Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (2): 349-362.doi: 10.3864/j.issn.0578-1752.2024.02.010

• HORTICULTURE • Previous Articles     Next Articles

Effects of Soil Texture on Rhizosphere Microbial Carbon Source Utilization, Nematode Community and Fruit Sugar of Jackfruit

SU LanXi2(), PU QiuJie3, BAI TingYu2, WU YueXian1(), WU Gang2(), TAN LeHe2, HU YaLi1   

  1. 1 Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314
    2 Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/National Tropical Plants Germplasm Resource Center-Sub Centre of Germplasm Resource for Woody Grain/Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province/The Innovation Platform for Academician Zhang Fusuo of Hainan Province, Wanning 571533, Hainan
    3 College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, Yunnan
  • Received:2023-05-21 Accepted:2023-09-17 Online:2024-01-16 Published:2024-01-19
  • Contact: WU YueXian, WU Gang

Abstract:

【Objective】 This study aimed to investigate the variations in soil microenvironments with different textures under identical fertilization pattern and their potential relationship with the key fruit quality (sugar content), so as to provide a theoretical foundation for regional orchard fertilization and enhancing yield and quality. 【Method】 Standardized jackfruit Malaysia No. 1 orchards, characterized by consistent fertilization practices and soil textures including loam, sandy loam and sand, was carefully selected for this study. Rhizosphere soil and mature fruit of jackfruit were collected during the tree growing, flower and fruit stages to investigate the variation of metabolic functions of soil microbial communities, nematode community structure, soil physicochemical properties and fruit sugars and potential relationships of them. 【Result】 The trend of carbon source utilization of soil microorganisms in sandy loam and sandy soil followed the pattern of tree growing stage > flower stage > fruit stage. The carbon source metabolic capacity of soil microorganisms in loamy soils was ranked as fruit stage > tree growing stage > flower stage. The main types of carbon sources utilized by soil microorganisms were carbohydrates, amino acids, carboxylic acids, and polymers. The diversity index of the soil microbial community and nematode abundance in each trophic group were exhibited consistently higher values in sandy soils compared with other soil types, with particularly elevated levels observed during the tree growing and fruit stages. The ecological index of nematode, soil pH and organic matter in loamy soils were generally higher than that in the other two soil types. The glucose content in fruit showed the following order: sandy loam soil> loam soil > sandy soil. The differences in other sugar components among different soil textures were not significant. The sampling stage had a significant direct effect on the diversity of soil nematode communities, and the soil texture had a significant indirect effect and total effect on the sugar content of jackfruit. 【Conclusion】 The combined application of organic and inorganic fertilizers had different effects on the microecological environment of soils with different textures. The soil texture exerted a direct or indirect influence on the composition and functioning of microbial and nematode communities in rhizosphere soil of jackfruit throughout the tree growing and fruit stages, thereby ultimately impacting both the soil nutrient transformation and fruit quality.

Key words: soil texture, jackfruit, microbial metabolic diversity, nematode community, fruit sugar

Fig. 1

The tendency of AWCD values for soil microbial communities with time variations in soils with same textures (A) at different growth stages and different textures (B) at same growth stages Different lowercase letters indicate significant difference at the same incubation time (P<0.05)"

Fig. 2

The variation in the relative utilization of carbon sources for soil microbial communities in soils with same textures (A) at different growth stages and different textures (B) at same growth stages"

Table 1

The soil microbial functional diversity in soils with different textures at different growth stages"

土壤质地
Soil texture
生育期
Growth stage
Shannon-Wiener多样性指数
Shannon-Wiener index (H′)
Simpson指数
Simpson index (Ds)
McIntosh指数
McIntosh Index (U)
均匀度指数
Evenness (E)
壤土
Loamy soil
养树期 Tree growing stage 2.98±0.08Bb 0.97±0.00Aa 12.22±0.41Bc 0.87±0.02Bb
花期 Flower stage 2.91±0.01Bb 0.97±0.00ABb 12.71±0.03ABb 0.86±0.00Bb
果期 Fruit stage 3.19±0.01Aa 0.97±0.00Bc 13.39±0.04Aa 0.94±0.00Aa
砂壤土
Sandy loam soil
养树期 Tree growing stage 3.23±0.02Aa 0.97±0.00Bb 13.28±0.23Ab 0.95±0.01Aa
花期 Flower stage 2.87±0.01Bc 0.98±0.00Aa 11.72±0.05Bc 0.84±0.00Bc
果期 Fruit stage 2.76±0.02Cc 0.98±0.00Aa 11.20±0.06Cb 0.81±0.00Cc
砂土
Sandy soil
养树期 Tree growing stage 3.37±0.00Aa 0.96±0.00Bc 14.43±0.03Aa 0.98±0.00Aa
花期 Flower stage 3.18±0.02Ba 0.97±0.00Ac 13.33±0.09Ba 0.94±0.00Ba
果期 Fruit stage 3.10±0.02Cb 0.97±0.00Ab 13.20±0.07Ba 0.90±0.01Cb

Fig. 3

The abundance of soil nematode relative to trophic groups in soils with same textures (A) at different growth stages and different textures (B) at same growth stages"

Table 2

Soil nematode community ecological indices in soils with different textures at different growth stages"

土壤质地
Soil texture
生育期
Childbearing period
自由生活线虫成熟度指数
Maturity indices (MI)
富集指数
Enrichment index (EI)
结构指数
Structure index (SI)
Shannon-Weiner多样性指数
Shannon-Weiner index (H′)
均匀度指数
Pielou evenness index (J′)
通道指数
Nematode channel ratio (NCR)
壤土
Loamy soil
养树期 Tree growing stage 1.94±0.02Ab 73.22±2.30Aa 86.59±1.06Bb 2.67±0.08Aab 0.89±0.02Aab 0.88±0.04Aa
花期 Flower stage 2.24±0.09Aa 72.23±1.12Aa 93.93±0.37Aa 2.52±0.01Aa 0.85±0.01Aa 0.93±0.01Aa
果期 Fruit stage 1.42±0.15Ba 54.03±7.88Ba 88.31±1.65Ba 2.57±0.07Aa 0.88±0.01Aa 0.67±0.05Bb
砂壤土
Sandy loam soil
养树期 Tree growing stage 2.44±0.14Aa 47.26±4.51Ab 91.61±0.83Aa 2.80±0.03Aa 0.94±0.01Aa 0.78±0.10Aa
花期 Flower stage 0.76±0.10Cb 53.41±6.08Aab 85.79±1.61Bb 1.70±0.06Cb 0.59±0.02Cb 0.71±0.11Aa
果期 Fruit stage 1.49±0.10Ba 48.03±4.98Aa 88.23±1.60ABa 2.31±0.02Bb 0.79±0.01Bb 0.87±0.03Aa
砂土
Sandy soil
养树期 Tree growing stage 2.05±0.08Ab 50.57±1.41ABb 89.23±1.02Aab 2.59±0.05Ab 0.85±0.02Ab 0.81±0.03Aa
花期 Flower stage 0.75±0.02Cb 35.49±8.46Bb 74.59±2.64Cc 1.85±0.03Cb 0.63±0.01Cb 0.78±0.02Aa
果期 Fruit stage 1.20±0.03Ba 58.97±3.63Aa 81.15±1.39Bb 2.09±0.04Bc 0.70±0.01Bc 0.86±0.03Aa

Table 3

Soil physical and chemical properties in soils with different textures at different growth stages"

土壤质地
Soil texture
生育期
Childbearing period
pH 有机质含量
Soil organic matter (g∙kg-1)
碱解氮含量
Alkalyzable nitrogen (mg∙kg-1)
有效磷含量
Available phosphorus (mg∙kg-1)
速效钾含量
Readily available potassium (mg∙kg-1)
壤土
Loamy soil
养树期 Tree growing stage 7.08±0.18Aa 35.67±2.50Ba 119.44±1.33Cb 8.58±2.71ABb 235.14±20.83Ab
花期 Flower stage 4.70±0.00Cc 37.30±2.61Ba 171.27±7.06Ba 16.43±2.11Ab 115.44±12.73Ba
果期 Fruit stage 5.70±0.15Bb 54.31±1.02Aa 218.87±12.11Aab 7.93±2.22Bb 57.36±1.32Ca
砂壤土
Sandy loam soil
养树期 Tree growing stage 5.15±0.21Bc 37.78±0.80Aa 182.96±3.27Aa 13.86±3.77Ab 456.73±36.84Aa
花期 Flower stage 5.50±0.10ABb 29.00±0.65Cb 126.00±3.70Bb 6.09±1.18ABb 66.60±5.75Bb
果期 Fruit stage 5.67±0.09Ab 33.23±0.64Bb 131.60±16.41Bb 5.53±0.09Bb 48.12±2.29Bab
砂土
Sandy soil
养树期 Tree growing stage 5.90±0.12Ab 9.77±0.49Cb 54.60±1.40Bc 129.40±31.15Aa 34.92±5.28ABc
花期 Flower stage 6.03±0.24Aa 12.42±0.20Bc 124.60±12.12Bb 152.67±13.91Aa 25.68±2.64Bc
果期 Fruit stage 6.17±0.03Aa 17.98±0.56Ac 327.52±64.26Aa 32.09±1.25Ba 46.39±4.02Ab

Fig. 4

The sugar content of jackfruit pulp grown in soils with different textures"

Fig. 5

Partial least squares path models (PLS-PM) and random forest models analysis of factors and fruit sugar The Goodness-of-Fit of partial least squares path models (PLS-PM) is 0.572. Soil physicochemical properties, microbial functional diversity and nematode community diversity are used as latent variables. Coefficient of determination (R2) values denote the proportion of variance explaining for each variable. Arrow thickness is scaled proportionally to the standardized path coefficients (numbers on arrows). Solid and dotted arrows indicate positive and negative relationships, respectively"

[1]
张上隆, 陈昆松. 果实品质形成与调控的分子生理. 北京: 中国农业出版社, 2007.
ZHANG S L, CHEN K S. Molecular Physiology of Fruit Quality Development and Regulation. Beijing: China Agriculture Press, 2007. (in Chinese)
[2]
田晓成, 祝令成, 邹晖, 李白云, 马锋旺, 李明军. 果实可溶性糖的积累模式及其调控研究进展. 园艺学报, 2023, 50(4): 885-895.

doi: 10.16420/j.issn.0513-353x.2021-1264
TIAN X C, ZHU L C, ZOU H, LI B Y, MA F W, LI M J. Research progress on accumulation pattern and regulation of soluble sugar in fruit. Acta Horticulturae Sinica, 2023, 50(4): 885-895. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2021-1264
[3]
叶昌, 黄秀, 褚光, 徐春梅, 陈松, 章秀福, 王丹英. 水稻因土质施肥方法探讨. 中国稻米, 2020, 26(1): 11-15.

doi: 10.3969/j.issn.1006-8082.2020.01.003
YE C, HUANG X, CHU G, XU C M, CHEN S, ZHANG X F, WANG D Y. Discussion on fertility characteristics of different texture soils and rice fertilization method. China Rice, 2020, 26(1): 11-15. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2020.01.003
[4]
盛月凡, 王海燕, 乔铉元, 王玫, 陈学森, 沈向, 尹承苗, 毛志泉. 不同土壤质地对平邑甜茶幼苗连作障碍程度的影响. 中国农业科学, 2019, 52(4): 715-724. doi: 10.3864/j.issn.0578-1752.2019.04.012.
SHENG Y F, WANG H Y, QIAO H Y, WANG M, CHEN X S, SHEN X, YIN C M, MAO Z Q. Effects of different soil textures on the degree of replanted disease of Malus hupehensis rehd. Scientia Agricultura Sinica, 2019, 52(4): 715-724. doi: 10.3864/j.issn.0578-1752.2019.04.012. (in Chinese)
[5]
GELSOMINO A, KEIJZER-WOLTERS A C, CACCO G, VAN ELSAS J D. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. Journal of Microbiological Methods, 1999, 38(1/2): 1-15.

doi: 10.1016/S0167-7012(99)00054-8
[6]
CHIARINI L, BEVIVINO A, DALMASTRI C, NACAMULLI C, TABACCHIONI S. Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Applied Soil Ecology, 1998, 8(1/2/3): 11-18.

doi: 10.1016/S0929-1393(97)00071-1
[7]
HASSINK J, BOUWMAN L A, ZWART K B, BLOEM J, BRUSSAARD L. Relationships between soil texture, physical protection of organic matter, soil biota, and c and n mineralization in grassland soils. Geoderma, 1993, 57(1/2): 105-128.

doi: 10.1016/0016-7061(93)90150-J
[8]
SEATON F M, GEORGE P B L, LEBRON I, JONES D L, CREER S, ROBINSON D A. Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 2020, 144: 107766.

doi: 10.1016/j.soilbio.2020.107766
[9]
王清奎, 汪思龙, 冯宗炜, 黄宇. 土壤活性有机质及其与土壤质量的关系. 生态学报, 2005, 25(3): 513-519.
WANG Q K, WANG S L, FENG Z W, HUANG Y. Active soil organic matter and its relationship with soil quality. Acta Ecologica Sinica, 2005, 25(3): 513-519. (in Chinese)
[10]
MARSCHNER P, YANG C H, LIEBEREI R, CROWLEY D E. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 2001, 33(11): 1437-1445.

doi: 10.1016/S0038-0717(01)00052-9
[11]
VERSCHOOR B C, DE GOEDE R G M. The nematode extraction efficiency of the Oostenbrink elutriator-cottonwool filter method with special reference to nematode body size and life strategy. Nematology, 2000, 2(3): 325-342.

doi: 10.1163/156854100509204
[12]
BONGERS T, BONGERS M. Functional diversity of nematodes. Applied Soil Ecology, 1998, 10(3): 239-251.

doi: 10.1016/S0929-1393(98)00123-1
[13]
YEATES G W, BONGERS T, DE GOEDE R G, FRECKMAN D W, GEORGIEVA S S. Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of Nematology, 1993, 25(3): 315-331.

pmid: 19279775
[14]
SU L X, BAI T Y, QIN X W, YU H, WU G, ZHAO Q Y, TAN L H. Organic manure induced soil food web of microbes and nematodes drive soil organic matter under jackfruit planting. Applied Soil Ecology, 2021, 166: 103994.

doi: 10.1016/j.apsoil.2021.103994
[15]
HUANG J, SHENG X F, HE L Y, HUANG Z, WANG Q, ZHANG Z D. Characterization of depth-related changes in bacterial community compositions and functions of a paddy soil profile. FEMS Microbiology Letters, 2013, 347(1): 33-42.

doi: 10.1111/1574-6968.12218 pmid: 23865584
[16]
SCHIPPER L A, DEGENS B P, SPARLING G P, DUNCAN L C. Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biology and Biochemistry, 2001, 33(15): 2093-2103.

doi: 10.1016/S0038-0717(01)00142-0
[17]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[18]
邹琦. 植物生理生化实验指导. 北京: 中国农业出版社, 1995.
ZOU Q. Guidance of plant physiological and biochemical experiments. Beijing: China Agriculture Press, 1995. (in Chinese)
[19]
党雯, 郜春花, 张强, 李建华, 卢朝东, 靳东升, 卢晋晶. Biolog法测定土壤微生物群落功能多样性预处理方法的筛选. 中国农学通报, 2015, 31(2): 153-158.

doi: 10.11924/j.issn.1000-6850.2014-2191
DANG W, GAO C H, ZHANG Q, LI J H, LU C D, JIN D S, LU J J. Screening of preprocessing methods of biolog for soil microbial community functional diversity. Chinese Agricultural Science Bulletin, 2015, 31(2): 153-158. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2014-2191
[20]
DE FREITAS P L, ZOBEL R W, SYNDER V A. Corn root growth in soil columns with artificially constructed aggregates. Crop Science, 1999, 39(3): 725-730.

doi: 10.2135/cropsci1999.0011183X003900030020x
[21]
BANERJEE S, KIRKBY C A, SCHMUTTER D, BISSETT A, KIRKEGAARD J A, RICHARDSON A E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology and Biochemistry, 2016, 97: 188-198.

doi: 10.1016/j.soilbio.2016.03.017
[22]
李林, 武术兰, 王震. 钾在不同质地土壤中的吸附-解吸特性研究. 农业科技通讯, 2017(9): 154-157.
LI L, WU S L, WANG Z. Study on adsorption-desorption characteristics of potassium in soil with different textures. Bulletin of Agricultural Science and Technology, 2017(9): 154-157. (in Chinese)
[23]
曲同宝, 王呈玉, 庞思娜, 张建峰. 松嫩草地4种植物功能群土壤微生物碳源利用的差异. 生态学报, 2015, 35(17): 5695-5702.
QU T B, WANG C Y, PANG S N, ZHANG J F. Utilization of carbon sources by soil microbial communities of four plant functional groups in Songnen Steppe. Acta Ecologica Sinica, 2015, 35(17): 5695-5702. (in Chinese)
[24]
ZHU Z L, BAI Y, LV M L, TIAN G, ZHANG X, LI L, JIANG Y M, GE S F. Soil fertility, microbial biomass, and microbial functional diversity responses to four years fertilization in an apple orchard in North China. Horticultural Plant Journal, 2020, 6(4): 223-230.

doi: 10.1016/j.hpj.2020.06.003
[25]
KUMAR U, SHAHID M, TRIPATHI R, MOHANTY S, KUMAR A, BHATTACHARYYA P, LAL B, GAUTAM P, RAJA R, PANDA B B, JAMBHULKAR N N, SHUKLA A K, NAYAK A K. Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecological Indicators, 2017, 73: 536-543.

doi: 10.1016/j.ecolind.2016.10.014
[26]
KANDELER E, TSCHERKO D, BRUCE K D, STEMMER M, HOBBS P J, BARDGETT R D, AMELUNG W. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biology and Fertility of Soils, 2000, 32(5): 390-400.

doi: 10.1007/s003740000268
[27]
QUIGLEY M Y, NEGASSA W C, GUBER A K, RIVERS M L, KRAVCHENKO A N. Influence of pore characteristics on the fate and distribution of newly added carbon. Frontiers in Environmental Science, 2018, 6: 51.

doi: 10.3389/fenvs.2018.00051
[28]
XIA Q, RUFTY T, SHI W. Soil microbial diversity and composition: links to soil texture and associated properties. Soil Biology and Biochemistry, 2020, 149: 107953.

doi: 10.1016/j.soilbio.2020.107953
[29]
CHAU J F, BAGTZOGLOU A C, WILLIG M R. The effect of soil texture on richness and diversity of bacterial communities. Environmental Forensics, 2011, 12(4): 333-341.

doi: 10.1080/15275922.2011.622348
[30]
STEVENSON B A, SARMAH A K, SMERNIK R, HUNTER D W F, FRASER S. Soil carbon characterization and nutrient ratios across land uses on two contrasting soils: Their relationships to microbial biomass and function. Soil Biology and Biochemistry, 2016, 97: 50-62.

doi: 10.1016/j.soilbio.2016.02.009
[31]
QUIST C W, GORT G, MOOIJMAN P, BRUS D J, VAN DEN ELSEN S, KOSTENKO O, VERVOORT M, BAKKER J, VAN DER PUTTEN W H, HELDER J. Spatial distribution of soil nematodes relates to soil organic matter and life strategy. Soil Biology and Biochemistry, 2019, 136: 107542.

doi: 10.1016/j.soilbio.2019.107542
[32]
JONES F G W. The soil as an environment for plant parasitic nematodes. Annals of Applied Biology, 1975, 79(2): 113-139.

doi: 10.1111/aab.1975.79.issue-2
[33]
HASSINK J, BOUWMAN L A, ZWART K B, BRUSSAARD L. Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biology and Biochemistry, 1993, 25(1): 47-55.

doi: 10.1016/0038-0717(93)90240-C
[34]
SECHI V, DE GOEDE R G M, RUTGERS M, BRUSSAARD L, MULDER C. Functional diversity in nematode communities across terrestrial ecosystems. Basic and Applied Ecology, 2018, 30: 76-86.

doi: 10.1016/j.baae.2018.05.004
[35]
BONGERS T. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 1990, 83(1): 14-19.

doi: 10.1007/BF00324627 pmid: 28313236
[36]
江春, 黄菁华, 李修强, 李辉信, 孙波. 长期施用有机肥对红壤旱地土壤线虫群落的影响. 土壤学报, 2011, 48(6): 1235-1241.
JIANG C, HUANG J H, LI X Q, LI H X, SUN B. Responses of soil nematode community to long-term application of organic manure in upland red soil. Acta Pedologica Sinica, 2011, 48(6): 1235-1241. (in Chinese)
[37]
LÜTZOW M V, KÖGEL-KNABNER I, EKSCHMITT K, MATZNER E, GUGGENBERGER G, MARSCHNER B, FLESSA H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions-A review. European Journal of Soil Science, 2006, 57(4): 426-445.

doi: 10.1111/ejs.2006.57.issue-4
[38]
RAMASWAMY V, GAYE B, SHIRODKAR P V, RAO P S, CHIVAS A R, WHEELER D, THWIN S. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea. Marine Chemistry, 2008, 111(3/4): 137-150.

doi: 10.1016/j.marchem.2008.04.006
[39]
BLANCO-CANQUI H, HERGERT G W, NIELSEN R A. Cattle manure application reduces soil compactibility and increases water retention after 71 years. Soil Science Society of America Journal, 2015, 79(1): 212-223.

doi: 10.2136/sssaj2014.06.0252
[40]
BACQ-LABREUIL A, NEAL A L, CRAWFORD J, MOONEY S J, AKKARI E, ZHANG X, CLARK I, RITZ K. Significant structural evolution of a long-term fallow soil in response to agricultural management practices requires at least 10 years after conversion at the aggregate level. Journal of Soil Science, 2020, 72(2): 829-841.
[41]
CURD E E, MARTINY J B H, LI H Y, SMITH T B. Bacterial diversity is positively correlated with soil heterogeneity. Ecosphere, 2018, 9(1): e02079.

doi: 10.1002/ecs2.2018.9.issue-1
[42]
TOTSCHE K U, RENNERT T, GERZABEK M H, KÖGEL- KNABNER I, SMALLA K, SPITELLER M, VOGEL H J. Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science. Journal of Plant Nutrition and Soil Science, 2010, 173(1): 88-99.

doi: 10.1002/jpln.v173:1
[43]
CAVIGELLI M A, ROBERTSON G P. The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology, 2000, 81(5): 1402-1414.

doi: 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2
[44]
SONNEMANN I, WOLTERS V. The microfood web of grassland soils responds to a moderate increase in atmospheric CO2. Global Change Biology, 2005, 11(7): 1148-1155.

doi: 10.1111/gcb.2005.11.issue-7
[45]
LI G, LIU T, WHALEN J K, WEI Z. Nematodes: An overlooked tiny engineer of plant health. Trends in Plant Science, 2023. https://doi.org/10.1016/j.tplants.2023.06.022.
[46]
HANNULA S E, DE BOER W, VAN VEEN J. A 3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-trait have minor effects. PLoS ONE, 2012, 7(4): e33819.

doi: 10.1371/journal.pone.0033819
[47]
ZHOU J, GUAN D W, ZHOU B K, ZHAO B S, MA M C, QIN J, JIANG X, CHEN S F, CAO F M, SHEN D L, LI J. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biology and Biochemistry, 2015, 90: 42-51.

doi: 10.1016/j.soilbio.2015.07.005
[48]
VIKETOFT M, BENGTSSON J, SOHLENIUS B, BERG M P, PETCHEY O, PALMBORG C, HUSS-DANELL K. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology, 2009, 90(1): 90-99.

doi: 10.1890/08-0382.1 pmid: 19294916
[1] ZHOU Lei, QU XiaoLin, ZHOU Tao, MA ChangBao, LI JianBing, LONG HuaiYu, XU AiGuo, ZHANG RenLian, LI Ge. Analysis of the Characteristics and Influencing Factors of Soil Particle Composition in Ningxia [J]. Scientia Agricultura Sinica, 2023, 56(21): 4272-4287.
[2] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[3] ZHANG MengTing, LIU Ping, HUANG DanDan, JIA ShuXia, ZHANG XiaoKe, ZHANG ShiXiu, LIANG WenJu, CHEN XueWen, ZHANG Yan, LIANG AiZhen. Response of Nematode Community to Soil Disturbance After Long-Term No-Tillage Practice in the Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4840-4850.
[4] ZHONG Liang,GUO Xi,GUO JiaXin,HAN Yi,ZHU Qing,XIONG Xing. Soil Texture Classification of Hyperspectral Based on Data Mining Technology [J]. Scientia Agricultura Sinica, 2020, 53(21): 4449-4459.
[5] XIN XiaoPing,DING Lei,CHENG Wei,ZHU XiaoYu,CHEN BaoRui,LIU ZhongLing,HE GuangLi,QING GeLe,YANG GuiXia,TANG HuaJun. Biomass Carbon Storage and Its Effect Factors in Steppe and Agro-Pastoral Ecotones in Northern China [J]. Scientia Agricultura Sinica, 2020, 53(13): 2757-2768.
[6] SHENG YueFan,WANG HaiYan,QIAO HongYuan,WANG Mei,CHEN XueSen,SHEN Xiang,YIN ChengMiao,MAO ZhiQuan. Effects of Different Soil Textures on the Degree of Replanted Disease of Malus hupehensis Rehd. [J]. Scientia Agricultura Sinica, 2019, 52(4): 715-724.
[7] REN XueYan,LIU GuangCai,LI GuoPeng,YE ChunHai,FENG Feng,WANG JunNing. Effects of Ethephon and 1-MCP on the Expression of AheAAT Gene and AheERF Transcription Factors in Jackfruit Fruit [J]. Scientia Agricultura Sinica, 2019, 52(21): 3890-3902.
[8] SU LanXi,BAI TingYu,YU Huan,WU Gang,TAN LeHe. Effects of Salt Stress on Seedlings Growth, Photosynthesis and Chlorophyll Fluorescence of Two Species of Artocarpus [J]. Scientia Agricultura Sinica, 2019, 52(12): 2140-2150.
[9] XIAO Jing, XU Hu, CAI AnDong, HUANG Min, ZHANG Qi, SUN Nan, ZHANG WenJu, XU MingGang. A Meta-Analysis of Effects of Biochar Properties and Management Practices on Crop Yield [J]. Scientia Agricultura Sinica, 2017, 50(10): 1827-1837.
[10] WU Huan-Huan-12, 吕Jia-Long-2 , DUAN Ying-Hua-1, ZHANG Wen-Ju-1, XU Ming-Gang-1. Establishment and Validation of Model of Soil Particle Size Distribution of Main Soils in China by Laser Diffraction Method [J]. Scientia Agricultura Sinica, 2013, 46(20): 4293-4300.
[11] DI Qing-Yun, ZHANG Juan-Juan, XIONG Shu-Ping, LIU Juan, YANG Yang, MA Xin-Ming. Research on Hyperspectral Differences and Monitoring Model of Leaf Nitrogen Content in Wheat Based on Different Soil Textures [J]. Scientia Agricultura Sinica, 2013, 46(13): 2655-2667.
[12] LI Chun-Xuan, LUO Yi, BAO An-Ming, ZHANG Yan, YANG Chuan-Jie, CUI Lin-Lin. Study on Spatial Interpolation of Compositional Data Based on Log-Ratio Transformation [J]. Scientia Agricultura Sinica, 2012, 45(4): 648-655.
[13] . The Spatial Variability and Factor Analyses of Top Soil Texture on a County Scale
[J]. Scientia Agricultura Sinica, 2011, 44(6): 1154-1164 .
[14] . Effects of Soil Texture on Activities of Key Enzymes of Starch Synthesis in Kernel of Winter Wheat Cultivars with Different Gluten Content [J]. Scientia Agricultura Sinica, 2005, 38(01): 191-196 .
[15] ,,. Study on the Soil Erodibility Based on the Soil Particle-size [J]. Scientia Agricultura Sinica, 2004, 37(11): 1647-1653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!