Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (10): 1845-1856.doi: 10.3864/j.issn.0578-1752.2024.10.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity Analysis of Winter Wheat Germplasm Resources in Shanxi Province Based on 55K SNP Array

LEI MengLin1(), LIU Xia1, WANG YanZhen1, CUI GuoQing1, MU ZhiXin1, LIU LongLong1, LI Xin2, LU LaHu3, LI XiaoLi3, ZHANG XiaoJun2()   

  1. 1 Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031
    2 College of Agriculture, Shanxi Agricultural University/Key Laboratory of Crop Genetics and Molecular Improvement of Shanxi Province, Taigu 030801, Shanxi
    3 Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, Shanxi
  • Received:2023-12-13 Accepted:2024-01-30 Online:2024-05-16 Published:2024-05-23
  • Contact: ZHANG XiaoJun

Abstract:

【Objective】 Analyzing the evolutionary patterns of genetic diversity of wheat germplasm resources, providing richer and more diverse original parental materials for parental selection and variety selection in wheat breeding in Shanxi Province.【Method】 Using 323 landraces and 105 cultivated varieties as natural populations, a 55K SNP chip was used to perform whole genome scanning on 428 natural populations, analyzing genetic diversity, genetic structure, principal components, genetic clustering, and phylogenetic relationships among varieties. 【Result】 The distribution of SNP loci on 21 chromosomes ranged from 329 to 1 639, with an average of 1 152. The distribution range of 7 partially homologous groups is 2 154-3 852, with an average of approximately 3 456. The distribution pattern of the genome is: B genome>A genome>D genome. Genomic annotation polymorphism markers have the highest distribution among gene regions, accounting for about 50%. Analysis shows that SNP loci cover 21 chromosomes, 7 homologous groups and 3 genomes, but their distribution varies, with a polymorphism rate of 45.60%. The average observed heterozygosity of the entire population (0.0185) was lower than the expected heterozygosity (0.4992). The changes in the average shannon wiener index and polymorphism information content of the entire natural population were not significant. Comparing the diversity parameters of natural populations, it was found that the genetic diversity of the population is not high, the genetic diversity of cultivated varieties is slightly higher than that landraces. The population structure analysis of natural populations divides the population into two major groups. Group I has 307 materials, mainly landraces. Group Ⅱ has 121 materials, mainly cultivated varieties. The natural groups were divided into five groups by both principal component and cluster analysis. The average genetic distance between the varieties in group I is 0.21831, with a range of 0.00127-0.72461. The average genetic distance between varieties in group Ⅱ is 0.14619, with a range of 0.00038-0.76489. The varieties in group Ⅲ the average genetic distance between the varieties of group Ⅳ is 0.16521, with a range of 0.00049-0.43033. The average genetic distance between varieties of group Ⅳ is 0.17643, with a range of 0.00118-0.60496. The average genetic distance between varieties of group V is 0.12039, with a range of 0.00042-0.37032. It can be seen that the variation of genetic distance between wheat varieties is large in Shanxi Province. However, the average genetic distance value is low, the clustering classification differentiation is obvious. The genetic relationship between varieties in the middle of the group is relatively close. Comparison shows that the average genetic distance of group I and group Ⅳ is higher than that of group Ⅱ, group Ⅲ and group V. The genetic distance variation of group I and group Ⅳ is higher than that of group Ⅲ and group V. It can be seen that the genetic distance of cultivated varieties is generally greater than that of landraces.【Conclusion】 The 55K SNP chip was used to analyze the genetic diversity of Shanxi winter wheat germplasm resources, clarifying the distribution characteristics of genetic diversity at the genomic level between Shanxi wheat cultivated varieties and landraces. The introduction of exogenous genes into cultivated varieties is beneficial for improving genetic diversity, while the genetic diversity of landraces is relatively low. At the same time, the genetic relationships of very few varieties are polarized, so it should be rationally used differently in subsequent utilization.

Key words: wheat, landraces, cultivars, genetic diversity, 55K SNP

Table 1

Comparison of the genetic diversities in landraces and cultivars"

参数
Parameter
数值
Value
育成品种+地方品种
Cultivars+Landraces
育成品种
Cultivars
地方品种
Landraces
观测杂合率Ho 平均值Mean 0.0185 0.0216 0.0175
最大值Max 0.3710 0.3710 0.1923
最小值Min 0.0022 0.0022 0.0050
期望杂合率He 平均值Mean 0.4992 0.4987 0.4994
最大值Max 0.5000 0.5000 0.4999
最小值Min 0.4964 0.4967 0.4964
香农-威纳指数SWI 平均值Mean 0.6923 0.6918 0.6925
最大值Max 0.6931 0.6932 0.6930
最小值Min 0.6895 0.6899 0.6895
多态性信息含量PIC 平均值Mean 0.3746 0.3743 0.3747
最大值Max 0.3750 0.3750 0.3749
最小值Min 0.3732 0.3733 0.3732

Fig. 1

Distribution of SNP in chromosomes (A), each homologous groups (B), and annotations in the genome (C)"

Fig. 2

K value and ΔK value line chart (A) and population genetic structure chart (B)"

Table 2

Q value distribution of each group"

类群
Group
总数量
Total quantity
数量(频次)Quantity (frequency, %)
Q≥0.9 0.6<Q<0.9 Q≤0.6
307 275 (89.57) 29 (9.45) 3 (0.98)
121 79 (65.29) 32 (26.45) 10 (8.26)
Ⅰ+Ⅱ 428 354 (82.71) 61 (14.25) 13 (3.04)

Fig. 3

Principal component analysis diagram of population"

Fig. 4

Phylogenetic tree of population based on SNP markers"

[1]
徐兆飞. 山西小麦. 北京: 中国农业出版社, 2006.
XU Z F. Shanxi Wheat. Beijing: China Agriculture Press, 2006. (in Chinese)
[2]
马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析. 作物学报, 2020, 46(10): 1539-1556.

doi: 10.3724/SP.J.1006.2020.91077
MA Y M, LOU H Y, CHEN Z Y, XIAO J, XU L, NI Z F, LIU J. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis. Acta Agronomica Sinica, 2020, 46(10): 1539-1556. (in Chinese)
[3]
TANKSLEY S D, MCCOUCH S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277(5329): 1063-1066.

doi: 10.1126/science.277.5329.1063 pmid: 9262467
[4]
郝晨阳, 王兰芬, 张学勇, 游光霞, 董玉琛, 贾继增, 刘旭, 尚勋武, 刘三才, 曹永生. 我国育成小麦品种的遗传多样性演变. 中国科学C辑: 生命科学, 2005, 35(5): 27-34.
HAO C Y, WANG L F, ZHANG X Y, YOU G X, DONG Y C, JIA J Z, LIU X, SHANG Y W, LIU S C, CAO Y S. Evolution of genetic diversity of wheat varieties bred in China. Scientia in China, Ser C, 2005, 35(5): 27-34. (in Chinese)
[5]
中国农学会遗传资源学会编. 中国作物遗传资源. 北京: 中国农业出版社, 1994.
Edited by Genetic Resources Society of Chinese Agricultural Association. Crop Genetic Resources in China. Beijing: China Agriculture Press, 1994. (in Chinese)
[6]
谢静敏, 侯万伟, 张小娟. 青海省小麦品种基于55K SNP芯片的遗传多样性分析. 麦类作物学报, 2022, 42(11): 1343-1350.
XIE J M, HOU W W, ZHANG X J. Genetic diversity analysis of wheat in Qinghai province based on 55K SNP array. Journal of Triticeae Crops, 2022, 42(11): 1343-1350. (in Chinese)
[7]
牛景萍, 石志勇, 田洪岭, 郭淑红, 宋诗娟, 王宝慧, 郭旭, 梁建萍. 基于GBS简化基因组测序的不同黄芪种质资源遗传多样性分析. 分子植物育种, 2022, 20(24): 8291-8298.
NIU J P, SHI Z Y, TIAN H L, GUO S H, SONG S J, WANG B H, GUO X, LIANG J P. Genetic diversity analysis of different Astragalus membranaceus germplasm resources by genotyping-by-sequencing technology. Molecular Plant Breeding, 2022, 20(24): 8291-8298. (in Chinese)
[8]
曹廷杰, 谢菁忠, 吴秋红, 陈永兴, 王振忠, 赵虹, 王西成, 詹克慧, 徐如强, 王际睿, 罗明成, 刘志勇. 河南省近年审定小麦品种基于系谱和SNP标记的遗传多样性分析. 作物学报, 2015, 41(2): 197-206.
CAO T J, XIE J Z, WU Q H, CHEN Y X, WANG Z Z, ZHAO H, WANG X C, ZHAN K H, XU R Q, WANG J R, LUO M C, LIU Z Y. Genetic diversity of registered wheat varieties in Henan province based on pedigree and single-nucleotide polymorphism. Acta Agronomica Sinica, 2015, 41(2): 197-206. (in Chinese)
[9]
NISHIDA N, KOIKE A, TAJIMA A, OGASAWARA Y, ISHIBASHI Y, UEHARA Y, INOUE I, TOKUNAGA K. Evaluating the performance of Affymetrix SNP Array 6.0 platform with 400 Japanese individuals. BMC Genomics, 2008, 9: 431.

doi: 10.1186/1471-2164-9-431 pmid: 18803882
[10]
KARLSSON E K, BARANOWSKA I, WADE C M, SALMON HILLBERTZ N H C, ZODY M C, ANDERSON N, BIAGI T M, PATTERSON N, PIELBERG G R, KULBOKAS E J, COMSTOCK K E, KELLER E T, MESIROV J P, VON EULER H, KÄMPE O, HEDHAMMAR Å, LANDER E S, ANDERSSON G, ANDERSSON L, LINDBLAD-TOH K. Efficient mapping of Mendelian traits in dogs through genome-wide association. Nature Genetics, 2007, 39: 1321-1328.

doi: 10.1038/ng.2007.10 pmid: 17906626
[11]
HE Z Z, XIE F M, CHEN L Y, DELA PAZ M A. Genetic diversity of tropical hybrid rice germplasm measured by molecular markers. Rice Science, 2012, 19(3): 193-201.
[12]
WÜRSCHUM T, LANGER S M, LONGIN C F H, KORZUN V, AKHUNOV E, EBMEYER E, SCHACHSCHNEIDER R, SCHACHT J, KAZMAN E, REIF J C. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theoretical and Applied Genetics, 2013, 126(6): 1477-1486.

doi: 10.1007/s00122-013-2065-1 pmid: 23429904
[13]
SULIMAN S, ALEMU A, ABDELMULA A, BADAWI G H, AL-ABDALLAT A, TADESSE W. Genome-wide association analysis uncovers stable QTLs for yield and quality traits of spring bread wheat (Triticum aestivum) across contrasting environments. Plant Gene, 2021, 25: 100269.
[14]
WANG P, TIAN T, MA J F, LIU Y, ZHANG P P, CHEN T, SHAHINNIA F, YANG D L. Genome-wide association study of kernel traits using a 35K SNP array in bread wheat (Triticum aestivum L.). Frontiers in Plant Science, 2022, 13: 905660.
[15]
LIU J J, LUO W, QIN N N, DING P Y, ZHANG H, YANG C C, MU Y, TANG H P, LIU Y X, LI W, JIANG Q T, CHEN G Y, WEI Y M, ZHENG Y L, LIU C J, LAN X J, MA J. A 55K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theoretical and Applied Genetics, 2018, 131(11): 2439-2450.
[16]
REN T H, FAN T, CHEN S L, LI C S, CHEN Y Y, OU X, JIANG Q J, REN Z L, TAN F Q, LUO P G, CHEN C, LI Z. Utilization of a wheat 55K SNP array-derived high-density genetic map for high-resolution mapping of quantitative trait loci for important kernel-related traits in common wheat. Theoretical and Applied Genetics, 2021, 134(3): 807-821.
[17]
SUKUMARAN S, DREISIGACKER S, LOPES M, CHAVEZ P, REYNOLDS M P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theoretical and Applied Genetics, 2015, 128(2): 353-363.

doi: 10.1007/s00122-014-2435-3 pmid: 25490985
[18]
LIU S Y, WANG C Y, GOU J Y, DONG Y, TIAN W F, FU L P, XIAO Y G, LUO X M, HE Z H, XIA X C, CAO S H. Genome-wide association study of ferulic acid content using 90K and 660K SNP chips in wheat. Journal of Cereal Science, 2022, 106: 103498.
[19]
NIU J Q, SI Y Q, TIAN S Q, LIU X L, SHI X L, MA S W, YU Z Q, LING H Q, ZHENG S S. A wheat 660K SNP array-based high-density genetic map facilitates QTL mapping of flag leaf-related traits in wheat. Theoretical and Applied Genetics, 2023, 136(3): 51.
[20]
SUN C W, DONG Z D, ZHAO L, REN Y, ZHANG N, CHEN F. The wheat 660K SNP array demonstrates great potential for marker- assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18(6): 1354-1360.
[21]
WANG S C, WONG D, FORREST K, ALLEN A, CHAO S, HUANG B E, MACCAFERRI M, SALVI S, MILNER S G, CATTIVELLI L, MASTRANGELO A M, WHAN A, STEPHEN S, BARKER G, WIESEKE R, PLIESKE J, CONSORTIUM I W G S, LILLEMO M, MATHER D, APPELS R, DOLFERUS R, BROWN-GUEDIRA G, KOROL A, AKHUNOVA A R, FEUILLET C, SALSE J, MORGANTE M, POZNIAK C, LUO M C, DVORAK J, MORELL M, DUBCOVSKY J, GANAL M, TUBEROSA R, LAWLEY C, MIKOULITCH I, CAVANAGH C, EDWARDS K J, HAYDEN M, AKHUNOV E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnology Journal, 2014, 12(6): 787-796.

doi: 10.1111/pbi.12183 pmid: 24646323
[22]
CAVANAGH C R, CHAO S, WANG S C, HUANG B E, STEPHEN S, KIANI S, FORREST K, SAINTENAC C, BROWN-GUEDIRA G L, AKHUNOVA A, SEE D, BAI G H, PUMPHREY M, TOMAR L, WONG D, KONG S, REYNOLDS M, DA SILVA M L, BOCKELMAN H, TALBERT L, ANDERSON J A, DREISIGACKER S, BAENZIGER S, CARTER A, KORZUN V, MORRELL P L, DUBCOVSKY J, MORELL M K, SORRELLS M E, HAYDEN M J, AKHUNOV E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(20): 8057-8062.
[23]
卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性. 作物学报, 2023, 49(6): 1708-1714.
LU M A, PENG X A, ZHANG L, WANG J L, HE X F, ZHU Y L. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray. Acta Agronomica Sinica, 2023, 49(6): 1708-1714. (in Chinese)
[24]
ELTAHER S, SALLAM A, BELAMKAR V, EMARA H A, NOWER A A, SALEM K F M, POLAND J, BAENZIGER P S. Genetic diversity and population structure of F3:6 nebraska winter wheat genotypes using genotyping-by-sequencing. Frontiers in Genetics, 2018, 9: 76.
[25]
EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620.

doi: 10.1111/j.1365-294X.2005.02553.x pmid: 15969739
[26]
刘旭, 杨庆文. 中国作物及其野生近缘植物名录卷. 北京: 中国农业出版社, 2013.
LIU X, YANG Q W. A List of Chinese Crops and Their Wild Relatives. Beijing: China Agriculture Press, 2013. (in Chinese)
[27]
陈丹, 祝迪, 周国雁, 武晓阳, 伍少云, 蔡青. 滇西地区小麦地方品种SSR分子标记遗传多样性及亲缘关系分析. 植物遗传资源学报, 2023, 24(2): 445-457.

doi: 10.13430/j.cnki.jpgr.20220802003
CHEN D, ZHU D, ZHOU G Y, WU X Y, WU S Y, CAI Q. SSR markers genetic diversity analysis and genetic relationship analysis of wheat landraces from the west of Yunnan province. Journal of Plant Genetic Resources, 2023, 24(2): 445-457. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20220802003
[28]
李珊珊, 易腾飞, 徐渴, 张树华, 赵勇, 杨学举. 河北省小麦品种基于SNP标记的遗传多样性分析. 分子植物育种, 2019, 17(20): 6850-6859.
LI S S, YI T F, XU K, ZHANG S H, ZHAO Y, YANG X J. Genetic diversity of wheat varieties in Hebei province based on single- nucleotide polymorphism. Molecular Plant Breeding, 2019, 17(20): 6850-6859. (in Chinese)
[29]
郑少兵, 郭一, 陈俐, 赵杰, 康振生, 詹刚明. 西藏小麦条锈菌群体结构与遗传多样性. 植物保护学报, 2022, 49(6): 1583-1592.
ZHENG S B, GUO Y, CHEN L, ZHAO J, KANG Z S, ZHAN G M. Population structure and genetic diversity of wheat stripe rust pathogen Puccinia striiformis f. sp. tritici collected in Tibet. Journal of Plant Protection, 2022, 49(6): 1583-1592. (in Chinese)
[30]
赵文佳. 山西小麦萌发期抗旱性遗传研究[D]. 太谷: 山西农业大学, 2022.
ZHAO W J. Genetic study on drought resistance of wheat at germination stage in Shanxi province[D]. Taigu: Shanxi Agricultural University, 2022. (in Chinese)
[31]
李晓华. 山西省小麦育成品种的遗传及演化分析[D]. 太原: 山西大学, 2018.
LI X H. Inheritance and evolution analysis of wheat cultivars in Shanxi province[D]. Taiyuan: Shanxi University, 2018. (in Chinese)
[32]
郑军, 李晓华, 赵佳佳, 尚保华, 曹勇, 马小飞, 张晓军, 乔玲, 乔麟轶, 郑兴卫, 张建诚. 山西省小麦育成品种遗传多样性分析. 植物遗传资源学报, 2018. 19(4): 619-626.

doi: 10.13430/j.cnki.jpgr.20171105001
ZHENG J, LI X H, ZHAO J J, SHANG B H, CAO Y, MA X F, ZHANG X J, QIAO L, QIAO L Y, ZHENG X W, ZHANG J C. Genetic diversity analysis of wheat cultivars in Shanxi Province. Journal of Plant Genetic Resources, 2018, 19(4): 619-626. (in Chinese)
[33]
李志波, 王睿辉, 张茶, 梁虹, 马峙英, 赵玉欣, 王静华. 河北省小麦品种基于农艺性状的遗传多样性分析. 植物遗传资源学报, 2009, 10(3): 436-442.
LI Z B, WANG R H, ZHANG C, LIANG H, MA Z Y, ZHAO Y X, WANG J H. Genetic diversity analysis of bread wheat (Triticum aestivum L.) cultivars in Hebei province based on agronomic traits. Journal of Plant Genetic Resources, 2009, 10(3): 436-442. (in Chinese)
[34]
徐晓丹, 冯晶, 蔺瑞明, 赵蕾, 林凤, 徐世昌. 河南小麦主栽品种亲缘系数分析. 麦类作物学报, 2011, 31(4): 653-659.
XU X D, FENG J, LIN R M, ZHAO L, LIN F, XU S C. Coefficient of parentage analysis for leading wheat cultivars in Henan province. Journal of Triticeae Crops, 2011, 31(4): 653-659. (in Chinese)
[35]
潘玉朋, 李立群, 郑锦娟, 王培, 冯毅, 李学军. 黄淮麦区近年大面积推广小麦品种的遗传多样性分析. 西北农业学报, 2011, 20(4): 47-52.
PAN Y P, LI L Q, ZHENG J J, WANG P, FENG Y, LI X J. Analysis of genetic diversity of the large-scale promoted wheat varieties grown at Huang-Huai area in recent years. Acta Agriculturae Boreali- Occidentalis Sinica, 2011, 20(4): 47-52. (in Chinese)
[36]
傅体华, 王春梅, 任正隆. 四川育成小麦品种的SSR遗传多态性及系谱关系. 四川农业大学学报, 2007, 25(1): 1-8, 23.
FU T H, WANG C M, REN Z L. SSR genetic diversity among modern advanced wheat cultivars (Triticum aestivum L.) in Sichuan and its relationships with their pedigree. Journal of Sichuan Agricultural University, 2007, 25(1): 1-8, 23. (in Chinese)
[37]
BRO R, SMILDE A K. Principal component analysis. Analytical Methods, 2014, 6(9): 2812-2831.
[38]
牛景萍, 石志勇, 田洪岭, 郭淑红, 宋诗娟, 王宝慧, 郭旭, 梁建萍. 基于GBS简化基因组测序的不同黄芪种质资源遗传多样性分析. 分子植物育种, 2022, 20(24): 8291-8298.
NIU J P, SHI Z Y, TIAN H L, GUO S H, SONG S J, WANG B H, GUO X, LIANG J P. Genetic diversity analysis of different a stragalus membranaceus germplasm resources by genotyping-by- sequencing technology. Molecular Plant Breeding, 2022, 20(24): 8291-8298. (in Chinese)
[39]
马克岩, 韩金涛, 白雅琴, 李讨讨, 马友记. 基于简化基因组测序的永登七山羊遗传多样性分析. 畜牧兽医学报, 2023, 54(5): 1939-1950.
MA K Y, HAN J T, BAI Y Q, LI T T, MA Y J. Genetic diversity analysis of Yongdeng Qishan sheep based on specific-locus amplified fragment sequencing. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1939-1950. (in Chinese)
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[5] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[6] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[7] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[8] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[9] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[10] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[11] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[12] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[13] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[14] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[15] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!