02 -0.09 0.03 0.04 -0.04 -0.04 0.08 -0.01 0.88 0.07 -0.11 0.72
花瓣主色PDC -0.07 0.83 0.11 0.05 0.10 0.05 0.16 0.23 0.16 -0.14 0.03 0.03 1.53
花瓣斑点PS -0.09 0.27 0.21 -0.21 0.64 -0.04 -0.01 0.06 0.30 -0.02 0.24 -0.21 1.12
花瓣条纹PST 0.84 0.15 0.04 0.22 -0.04 0.00 -0.18 0.07 -0.07 0.02 -0.06 -0.05 0.97
花瓣形状PSH -0.05 -0.12 0.09 -0.40 -0.53 -0.10 -0.01 -0.26 0.31 -0.13 -0.06 0.16 -1.09
花瓣纵切面形状PLS -0.13 0.13 -0.13 0.17 0.20 -0.06 -0.05 0.79 -0.15 0.10 0.07 -0.12 0.81
花瓣边缘卷曲程度PEC 0.55 -0.08 0.20 0.00 0.17 0.26 -0.18 0.19 0.30 0.37 0.09 0.23 2.11
花瓣边缘波状程度PEW 0.34 0.06 0.28 0.10 0.30 0.31 -0.26 0.38 0.19 0.39 -0.04 0.22 2.26
唇瓣主色LDC 0.10 0.21 -0.05 -0.04 0.00 0.39 0.10 0.12 0.22 0.08 0.02 0.52 1.67
唇瓣斑点LSP 0.03 0.03 -0.02 -0.03 -0.02 0.04 -0.01 -0.09 0.73 0.15 -0.07 -0.07 0.67
合蕊柱主色CDC 0.29 0.80 0.20 0.11 -0.06 0.13 -0.06 0.18 0.09 0.01 -0.03 0.02 1.69
合蕊柱斑点CS 0.50 0.17 0.25 -0.13 0.32 0.26 -0.09 -0.06 0.25 0.06 0.27 0.12 1.92
特征值Eigenvalue 6.07 4.08 3.02 2.61 2.39 1.81 1.75 1.74 1.52 1.22 1.08 1.04
方差贡献率
Contribution rate (%)
15.96 10.75 7.95 6.87 6.29 4.75 4.60 4.58 3.99 3.20 2.83 2.74
累计贡献率Total account (%) 15.96 26.71 34.66 41.54 47.83 52.58 57.18 61.76 65.75 68.95 71.78 74.52

Table 6

Coefficients of 12 principal component scores"

性状
Traits
成分得分系数矩阵 Matrix of component score coefficients
1 2 3 4 5 6 7 8 9 10 11 12
株高PH 0.07 0.00 0.00 0.03 -0.08 0.09 0.48 0.03 0.08 -0.03 0.06 -0.13
叶数LN 0.00 -0.01 0.00 0.00 0.01 -0.06 -0.10 -0.03 -0.08 -0.04 0.08 0.49
叶长LL 0.08 -0.02 0.02 0.04 0.16 0.15 0.42 -0.13 -0.09 0.09 -0.15 0.06
叶宽LW 0.09 -0.04 0.02 0.04 0.15 -0.33 -0.08 -0.03 0.01 0.04 -0.11 0.07
花序梗长LPL 0.01 0.04 0.02 -0.08 0.11 -0.21 0.05 -0.08 -0.13 0.04 0.04 0.30
花数FN 0.02 0.07 -0.07 -0.13 -0.04 -0.14 0.22 0.09 0.11 0.03 0.00 0.03
花长FL 0.06 0.02 0.10 0.35 -0.06 0.00 0.02 0.00 0.06 -0.04 0.00 -0.05
花宽FW -0.07 -0.01 0.01 0.39 -0.04 0.06 0.04 0.01 0.11 0.02 -0.07 0.07
中萼片长MSL -0.09 -0.06 -0.06 0.08 0.00 0.50 0.09 -0.07 -0.07 -0.01 -0.03 0.06
中萼片宽MSW -0.02 -0.02 0.35 0.05 -0.06 -0.06 -0.02 0.06 -0.04 -0.03 0.03 0.00
侧萼片长LSL 0.01 0.01 -0.15 0.15 -0.01 -0.09 -0.08 0.00 0.04 0.03 0.20 0.00
侧萼片宽LSW -0.01 -0.03 0.35 0.05 -0.06 -0.08 -0.01 0.08 -0.02 -0.04 0.04 -0.02
花瓣长PL 0.10 -0.02 -0.07 0.02 0.00 -0.03 -0.05 -0.05 -0.16 -0.05 0.31 -0.08
花瓣宽PW -0.08 0.00 0.05 -0.01 -0.05 0.02 -0.04 0.00 0.01 -0.04 0.48 0.15
叶姿LS 0.00 0.01 -0.08 0.04 0.16 0.00 -0.16 -0.09 0.25 -0.25 0.08 0.06
叶扭曲LCL 0.27 -0.07 -0.04 0.00 -0.06 -0.03 0.15 0.04 0.15 -0.10 0.11 -0.19
叶艺LA -0.05 0.06 0.16 0.01 0.12 0.05 -0.05 -0.28 -0.10 0.18 -0.06 -0.07
叶色LC -0.04 -0.04 0.03 0.08 -0.07 -0.25 -0.02 0.12 0.10 0.10 0.05 0.15
花色FC -0.06 0.32 -0.05 -0.05 0.03 -0.06 -0.04 -0.08 0.02 0.07 0.02 0.04
花被片数TN 0.00 -0.08 -0.06 0.05 0.37 -0.09 -0.07 0.00 0.06 -0.04 -0.19 0.09
萼片及花瓣姿态SPP 0.08 -0.01 0.03 -0.16 0.15 -0.01 0.04 0.13 -0.05 0.02 0.02 -0.02
萼片主色SDC 0.02 0.25 -0.08 0.00 -0.08 0.01 -0.08 -0.13 -0.19 0.06 -0.07 -0.01
萼片条纹SS 0.30 0.04 -0.05 -0.11 0.03 -0.06 0.03 -0.07 -0.17 -0.04 -0.15 0.12
萼片形状SSH 0.02 0.01 0.03 0.04 -0.20 -0.09 -0.13 -0.02 0.17 0.02 -0.17 0.07
萼片纵切面形状SLS 0.04 -0.02 0.01 -0.07 -0.05 0.03 0.01 0.38 -0.05 -0.07 -0.04 0.01
萼片边缘卷曲程度SEC 0.09 -0.01 -0.06 -0.08 -0.04 0.00 0.05 -0.08 0.11 0.30 0.11 -0.06
萼片边缘波状程度SEW -0.10 0.04 -0.02 0.03 -0.06 -0.05 0.00 -0.02 -0.03 0.55 -0.11 0.01
花瓣主色PDC -0.07 0.29 0.02 0.01 -0.06 0.00 0.11 0.13 0.12 -0.08 0.04 -0.01
花瓣斑点PS -0.03 0.06 0.02 -0.16 0.29 -0.12 -0.01 -0.03 0.18 -0.13 0.19 -0.15
花瓣条纹PST 0.29 0.00 0.02 0.06 -0.04 -0.11 -0.03 0.01 -0.03 -0.02 -0.09 -0.01
花瓣形状PSH 0.02 0.02 0.01 -0.10 -0.17 -0.07 -0.02 -0.04 0.12 -0.04 0.05 0.05
花瓣纵切面形状PLS -0.11 0.02 0.01 0.06 -0.05 -0.11 -0.06 0.44 0.00 -0.01 0.01 -0.06
花瓣边缘卷曲程度PEC 0.14 -0.07 0.05 0.04 0.05 -0.01 -0.01 0.03 0.10 0.16 -0.03 0.18
花瓣边缘波状程度PEW 0.03 -0.03 0.09 0.09 0.06 0.01 -0.07 0.13 0.04 0.19 -0.13 0.21
唇瓣主色LDC -0.01 0.07 -0.05 0.04 -0.02 0.21 0.12 0.01 0.06 0.07 -0.03 0.33
唇瓣斑点LSP 0.00 0.03 -0.04 0.06 -0.01 -0.03 0.05 -0.03 0.40 0.07 -0.02 -0.10
合蕊柱主色CDC 0.03 0.26 0.05 0.05 -0.13 -0.01 0.04 0.09 0.05 0.01 -0.04 0.01
合蕊柱斑点CS 0.15 0.01 0.02 -0.09 0.17 0.03 0.03 -0.13 0.09 -0.07 0.15 0.07

Fig. 2

Cymbidium faberi germplasm resources with top 10 comprehensive scores 1-10 were respectively C. faberi Jinaosu, C. faberi Chengmei, C. faberi Baohuisu, C. faberi Jiangnanxinjipin, C. faberi Zhenxiaohe, C. faberi Dachenzi, C. faberi Xiuhuimudan, C. faberi Huilanhuban, C. faberi Duanhuimei"

Fig. 3

R-type clustering diagram of phenotypic traits of Cymbidium faberi based on Euclidean distance"

Fig. 4

Q-type clustering diagram of phenotypic traits of Cymbidium faberi based on Euclidean distance The number in the figure was the code of Cymbidium faberi germplasms used in the test (Supplementary Table 1)"

[1]
焦鑫宇, 龙梅, 刘志雄. 应用最大熵模型预测我国野生蕙兰潜在适生区分布及其影响因素. 东北林业大学学报, 2023, 51(7): 96-101, 122.
JIAO X Y, LONG M, LIU Z X. Prediction and influencing factors of wild Cymbidium faberi in China using MaxEnt model. Journal of Northeast Forestry University, 2023, 51(7): 96-101, 122. (in Chinese)
[2]
丁榕, 崔金腾, 袁园, 周田田, 赵和文. 月季遗传多样性和杂交亲本的选择. 北京农学院学报, 2015, 30(2): 72-77.
DING R, CUI J T, YUAN Y, ZHOU T T, ZHAO H W. Rose genetic diversity and selection of hybrid parents. Journal of Beijing University of Agriculture, 2015, 30(2): 72-77. (in Chinese)
[3]
王莉飞, 徐佳洁, 黄晓霞, 李淑斌, 程小毛. 57份现代月季种质资源表型性状及综合评价. 西南林业大学学报(自然科学), 2022, 42(1): 83-90.
WANG L F, XU J J, HUANG X X, LI S B, CHENG X M. Phenotypic traits and comprehensive evaluation of 57 modern Chinese rose germplasm resources. Journal of Southwest Forestry University (Natural Sciences), 2022, 42(1): 83-90. (in Chinese)
[4]
过聪, 关伟, 曾祥国, 张庆华, 向发云, 宋粤君, 韩永超. 现代月季品种表型性状分析与评价. 中国农业科学, 2019, 52(24): 4632-4646. doi: 10.3864/j.issn.0578-1752.2019.24.017.
GUO C, GUAN W, ZENG X G, ZHANG Q H, XIANG F Y, SONG Y J, HAN Y C. Phenotype character analysis and evaluation of modern rose cultivars. Scientia Agricultura Sinica, 2019, 52(24): 4632-4646. doi: 10.3864/j.issn.0578-1752.2019.24.017. (in Chinese)
[5]
钟声远, 罗宇婷, 赵勇, 王振兴, 管志勇, 房伟民, 陈发棣, 王海滨. 切花菊品种资源表型多样性分析. 植物资源与环境学报, 2021, 30(5): 22-33.
ZHONG S Y, LUO Y T, ZHAO Y, WANG Z X, GUAN Z Y, FANG W M, CHEN F D, WANG H B. Analysis on phenotypic diversity of cut chrysanthemum cultivar resources. Journal of Plant Resources and Environment, 2021, 30(5): 22-33. (in Chinese)
[6]
刘林娅, 黄亚成, 杨那, 刘维侠, 赵艳妹, 龙彩凤, 党选民. 81份辣椒种质资源表型性状的遗传多样性分析. 热带作物学报, 2023, 44(4): 706-715.

doi: 10.3969/j.issn.1000-2561.2023.04.006
LIU L Y, HUANG Y C, YANG N, LIU W X, ZHAO Y M, LONG C F, DANG X M. Genetic diversity of phenotypic traits in 81 Capsicum annuum germplasms. Chinese Journal of Tropical Crops, 2023, 44(4): 706-715. (in Chinese)
[7]
SHUAIB M, BAHADUR S, HUSSAIN F. Enumeration of genetic diversity of wild rice through phenotypic trait analysis. Gene Reports, 2020, 21: 100797.
[8]
NISAR M, GHAFOOR A, AHMAD H, KHAN M R, QURESHI A S, ALI H, ISLAM M. Evaluation of genetic diversity of pea germplasm through phenotypic trait analysis. Pakistan Journal of Botany, 2008, 40(5): 2081-2086.
[9]
CAO T X, SUN J Y, SHAN N, CHEN X, WANG P T, ZHU Q L, XIAO Y, ZHANG H Y, ZHOU Q H, HUANG Y J. Uncovering the genetic diversity of yams (Dioscorea spp.) in China by combining phenotypic trait and molecular marker analyses. Ecology and Evolution, 2021, 11(15): 9970-9986.
[10]
芮文婧, 王晓敏, 张倩男, 胡学义, 胡新华, 付金军, 高艳明, 李建设. 番茄353份种质资源表型性状遗传多样性分析. 园艺学报, 2018, 45(3): 561-570.
RUI W J, WANG X M, ZHANG Q N, HU X Y, HU X H, FU J J, GAO Y M, LI J S. Genetic diversity analysis of 353 tomato germplasm resources by phenotypic traits. Acta Horticulturae Sinica, 2018, 45(3): 561-570. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2017-0274
[11]
潘存祥, 许勇, 纪海波, 李玉明, 陈年来. 西瓜种质资源表型多样性及聚类分析. 植物遗传资源学报, 2015, 16(1): 59-63.

doi: 10.13430/j.cnki.jpgr.2015.01.009
PAN C X, XU Y, JI H B, LI Y M, CHEN N L. Phenotypic diversity and clustering analysis of watermelon germplasm. Journal of Plant Genetic Resources, 2015, 16(1): 59-63. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2015.01.009
[12]
ZHANG Y, CAO Y F, HUO H L, XU J Y, TIAN L M, DONG X G, QI D, LIU C. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits. Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.

doi: 10.1016/S2095-3119(21)63885-6
[13]
魏晓羽, 刘红, 瞿辉, 李风童, 袁媛, 刘春贵, 马辉, 张甜, 包建忠, 孙叶. 158份春兰种质资源的表型多样性分析. 植物遗传资源学报, 2022, 23(2): 398-411.

doi: 10.13430/j.cnki.jpgr.20211027001
WEI X Y, LIU H, QU H, LI F T, YUAN Y, LIU C G, MA H, ZHANG T, BAO J Z, SUN Y. Phenotypic diversity analysis of 158 Cymbidium goeringii germplasm resources. Journal of Plant Genetic Resources, 2022, 23(2): 398-411. (in Chinese)
[14]
傅巧娟, 李春楠, 赵福康, 孙瑶. 7种兰属种质表型性状遗传多样性分析. 分子植物育种, 2018, 16(10): 3381-3394.
FU Q J, LI C N, ZHAO F K, SUN Y. Genetic diversity analysis of phenotypic traits in 7 species of Cymbidium. Molecular Plant Breeding, 2018, 16(10): 3381-3394. (in Chinese)
[15]
初美静, 张英杰, 刘学庆, 郭文娇, 张京伟, 刘述河, 孙纪霞. 层次分析法在兜兰综合评价中的应用. 中国农学通报, 2017, 33(34): 111-115.

doi: 10.11924/j.issn.1000-6850.casb16100075
CHU M J, ZHANG Y J, LIU X Q, GUO W J, ZHANG J W, LIU S H, SUN J X. Comprehensive evaluation of Paphiopedilum by analytic hierarchy process. Chinese Agricultural Science Bulletin, 2017, 33(34): 111-115. (in Chinese)
[16]
朱明雯. 安徽省野生兰花资源多样性研究及评价体系的建立[D]. 合肥: 安徽农业大学, 2015.
ZHU M W. Study on diversity of wild orchid resources in Anhui Province and establishment of evaluation system.[D]. Hefei: Anhui Agricultural University, 2015. (in Chinese)
[17]
陈和明, 朱根发, 廖飞雄, 王碧青, 龚妮, 胡哲森. 广东省兰花种质资源的收集保存与评价利用. 广东农业科学, 2007, 34(6): 27-29.
CHEN H M, ZHU G F, LIAO F X, WANG B Q, GONG N, HU Z S. Collection, conservation, evaluation and utilization of Orchidaceae germplasm in Guangdong. Guangdong Agricultural Sciences, 2007, 34(6): 27-29. (in Chinese)
[18]
赵天荣, 蔡建岗. 主成分和聚类分析在蟹爪兰资源评价及育种中的应用. 浙江农业学报, 2014, 26(2): 319-324.
ZHAO T R, CAI J G. Comparative study on resource evaluation and breeding of Zygocactus trurncatus using principal component analysis and cluster analysis. Acta Agriculturae Zhejiangensis, 2014, 26(2): 319-324. (in Chinese)
[19]
蒋楚楚, 辛静静, 夏树全, 罗平, 邵果园, 崔永一. 蕙兰'红香妃'内生真菌分离鉴定及体外抑菌效应. 浙江农林大学学报, 2023, 40(4): 783-791.
JIANG C C, XIN J J, XIA S Q, LUO P, SHAO G Y, CUI Y Y. Isolation and identification of endophytic fungi from Cymbidium faberi ’Hongxiangfei’ and their bacteriostatic effect in vitro. Journal of Zhejiang A & F University, 2023, 40(4): 783-791. (in Chinese)
[20]
宋军阳, 苟大锋, 王敏, 刘财国, 张静. 春兰和蕙兰表型性状描述规范及种质资源信息编码系统初探. 林业科技通讯, 2023(5): 18-21.
SONG J Y, GOU D F, WANG M, LIU C G, ZHANG J. Preliminary study on specification of phenotypic traits and coding system of germplasm resources of Cymbidium goeringii and Cymbidium faberi. Forest Science and Technology, 2023(5): 18-21. (in Chinese)
[21]
郭峰, 牛立新, 张延龙. 秦岭柞水地区野生蕙兰天然群体表型多样性. 北方园艺, 2010(18): 91-93.
GUO F, NIU L X, ZHANG Y L. Phenotypic variation of natural populations of Cymbidium faberi in Zhashui. Northern Horticulture, 2010(18): 91-93. (in Chinese)
[22]
全国植物新品种测试标准化技术委员会. 植物新品种特异性、一致性和稳定性测试指南兰属: NY/T 2441—2013. 北京: 中国标准出版社, 2013: 1-22.
Testing of New Varieties of Plants. Guidelines for the conduct of test for dintinctness, uniformity and stability-Cymbidium:NY/T 2441-2013. Beijing: Standards Press of China, 2013: 1-22. (in Chinese)
[23]
吴欣明, 郭璞, 池惠武, 方志红, 石永红, 王运琦, 刘建宁, 王赞, 王学敏. 国外紫花苜蓿种质资源表型性状与品质多样性分析. 植物遗传资源学报, 2018, 19(1): 103-111.

doi: 10.13430/j.cnki.jpgr.2018.01.012
WU X M, GUO P, CHI H W, FANG Z H, SHI Y H, WANG Y Q, LIU J N, WANG Z, WANG X M. Diversity analysis of phenotypic traits and quality characteristics of alfalfa (Medicago sativa) introducted from abroad germplasm resources. Journal of Plant Genetic Resources, 2018, 19(1): 103-111. (in Chinese)
[24]
孙佩, 刘佳棽, 杨媛, 王华, 李茂福, 范又维, 朱婷婷, 金万梅. 119份月季品种表型性状多样性及评价. 分子植物育种, 2022, 9(17): 1-26.
SUN P, LIU J G, YANG Y, WANG H, LI M F, FAN Y W, ZHU T T, JIN W M. Phenotypic traits diversity and evaluation of 119 rose cultivars. Molecular Plant Breeding, 2022, 9 (17): 1-26. (in Chinese)
[25]
吕正鑫, 贺艳群, 贾东峰, 黄春辉, 钟敏, 廖光联, 朱壹, 袁开昌, 刘传浩, 徐小彪. 猕猴桃种质资源表型性状遗传多样性分析. 园艺学报, 2022, 49(7): 1571-1581.

doi: 10.16420/j.issn.0513-353x.2021-0248
Z X, HE Y Q, JIA D F, HUANG C H, ZHONG M, LIAO G L, ZHU Y, YUAN K C, LIU C H, XU X B. Genetic diversity analysis of phenotypic traits for kiwifruit germplasm resources. Acta Horticulturae Sinica, 2022, 49(7): 1571-1581. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2021-0248
[26]
尹世华, 李传林, 黄晓霞, 李淑斌, 程小毛. 月季花部性状表型多样性研究. 西南林业大学学报(自然科学), 2022, 42(4): 38-47.
YIN S H, LI C L, HUANG X X, LI S B, CHENG X M. Study on phenotypic diversity of related characters in flower of Rosa hybrida. Journal of Southwest Forestry University (Natural Sciences), 2022, 42(4): 38-47. (in Chinese)
[27]
张斌斌, 蔡志翔, 沈志军, 严娟, 马瑞娟, 俞明亮. 观赏桃种质资源表型性状多样性评价. 中国农业科学, 2021, 54(11): 2406-2418. doi: 10.3864/j.issn.0578-1752.2021.11.013.
ZHANG B B, CAI Z X, SHEN Z J, YAN J, MA R J, YU M L. Diversity analysis of phenotypic characters in germplasm resources of ornamental peaches. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418. doi: 10.3864/j.issn.0578-1752.2021.11.013. (in Chinese)
[28]
段艳皊. 国兰表型多样性及SCoT分子标记研究[D]. 杭州: 浙江农林大学, 2014.
DUAN Y L. Phenotypic diversity and SCoT molecular markers of Orchidaceae.[D]. Hangzhou: Zhejiang A & F University, 2014. (in Chinese)
[29]
贾东海, 王秀珍, 侯献飞, 顾元国, 买买提伊明·斯马依, 梁鸿, 孙杰, 石必显, 苗昊翠, 李强, 陈跃华. 32份油药兼用红花种质资源表型性状遗传多样性分析. 新疆农业科学, 2020, 57(10): 1775-1784.

doi: 10.6048/j.issn.1001-4330.2020.10.002
JIA D H, WANG X Z, HOU X F, GU Y G, MAIMAITIYIMING S, LIANG H, SUN J, SHI B X, MIAO H C, LI Q, CHEN Y H. Genetic diversity of phenotypic characters 32 germplasm resources of oil and medicine safflower. Xinjiang Agricultural Sciences, 2020, 57(10): 1775-1784. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2020.10.002
[30]
张叶, 叶蓓蕾, 邬静, 刘乐, 黎维诗, 郝代成, 谢尚潜, 凌鹏. 77份文心兰种质资源表型性状遗传多样性分析. 热带作物学报, 2021, 42(8): 2183-2190.

doi: 10.3969/j.issn.1000-2561.2021.08.009
ZHANG Y, YE B L, WU J, LIU L, LI W S, HAO D C, XIE S Q, LING P. Analysis of genetic diversity of phenotypic traits of 77 Oncidium germplasm resources. Chinese Journal of Tropical Crops, 2021, 42(8): 2183-2190. (in Chinese)

doi: 10.3969/j.issn.1000-2561.2021.08.009
[31]
孙泽硕, 李永华, 柳新红, 沈鑫, 李因刚, 蒋冬月. 四十一份樱花品种资源表型性状遗传多样性分析. 北方园艺, 2022(22): 57-66.
SUN Z S, LI Y H, LIU X H, SHEN X, LI Y G, JIANG D Y. Genetic diversity analysis of phenotypic traits in 41 cultivars of oriental cherry. Northern Horticulture, 2022(22): 57-66. (in Chinese)
[32]
陆彭城, 郑燕, 周小琴, 徐喆, 艾叶, 周育真, 朱尾银, 彭东辉. 45个莲瓣兰品种的表型多样性研究. 热带作物学报, 2021, 42(9): 2518-2525.

doi: 10.3969/j.issn.1000-2561.2021.09.011
LU P C, ZHENG Y, ZHOU X Q, XU Z, AI Y, ZHOU Y Z, ZHU W Y, PENG D H. Phenotypic diversity of 45 cultivars of Cymbidium tortisepalum. Chinese Journal of Tropical Crops, 2021, 42(9): 2518-2525. (in Chinese)
[33]
源朝政, 郑明燕, 鞠乐, 阴志刚, 高小峰, 王虹. 50个月季品种表型多样性分析及综合评价. 天津农业科学, 2022, 28(10): 19-23.
YUAN C Z, ZHENG M Y, JU L, YIN Z G, GAO X F, WANG H. Analysis and comprehensive evaluation of phenotypic diversity of 50 rose varieties. Tianjin Agricultural Sciences, 2022, 28(10): 19-23. (in Chinese)
[34]
吉乃喆, 华莹, 赵世伟, 崔荣峰, 周燕. 藤本月季表型分析与综合评价. 分子植物育种, 2023, 21(4): 1294-1305.
JI N Z, HUA Y, ZHAO S W, CUI R F, ZHOU Y. Phenotype character diversity analysis and comprehensive evaluation of climbing rose varieties. Molecular Plant Breeding, 2023, 21(4): 1294-1305. (in Chinese)
[35]
王振江, 罗国庆, 戴凡炜, 肖更生, 林森, 李智毅, 唐翠明. 基于8个农艺性状的569份果桑种质遗传多样性分析. 园艺学报, 2021, 48(12): 2375-2384.

doi: 10.16420/j.issn.0513-353x.2020-0931
WANG Z J, LUO G Q, DAI F W, XIAO G S, LIN S, LI Z Y, TANG C M. Genetic diversity of 569 fruit mulberry germplasm resources based on eight agronomic traits. Acta Horticulturae Sinica, 2021, 48(12): 2375-2384. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2020-0931
[1] QIAO ZhengYan, YU Miao, TANG YuJie, SHI GuiShan, LIU XinYu, LIU XiaoHan, WANG XinDing, LI Yang, WANG Nai, CHEN BingRu. Comprehensive Evaluation for Soda Salinity and Alkalinity in Sorghum Seedling Stage and Selection of Indicators [J]. Scientia Agricultura Sinica, 2025, 58(1): 30-42.
[2] LI PeiSong, LU YongDi, GUO Yu, ZHANG QiPeng, LIU TaoFen, WANG TianHe, YANG MingFeng, XIANG Dao, TIAN JingShan, ZHANG WangFeng. The Regional Distribution of Raw Cotton Quality in Xinjiang Based on Notarized Inspection Data for Cotton [J]. Scientia Agricultura Sinica, 2025, 58(1): 58-74.
[3] GUO Lei, HUANG ChenYan, SONG HongFeng, SHEN ZhiJun, ZHANG BinBin, MA RuiJuan, SUN Meng, HE Xin, YU MingLiang. Screening, Compounding and Safety Evaluation of Herbicides Suitable for Peach Nursery [J]. Scientia Agricultura Sinica, 2024, 57(9): 1734-1747.
[4] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[5] PAN Jing, MENG ZhiHao, WANG Sen, WANG HaiBo, HE Ping, CHANG YuanSheng, ZHENG WenYan, LI LinGuang, WANG Chen, WANG Ping, HE XiaoWen. Diversity Analysis and Comprehensive Evaluation of Fruit Quality Traits in Reciprocal Cross Progenies of Apple Golden Delicious and Fuji Nagafu No.2 [J]. Scientia Agricultura Sinica, 2024, 57(24): 4945-4963.
[6] LI Pei, HE ZhiLin, TAN YueXia, ZHAO WanTong, FENG JinYing, CHEN GuiHu, YAN Chi, WANG ZiHao, HUANG Ping, JIANG Dong. Genetic Diversity Analysis of Mandarin and Excellent Germplasm Screening Based on Whole-Genome Resequencing Data and Phenotypic Traits [J]. Scientia Agricultura Sinica, 2024, 57(23): 4761-4773.
[7] SU LanXi, PU QiuJie, BAI TingYu, WU YueXian, WU Gang, TAN LeHe, HU YaLi. Effects of Soil Texture on Rhizosphere Microbial Carbon Source Utilization, Nematode Community and Fruit Sugar of Jackfruit [J]. Scientia Agricultura Sinica, 2024, 57(2): 349-362.
[8] WANG XiaoJun, WANG JinLan, JU ZeLiang, LIANG GuoLing, JIA ZhiFeng, LIU WenHui, MA Xiang, MA JinXiu, LI Wen. Comprehensive Evaluation on Production Performance and Nutritional Quality of Different Varieties of Forage Oat in the Qinghai Lake Area [J]. Scientia Agricultura Sinica, 2024, 57(19): 3730-3742.
[9] YANG Chun, YANG DaiXing, LI Yan, LIANG SiHui, DENG XiaoQiang, QIAO DaHe, CHEN Juan, GUO Yan, LIN KaiQin, CHEN ZhengWu. Comprehensive Analysis of Morphologic Characters and Biochemical Components of Guizhou Dashu Tea Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(19): 3894-3916.
[10] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[11] ZHAI CaiJiao, GE LiJiao, CHENG YuJing, QIU Liang, WANG XiaoQiu, LIU ShuiDong. Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers [J]. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457.
[12] SU HaiLan, ZHU YanMing, CHEN Hong, NIU YuQing, ZHENG MeiXia, ZHU YuJing. Effects of Different Intercropping Methods on Mesona Chinesis Quality and Its Rhizosphere Soil Characteristic [J]. Scientia Agricultura Sinica, 2024, 57(14): 2755-2770.
[13] LEI MengLin, LIU Xia, WANG YanZhen, CUI GuoQing, MU ZhiXin, LIU LongLong, LI Xin, LU LaHu, LI XiaoLi, ZHANG XiaoJun. Genetic Diversity Analysis of Winter Wheat Germplasm Resources in Shanxi Province Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2024, 57(10): 1845-1856.
[14] SONG Xiang, WANG ZhongMan, ZHANG QiuLing, WEI YuanYuan, ZHAO XiaoGang, LIU Bo, DAI SiLan. Comprehensive Evaluation and Selection of Hybrid Offsprings of Early Flowering Spray Outdoor Chrysanthemum [J]. Scientia Agricultura Sinica, 2024, 57(1): 173-189.
[15] HOU ZhaoYu, GONG YiZhao, QIAN Yi, CHENG ZhuoYa, TAO Jun, ZHAO DaQiu. Evaluation of Heat Tolerance of Herbaceous Peony and Screening of Its Identification Indices [J]. Scientia Agricultura Sinica, 2023, 56(23): 4742-4756.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!