Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (1): 30-42.doi: 10.3864/j.issn.0578-1752.2025.01.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comprehensive Evaluation for Soda Salinity and Alkalinity in Sorghum Seedling Stage and Selection of Indicators

QIAO ZhengYan1,2(), YU Miao1(), TANG YuJie1, SHI GuiShan1, LIU XinYu1,2, LIU XiaoHan1,3, WANG XinDing1,2, LI Yang1, WANG Nai1,*(), CHEN BingRu1,*()   

  1. 1 Crop Resources Research Institute of Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin
    2 College of Agronomy, Jilin Agricultural University, Changchun 130118
    3 College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161000, Heilongjiang
  • Received:2024-06-09 Accepted:2024-09-02 Online:2025-01-01 Published:2025-01-07
  • Contact: WANG Nai, CHEN BingRu

Abstract:

【Objective】This study was conducted to screen the concentration of soda saline-alkali stress solution and the determination index of saline-alkali tolerance, to establish the identification method of saline-alkali tolerance to large-scale identification of sorghum germplasms. The saline-alkali tolerance of the core germplasms of grain sorghum were comprehensively evaluated, and the saline-alkali tolerant germplasms were identified and selected to provide a germplasm basis for further breeding of saline-alkali tolerant parents and hybrids.【Method】The main components of saline-alkali soil of in The Songnen Plain are Na2CO3 and NaHCO3. This experiment used 50 mmol·L-1 NaHCO3﹕Na2CO3=9﹕1 as a stress solution to simulate the moderate saline-alkali environment in Songnen Plain, the pH is 9.19, Salinity is 0.21%. Eight traits, including seedling height, root length, seedling fresh weight, root fresh weight, seeding dry weight, root dry weight, root-shoot ratio fresh weight and root-shoot ratio dry weight were used as measurement indexes and the saline-alkali tolerance characteristics of 285 sorghum core germplasms at seedling stage were identified. Principal component analysis was used to screen the salt-alkali tolerance identification indexes of grain sorghum at seedling stage and establish a mathematical model for salt-alkali tolerance evaluation at seedling stage. The saline-alkaline tolerance of 285 sorghum germplasms was classified by cluster analysis, and the germplasms with strong saline-alkaline tolerance were screened.【Result】50 mmol·L-1saline-alkali stress showed inhibitory effects on 8 indexes of 285 sorghum germplasms, the average values of saline -alkali resistance coefficients are 0.794, 0.785, 0.565, 0.554, 0.802, 0.638, 0.978, and 0.841.Under saline alkali stress, 8 indexes showed significant positive correlations; the seedling height and root fresh weight could be used as the indexes for the identification and evaluation of soda saline-alkali stress in sorghum seedling stage by principal component analysis; The evaluation model of saline-alkali tolerance characteristics of sorghum seedlings was summarized by multiple linear regression analysis Y=0.097X4+0.171X2+0.201X6+0.157X1+0.105X3- 0.147, it can be used for comprehensive evaluation of multiple indicators. 285 grain sorghum core collections were divided into 5 grades by cluster analysis, strong saline-alkali tolerance, saline-alkali tolerance, intermediate type, sensitive type and extremely sensitive type, Among them, there were 8 strong salt-tolerant germplasms, 8 salt-tolerant germplasms, 112 intermediate germplasms, 134 sensitive germplasms and 23 extremely sensitive germplasms. The saline-alkali tolerant germplasm and extremely sensitive germplasm were planted in the moderate saline-alkali soil (pH 8.5-9.5, Salinity 0.3%) for verification in Zhenlai County of western Jilin Province. The average seedling emergence rate of strong saline-alkali tolerant germplasm was 45.4%, and the average seedling height was 23 cm. The average seedling emergence rate of salt-tolerant germplasm was 31.3%, and the average height was 20.9 cm. The average emergence rate of extremely sensitive germplasm was 20%, and the average seedling height was 12.3 cm.【Conclusion】8 strong soda saline-alkali tolerant germplasms and 8 saline-alkali tolerant germplasms were screened out from 285 sorghum germplasms resources with 50 mmol·L-1 soda saline-alkali concentration (NaHCO3﹕Na2CO3=9﹕1). The seedling height and root fresh weight could be used as the preferred evaluation indexes for the identification of saline-alkali tolerance at seedling stage.

Key words: soda saline alkali soil, sorghum, seedling stage, salt alkali resistance, comprehensive evaluation

Table 1

pH, conductivity and salinity values of each concentration"

Na+浓度 Na+ concentration (mmol·L-1) pH 电导率 TDS (ms·cm-1) 盐度Salinity (%)
0(CK) 7.18 0.33 0.00
25 9.15 2.21 0.11
50 9.19 4.04 0.21
75 9.33 5.80 0.31
100 9.21 7.49 0.40
150 9.29 10.63 0.58
200 9.27 17.75 1.01

Table 2

Description of characters determined by various indicators"

序号 No. 性状 Traits 测定方法 Measurement method
1 苗高SH (cm) 用直尺测量最长叶片顶部到茎基部的距离
Measure the distance from the top of the longest leaf to the base of the stem with a ruler
2 根长RL (cm) 用直尺测量籽粒节点到主根根尖的距离
Measure the distance from the grain node to the root tip of the main root using a ruler
3 苗鲜重SFW (g) 用分析天平称量籽粒节点以上整个株苗的重量
Weigh the entire seedling above the grain node using an analytical balance
4 根鲜重RFW (g) 用分析天平称量籽粒节点以下整个根部的重量
Weigh the entire root below the grain node using an analytical balance
5 苗干重SDW (g) 测完鲜重的株苗于烘箱烘干,用分析天平称量干重
After measuring the fresh weight of the seedlings, dry them in an oven and weigh the dry weight using an analytical balance
6 根干重RDW (g) 测完鲜重的根部于烘箱烘干,用分析天平称量干重
After measuring the fresh weight of the roots, dry them in an oven and weigh the dry weight using an analytical balance
7 根冠比鲜重RSFW 根鲜重与苗鲜重的比值 Ratio of root fresh weight to seedling fresh weight
8 根冠比干重RSDW 根干重与苗干重的比值 Ratio of root dry weight to seedling dry weight

Fig. 1

Significance analysis of phenotypic traits between stress and control CK: Normal condition; T: Alkaline stress; ***: P<0.001"

Table 3

Statistics of salt alkali resistance coefficient of 8 traits in 285 grain sorghum core germplasm"

性状
Traits
最小值
Min
中位数
Median
最大值
Max
平均数
Mean
标准差
SD
偏度
Skew
峰度
Kurt
变异系数
CV (%)
苗高SH (cm) 0.340 0.798 1.411 0.794 0.144 0.350 1.202 18.17
根长RL (cm) 0.382 0.763 1.454 0.785 0.194 0.572 0.452 24.73
苗鲜重SFW (g) 0.096 0.536 1.581 0.565 0.211 0.819 1.742 37.36
根鲜重RFW (g) 0.102 0.521 1.573 0.554 0.264 0.882 1.035 47.75
苗干重SDW (g) 0.102 0.790 1.768 0.802 0.217 0.512 2.373 26.99
根干重RDW (g) 0.093 0.632 1.398 0.638 0.245 0.488 -0.053 38.43
根冠比鲜重RSFW 0.273 0.927 3.716 0.978 0.576 1.899 4.494 54.52
根冠比干重RSDW 0.117 0.753 3.740 0.841 0.404 2.607 12.482 48.04

Fig. 2

Visualization of correlation salt alkali resistance coefficient of 8 traits in 285 grain sorghum core germplasm ***:P≤0.001;**:P≤0.01;*:P≤0.05"

Table 4

Principal component analysis of salt alkali tolerance coefficient of 285 grain sorghum core germplasm"

指标
<BOLD>T</BOLD>raits
主成分Principal component
PC1 PC2
苗高SH 0.813 -0.265
根长RL 0.654 0.094
苗鲜重SFW 0.686 -0.595
根鲜重RFW 0.935 0.101
苗干重SDW 0.662 -0.609
根干重RDW 0.869 0.266
根冠比鲜重RSFW 0.441 0.728
根冠比干重RSDW 0.420 0.759
特征值Eigen value 3.998 1.992
贡献率Contribution (%) 49.976 24.901
累计贡献率
Cumulative contribution (%)
49.976 74.877

Table 5

Mathematical model for salt alkali tolerance of grain sorghum germplasm resources"

多元回归方程
Multiple regression equation
相关系数
r
判定系数
R2
F
F value
P
P value
Y=0.433X4+0.106 0.908 0.825 776.288 ≤0.001
Y=0.357X4+0.203X2-0.005 0.948 0.900 734.972 ≤0.001
Y=0.211X4+0.194X2+0.184X6-0.037 0.971 0.943 899.738 ≤0.001
Y=0.127X4+0.157X2+0.193X6+0.232X1-0.146 0.991 0.983 2345.029 ≤0.001
Y=0.097X4+0.171X2+0.201X6+0.157X1+0.105X3-0.147 0.998 0.996 7601.871 ≤0.001

Fig. 3

Clustering results of 285 sorghum core germplasms based on salt alkali tolerance coefficient"

Fig. 4

Verification results of salt alkali tolerant and sensitive germplasm during seedling stage in black soil and moderate salt alkali soil"

[1]
HUANG R D. Research progress on plant tolerance to soil salinity and alkalinity in sorghum. Journal of Integrative Agriculture, 2018, 17(4): 739-746.
[2]
HERNÁNDEZ J A. Salinity tolerance in plants: Trends and perspectives. International Journal of Molecular Sciences, 2019, 20(10): 2408.
[3]
伊力亚尔·买买提. 外源Si对NaCl处理下的番茄幼苗生理特性和光合特性的影响[D]. 乌鲁木齐: 新疆农业大学, 2016.
ILYAR M. Effects of exogenous Si on physiological and photosynthetic characteristics of tomato seedlings under NaCl treatment[D]. Urumqi: Xinjiang Agricultural University, 2016. (in Chinese)
[4]
王树玉, 张佳麒, 程梓峻, 李仁明, 薛佳妮, 宁尚栋, 余徐明, 侯佳宝, 石勇, 刘会芳, 王明明, 梁正伟. 苏打盐碱地稻米品质研究进展与展望. 农业资源与环境学报, 2024, 41(4): 856-867.
WANG S Y, ZHANG J Q, CHENG Z J, LI R M, XUE J N, NING S D, YU X M, HOU J B, SHI Y, LIU H F, WANG M M, LIANG Z W. Research progress and prospect in rice grain quality in sodic/ saline-sodic soils mainly characterized by the soil salts NaHCO3 and Na2CO3. Journal of Agricultural Resources and Environment, 2024, 41(4): 856-867. (in Chinese)
[5]
CHI C M, WANG Z C. Characterizing salt-affected soils of Songnen Plain using saturated paste and 1﹕5 soil-to-water extraction methods. Arid Land Research and Management, 2010, 24(1): 1-11.
[6]
许晓鸿, 刘肃, 赵英杰, 徐子棋, 杨献坤, 滕美瑶, 王大中, 赵书军. 吉林省西部不同环境因子对苏打盐碱地分布的影响. 水土保持通报, 2018, 38(1): 89-95.
XU X H, LIU S, ZHAO Y J, XU Z Q, YANG X K, TENG M Y, WANG D Z, ZHAO S J. Effects of different environmental factors on distribution of soda saline-alkaline land in western Jilin Province. Bulletin of Soil and Water Conservation, 2018, 38(1): 89-95. (in Chinese)
[7]
HAQUE M N, MORRISON G M, PERRUSQUÍA G, GUTIERRÉZ M, AGUILERA A F, CANO-AGUILERA I, GARDEA-TORRESDEY J L. Characteristics of arsenic adsorption to sorghum biomass. Journal of Hazardous Materials, 2007, 145(1/2): 30-35.
[8]
GRIEBEL S, ADEDAYO A, TUINSTRA M R. Genetic diversity for starch quality and alkali spreading value in sorghum. The Plant Genome, 2021, 14(1): e20067.
[9]
袁杰, 王学强, 贾春平, 张燕红, 赵志强, 王奉斌, 李自超. 水稻苗期耐盐性的综合鉴定及评价. 分子植物育种, 2020, 18(19): 6474-6482.
YUAN J, WANG X Q, JIA C P, ZHANG Y H, ZHAO Z Q, WANG F B, LI Z C. Comprehensive identification and evaluation of rice salt tolerance at seedling stage. Molecular Plant Breeding, 2020, 18(19): 6474-6482. (in Chinese)
[10]
KRISHNAMURTHY S L, SHARMA P C, DEWAN D, LOKESHKUMAR B M, RATHOR S, WARRAICH A S, VINAYKUMAR N M, LEUNG H, SINGH R K. Genome wide association study of MAGIC population reveals a novel QTL for salinity and sodicity tolerance in rice. Physiology and Molecular Biology of Plants, 2022, 28(4): 819-835.

doi: 10.1007/s12298-022-01174-8 pmid: 35592486
[11]
武博洋, 彭云玲, 赵小强, 方鹏. 玉米苗期在盐胁迫下耐盐相关QTL分析. 分子植物育种, 2019, 17(1): 154-160.
WU B Y, PENG Y L, ZHAO X Q, FANG P. Salt tolerance related QTL analysis in maize seedling stage under salt stress. Molecular Plant Breeding, 2019, 17(1): 154-160. (in Chinese)
[12]
YANG X H, LU C M. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiologia Plantarum, 2005, 124(3): 343-352.
[13]
陈春舟, 马占军, 孟亚雄, 马小乐, 王化俊, 李葆春. 小麦种质资源抗旱耐盐性评价及种质筛选. 分子植物育种, 2021, 19(14): 4820-4835.
CHEN C Z, MA Z J, MENG Y X, MA X L, WANG H J, LI B C. Evaluation and screening of wheat germplasm resources for drought and salt tolerance. Molecular Plant Breeding, 2021, 19(14): 4820-4835. (in Chinese)
[14]
SINGH A K, CHAURASIA S, KUMAR S, SINGH R, KUMARI J, YADAV M C, SINGH N, GABA S, JACOB S R. Identification, analysis and development of salt responsive candidate gene based SSR markers in wheat. BMC Plant Biology, 2018, 18(1): 249.
[15]
ZHOU S Q, MOU H W, ZHOU J, ZHOU J F, YE H, NGUYEN H T. Development of an automated plant phenotyping system for evaluation of salt tolerance in soybean. Computers and Electronics in Agriculture, 2021, 182: 106001.
[16]
CAI X X, JIA B W, SUN M Z, SUN X L. Insights into the regulation of wild soybean tolerance to salt-alkaline stress. Frontiers in Plant Science, 2022, 13: 1002302.
[17]
CAO Y C, ZHANG X C, JIA S H, KARIKARI B, ZHANG M J, XIA Z Y, ZHAO T J, LIANG F Q. Genome-wide association among soybean accessions for the genetic basis of salinity-alkalinity tolerance during germination. Crop and Pasture Science, 2021, 72(4): 255-267.
[18]
徐宁, 陈冰嬬, 王明海, 包淑英, 王桂芳, 郭中校. 绿豆品种资源萌发期耐碱性鉴定. 作物学报, 2017, 43(1): 112-121.
XU N, CHEN B R, WANG M H, BAO S Y, WANG G F, GUO Z X. Identification of alkali tolerance of mungbean germplasm resources during germination. Acta Agronomica Sinica, 2017, 43(1): 112-121. (in Chinese)
[19]
李小雷, 何瑞超, 贾学宇, 王雪, 鲍红春, 吴小燕, 于卓. 19份绿豆种子萌发期耐盐性鉴定与评价. 种子, 2022, 41(5): 109-115.
LI X L, HE R C, JIA X Y, WANG X, BAO H C, WU X Y, YU Z. Evaluation and identification of 19 mung bean seeds for salt tolerance during germination. Seed, 2022, 41(5): 109-115. (in Chinese)
[20]
XU N, CHEN B R, CHENG Y X, SU Y F, SONG M Y, GUO R Q, WANG M H, DENG K P, LAN T J, BAO S Y, WANG G F, GUO Z X, YU L H. Integration of GWAS and RNA-seq analysis to identify SNPs and candidate genes associated with alkali stress tolerance at the germination stage in mung bean. Genes, 2023, 14(6): 1294.
[21]
王珊珊, 钟雪梅, 文莎, 王桂娟, 曾长立, 沈金雄, 傅廷栋, 万何平. 甘蓝型油菜萌发期耐盐碱性高效鉴定及抗性资源筛选. 中国油料作物学报, 2023, 45(6): 1166-1173.

doi: 10.19802/j.issn.1007-9084.2023213
WANG S S, ZHONG X M, WEN S, WANG G J, ZENG C L, SHEN J X, FU T D, WAN H P. Efficient identification and screening of salt and alkaline tolerance in rapeseeds (Brassica napus L.)during germination stage. Chinese Journal of Oil Crop Sciences, 2023, 45(6):1166-1173. (in Chinese)
[22]
马盼盼, 赵曾强, 祝建波, 孙国清. 棉花耐旱耐盐碱生理和分子机制研究进展. 中国农业科技导报, 2021, 23(2): 27-36.

doi: 10.13304/j.nykjdb.2019.0718
MA P P, ZHAO Z Q, ZHU J B, SUN G Q. Physiological and molecular mechanisms of drought and salt tolerance in cotton. Journal of Agricultural Science and Technology, 2021, 23(2): 27-36. (in Chinese)
[23]
高建明, 夏卜贤, 袁庆华, 罗峰, 韩芸, 桂枝, 裴忠有, 孙守钧. 高粱种质材料幼苗期耐盐碱性评价. 应用生态学报, 2012, 23(5): 1303-1310
GAO J M, XIA B X, YUAN Q H, LUO F, HAN Y, GUI Z, PEI Z Y, SUN S J. Salt-alkaline tolerance of sorghum germplasm at seedling stage. Chinese Journal of Applied Ecology, 2012, 23(5): 1303-1310. (in Chinese)
[24]
DARGAN K S, ABROL I P, BHUMBLA D R. Performance of rice varieties in a highly saline sodic soil as influenced by plant population. Agronomy Journal, 1974, 66(2): 279-280.
[25]
韩毅强, 高亚梅, 杜艳丽, 张玉先, 杜吉到, 张文慧, 潘绍玉. 大豆耐盐碱种质资源鉴定. 中国油料作物学报, 2021, 43(6): 1016-1024.

doi: 10.19802/j.issn.1007-9084.2020353
HAN Y Q, GAO Y M, DU Y L, ZHANG Y X, DU J D, ZHANG W H, PAN S Y. Identification of saline-alkali tolerant germplasm resources of soybean during the whole growth stage. Chinese Journal of Oil Crop Sciences, 2021, 43(6): 1016-1024. (in Chinese)
[26]
宝力格, 陆平, 史梦莎, 许月, 刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定. 作物学报, 2020, 46(5): 734-744.

doi: 10.3724/SP.J.1006.2020.94138
BAO L G, LU P, SHI M S, XU Y, LIU M X. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages. Acta Agronomica Sinica, 2020, 46(5): 734-744. (in Chinese)
[27]
张士超, 袁芳, 郭建荣, 韩国良, 孙利珍, 王帅, 王宝山. 利用隶属函数值法对甜高粱苗期耐盐性的综合评价. 植物生理学报, 2015, 51(6): 893-902.
ZHANG S C, YUAN F, GUO J R, HAN G L, SUN L Z, WANG S, WANG B S. Comprehensive evaluation on salt-tolerance of Sorghum bicolor seedlings by subordinate function values analysis. Plant Physiology Journal, 2015, 51(6): 893-902. (in Chinese)
[28]
尚培培, 李丰先, 周宇飞, 彭峥, 高铭悦, 韩熠, 许文娟, 黄瑞冬. 混合碱(NaHCO3和Na2CO3)胁迫对高粱幼苗渗透调节和离子平衡的影响. 生态学杂志, 2015, 34(7): 1924-1929.
SHANG P P, LI F X, ZHOU Y F, PENG Z, GAO M Y, HAN Y, XU W J, HUANG R D. Effects of mixed alkaline (NaHCO3 and Na2CO3) stress on osmotic regulation and ion balance of sorghum seedlings. Chinese Journal of Ecology, 2015, 34(7): 1924-1929. (in Chinese)
[29]
李玉明, 石德成, 李毅丹, 王岳琼. 混合盐碱胁迫对高粱幼苗的影响. 杂粮作物, 2002, 22(1): 41-45.
LI Y M, SHI D C, LI Y D, WANG Y Q. Effect of complex alkali-saline stress on sorghum seedlings. Horticulture & Seed, 2002, 22(1): 41-45. (in Chinese)
[30]
孙璐, 周宇飞, 汪澈, 肖木辑, 陶冶, 许文娟, 黄瑞冬. 高粱品种萌发期耐盐性筛选与鉴定. 中国农业科学, 2012, 45(9): 1714-1722. doi: 10.3864/j.issn.0578-1752.2012.09.006.
SUN L, ZHOU Y F, WANG C, XIAO M J, TAO Y, XU W J, HUANG R D. Screening and identification of sorghum cultivars for salinity tolerance during germination. Scientia Agricultura Sinica, 2012, 45(9): 1714-1722. doi: 10.3864/j.issn.0578-1752.2012.09.006. (in Chinese)
[31]
崔江慧, 谢登磊, 常金华. 高粱材料耐盐性综合评价方法的初步建立与验证. 植物遗传资源学报, 2012, 13(1): 35-41.

doi: 10.13430/j.cnki.jpgr.2012.01.006
CUI J H, XIE D L, CHANG J H. Establishment and verification of comprehensive evaluation method for salt tolerance of sorghum materials. Journal of Plant Genetic Resources, 2012, 13(1): 35-41. (in Chinese)
[32]
ZHANG H L, YU F F, XIE P, SUN S Y, QIAO X H, TANG S Y, CHEN C X, YANG S, MEI C, YANG D K, WU Y R, XIA R, LI X, LU J, LIU Y X, XIE X W, MA D M, XU X, LIANG Z W, FENG Z H, HUANG X H, YU H, LIU G F, WANG Y C, LI J Y, ZHANG Q F, CHEN C, OUYANG Y D, XIE Q. A Gγ protein regulates alkaline sensitivity in crops. Science, 2023, 379(6638): eade8416.
[33]
王秀玲, 程序, 李桂英. 甜高粱耐盐材料的筛选及芽苗期耐盐性相关分析. 中国生态农业学报, 2010, 18(6): 1239-1244.
WANG X L, CHENG X, LI G Y. Screening sweet sorghum varieties of salt tolerance and correlation analysis among salt tolerance indices in sprout stage. Chinese Journal of Eco-Agriculture, 2010, 18(6): 1239-1244. (in Chinese)
[34]
王晨, 陈吉宝, 庞振凌, 李南南, 董海鸿, 李丹丹. 甜高粱对混合盐碱胁迫的响应及耐盐碱种质鉴定. 作物杂志, 2016(1): 56-61.
WANG C, CHEN J B, PANG Z L, LI N N, DONG H H, LI D D. The response and screening of germplasm tolerant to mixed saline-alkali stress in sweet sorghum. Crops, 2016(1): 56-61. (in Chinese)
[35]
DUN X L, TAO Z S, WANG J, WANG X F, LIU G H, WANG H Z. Comparative transcriptome analysis of primary roots of Brassica napus seedlings with extremely different primary root lengths using RNA sequencing. Frontiers in Plant Science, 2016, 7: 1238.
[36]
孙东雷, 卞能飞, 陈志德, 邢兴华, 徐泽俊, 齐玉军, 王晓军, 王幸. 花生萌发期耐盐性综合评价及耐盐种质筛选. 植物遗传资源学报, 2017, 18(6): 1079-1087.

doi: 10.13430/j.cnki.jpgr.2017.06.010
SUN D L, BIAN N F, CHEN Z D, XING X H, XU Z J, QI Y J, WANG X J, WANG X. Comprehensive evaluation of salt tolerance and screening for salt tolerant accessions of peanut (Arachis hypogaea L.) at germination stage. Journal of Plant Genetic Resources, 2017, 18(6): 1079-1087. (in Chinese)
[37]
高玉坤, 杨溥原, 项晓冬, 魏世林, 任根增, 殷丛培, 梁红凯, 崔江慧, 常金华. 不同耐盐高粱品种全生育期对盐胁迫的响应. 华北农学报, 2020, 35(6): 113-121.

doi: 10.7668/hbnxb.20191411
GAO Y K, YANG P Y, XIANG X D, WEI S L, REN G Z, YIN C P, LIANG H K, CUI J H, CHANG J H. Response of different salt tolerant sorghum varieties to salt stress in the whole growth period. Acta Agriculturae Boreali-Sinica, 2020, 35(6): 113-121. (in Chinese)

doi: 10.7668/hbnxb.20191411
[38]
付丽, 刘加珍, 陶宝先, 陈永金, 郭雯雯, 贾一灿, 尚婉滢. 盐生植物对盐渍土壤环境的适应机制研究综述. 江苏农业科学, 2021, 49(15): 32-39.
FU L, LIU J Z, TAO B X, CHEN Y J, GUO W W, JIA Y C, SHANG W Y. Adaptive mechanism of halophytes to saline soil environment: A review. Jiangsu Agricultural Sciences, 2021, 49(15): 32-39. (in Chinese)
[39]
蔺吉祥, 李晓宇, 唐佳红, 王俊锋, 李卓琳, 张兆军, 穆春生. 温度与盐、碱胁迫交互作用对小麦种子萌发的影响. 作物杂志, 2011(6): 113-116.
LIN J X, LI X Y, TANG J H, WANG J F, LI Z L, ZHANG Z J, MU C S. Effects of temperature, salinity, alkalinity and their interactions on seed germination of wheat. Crops, 2011(6): 113-116. (in Chinese)
[40]
刘杰, 张美丽, 张义, 石德成. 人工模拟盐、碱环境对向日葵种子萌发及幼苗生长的影响. 作物学报, 2008, 34(10): 1818-1825.

doi: 10.3724/SP.J.1006.2008.01818
LIU J, ZHANG M L, ZHANG Y, SHI D C. Effects of simulated salt and alkali conditions on seed germination and seedling growth of sunflower (Helianthus annuus L.). Acta Agronomica Sinica, 2008, 34(10): 1818-1825. (in Chinese)
[41]
SHI D C, WANG D L. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant and Soil, 2005, 271(1): 15-26.
[42]
温刘君, 朴顺姬, 易津. 4种小麦族牧草种子耐盐补偿生长特性研究. 中国草地学报, 2009, 31(6): 30-32, 38.
WEN L J, PIAO S J, YI J. Studies on the salt tolerance compensatory growth characteristics of four triticeae accessions’ seeds. Chinese Journal of Grassland, 2009, 31(6): 30-32, 38. (in Chinese)
[43]
白玉娥. 根茎类禾草耐盐性评价及生理基础的研究[D]. 呼和浩特: 内蒙古农业大学, 2004.
BAI Y E. Evaluation of salt tolerance of rhizomatous grasses and study on their physiological basis[D]. Hohhot: Inner Mongolia Agricultural University, 2004. (in Chinese)
[44]
楚乐乐, 罗成科, 田蕾, 张银霞, 杨淑琴, 李培富. 植物对碱胁迫适应机制的研究进展. 植物遗传资源学报, 2019, 20(4): 836-844.

doi: 10.13430/j.cnki.jpgr.20181129004
CHU L L, LUO C K, TIAN L, ZHANG Y X, YANG S Q, LI P F. Research advance in plants’ adaptation to alkali stress. Journal of Plant Genetic Resources, 2019, 20(4): 836-844. (in Chinese)
[45]
CHEN C W, YANG Y W, LUR H S, TSAI Y G, CHANG M C. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.)root growth and development. Plant & Cell Physiology, 2006, 47(1): 1-13.
[46]
马晓军, 金峰学, 杨姗, 杨德光, 李晓辉. 作物耐盐碱数量性状基因座(QTL)定位. 分子植物育种, 2015, 13(1): 221-227.
MA X J, JIN F X, YANG S, YANG D G, LI X H. Mapping QTLs for salt & alkaline tolerance in crops. Molecular Plant Breeding, 2015, 13(1): 221-227. (in Chinese)
[47]
段文学, 张海燕, 解备涛, 汪宝卿, 张立明. 甘薯苗期耐盐性鉴定及其指标筛选. 作物学报, 2018, 44(8): 1237-1247.

doi: 10.3724/SP.J.1006.2018.01237
DUAN W X, ZHANG H Y, XIE B T, WANG B Q, ZHANG L M. Identification of salt tolerance and screening for its indicators in sweet potato varieties during seedling stage. Acta Agronomica Sinica, 2018, 44(8): 1237-1247. (in Chinese)
[48]
李萍, 燕佳琦, 张鹤, 张燕, 陶顺仙, 张琪, Aldiyar, 徐爱遐, 黄镇. 146份甘蓝型油菜种质芽期耐盐性筛选及评价. 西北农业学报, 2021, 30(6): 848-859.
LI P, YAN J Q, ZHANG H, ZHANG Y, TAO S X, ZHANG Q, ALDIYAR, XU A X, HUANG Z. Screening and evaluation of salt tolerance for 146 Brassica napus germplasms at germination stage. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(6): 848-859. (in Chinese)
[49]
薛天源, 鲁金春子, 何思晓, 余忆, 陈敬东, 文静, 沈金雄, 傅廷栋, 曾长立, 万何平. 286份甘蓝型油菜种质苗期耐盐碱性综合评价. 植物遗传资源学报, 2024, 25(3): 356-372.

doi: 10.13430/j.cnki.jpgr.20230827002
XUE T Y, LU J, HE S X, YU Y, CHEN J D, WEN J, SHEN J X, FU T D, ZENG C L, WAN H P. Comprehensive evaluation on saline-alkali tolerance of 286 Brassica napus germplasm at seedling stage. Journal of Plant Genetic Resources, 2024, 25(3): 356-372. (in Chinese)
[1] TANG GuiMei, LI WeiDong, ZHOU YuXia, KONG YouHan, XIAO XiaoLing, PENG YingShu, ZHANG Li, FU HongYan, LIU Yang, HUANG GuoLin. Genetic Diversity Analysis of Cymbidium faberi Germplasm Resources Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2025, 58(2): 339-354.
[2] LI PeiSong, LU YongDi, GUO Yu, ZHANG QiPeng, LIU TaoFen, WANG TianHe, YANG MingFeng, XIANG Dao, TIAN JingShan, ZHANG WangFeng. The Regional Distribution of Raw Cotton Quality in Xinjiang Based on Notarized Inspection Data for Cotton [J]. Scientia Agricultura Sinica, 2025, 58(1): 58-74.
[3] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[4] GUO Lei, HUANG ChenYan, SONG HongFeng, SHEN ZhiJun, ZHANG BinBin, MA RuiJuan, SUN Meng, HE Xin, YU MingLiang. Screening, Compounding and Safety Evaluation of Herbicides Suitable for Peach Nursery [J]. Scientia Agricultura Sinica, 2024, 57(9): 1734-1747.
[5] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[6] WEI NaiCui, TAO JinBo, YUAN MingYang, ZHANG Yu, KAI MengXiang, QIAO Ling, WU BangBang, HAO YuQiong, ZHENG XingWei, WANG JuanLing, ZHAO JiaJia, ZHENG Jun. Seedling Characterization and Genetic Analysis of Low Phosphorus Tolerance in Shanxi Varieties [J]. Scientia Agricultura Sinica, 2024, 57(5): 831-845.
[7] HAN LiJie, CAI HongWei. Progress on Genetic Transformation of Sorghum [J]. Scientia Agricultura Sinica, 2024, 57(3): 454-468.
[8] PAN Jing, MENG ZhiHao, WANG Sen, WANG HaiBo, HE Ping, CHANG YuanSheng, ZHENG WenYan, LI LinGuang, WANG Chen, WANG Ping, HE XiaoWen. Diversity Analysis and Comprehensive Evaluation of Fruit Quality Traits in Reciprocal Cross Progenies of Apple Golden Delicious and Fuji Nagafu No.2 [J]. Scientia Agricultura Sinica, 2024, 57(24): 4945-4963.
[9] WANG XiaoJun, WANG JinLan, JU ZeLiang, LIANG GuoLing, JIA ZhiFeng, LIU WenHui, MA Xiang, MA JinXiu, LI Wen. Comprehensive Evaluation on Production Performance and Nutritional Quality of Different Varieties of Forage Oat in the Qinghai Lake Area [J]. Scientia Agricultura Sinica, 2024, 57(19): 3730-3742.
[10] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[11] ZHAI CaiJiao, GE LiJiao, CHENG YuJing, QIU Liang, WANG XiaoQiu, LIU ShuiDong. Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers [J]. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457.
[12] YANG WenHui, LUO HaoCheng, DONG ErWei, WANG JinSong, WANG Yuan, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Long-Term Fertilization and Deep Plough on Crop Potassium Utilization and Soil Potassium Forms in Maize-Sorghum Rotation System [J]. Scientia Agricultura Sinica, 2024, 57(12): 2390-2403.
[13] SONG Xiang, WANG ZhongMan, ZHANG QiuLing, WEI YuanYuan, ZHAO XiaoGang, LIU Bo, DAI SiLan. Comprehensive Evaluation and Selection of Hybrid Offsprings of Early Flowering Spray Outdoor Chrysanthemum [J]. Scientia Agricultura Sinica, 2024, 57(1): 173-189.
[14] GU WenDong, LIU ChunJuan, LI Bang, LIU Chang, ZHOU YuFei. Effects of Exogenous Tryptophan on C/N Balance and Senescence Characteristics of Sorghum Seedlings Under Low Nitrogen Stress [J]. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310.
[15] HOU ZhaoYu, GONG YiZhao, QIAN Yi, CHENG ZhuoYa, TAO Jun, ZHAO DaQiu. Evaluation of Heat Tolerance of Herbaceous Peony and Screening of Its Identification Indices [J]. Scientia Agricultura Sinica, 2023, 56(23): 4742-4756.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!