Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (19): 3894-3916.doi: 10.3864/j.issn.0578-1752.2024.19.013

• HORTICULTURE • Previous Articles     Next Articles

Comprehensive Analysis of Morphologic Characters and Biochemical Components of Guizhou Dashu Tea Germplasms

YANG Chun1(), YANG DaiXing2, LI Yan1, LIANG SiHui1, DENG XiaoQiang3, QIAO DaHe1, CHEN Juan1, GUO Yan1, LIN KaiQin1, CHEN ZhengWu1()   

  1. 1 Guizhou Tea Research Institute/Zunyi Comprehensive Test Station, China Agriculture Research System-Tea/Resource Breeding Function Laboratory of Guizhou Modern Agricultural Industry Technology System of Tea, Guiyang 550006
    2 Tea College, Guizhou University, Guiyang 550025
    3 Agricultural and Rural Bureau of Xishui County, Zunyi 564600, Guizhou
  • Received:2024-02-20 Accepted:2024-06-24 Online:2024-10-01 Published:2024-10-09
  • Contact: CHEN ZhengWu

Abstract:

【Objective】 The aim of this study was to elucidate the morphological and biochemical characteristics of Guizhou Dashu tea germplasms in different regions, so as to provide the scientific basis for the conservation, development and utilization of Guizhou Dashu tea germplasms.【Method】In this study, 121 Dashu tea germplasms from seven counties in Guizhou were selected as materials to determine their morphological and biochemical traits. Multivariate statistical methods, including correlation analysis, principal component analysis (PCA), and cluster analysis were applied to comprehensively evaluate the genetic diversity of Guizhou Dashu tea germplasms. 【Result】The genetic diversity of biochemical traits was higher than morphological traits in Guizhou Dashu tea. The coefficient of variation (CV) for the 7 morphological traits ranged from 11.30% (length-width ratio) to 145.61% (ovary pubescence), with a mean CV of 41.12%. The index of genetic diversity (H') for them ranged from 0.47 (axillary pubescence) to 2.07 (length- width ratio), with an average value of 1.43. The CV of the 14 biochemical traits ranged from 23.15% (total catechins) to 99.54% (gallic acid), with an average value of 54.71%, and the H' ranged from 1.36 (epicatechin, EC) to 2.07 (total catechins), with a mean of 1.89. Most Guizhou Dashu tea germplasms were characterized by hairy axillary buds, glabrous ovaries, large or middle leaves, and long elliptical or elliptical leaf shape. The biochemical content of Guizhou Dashu tea from different regions were distributed uniform relatively, and 8 biochemical traits, including caffeine, theophylline, catechin (C), epigallocatechin-3-gallate (EGCG), total alkaloids, non-galloylated catechins, galloylated catechins and total catechins, showed a gentle and symmetrical normal distribution trend. Most of the morphological and biochemical traits of Guizhou Dashu tea were significant (P<0.05) or extremely significant (P<0.01) correlated with geographical location and climate factors. With the increase of altitude and latitude and the decrease of annual average temperature, the leaf of Guizhou Dashu tea germplasms were wider and rounder, and the content of purine alkaloids, such as caffeine, theobromine and theophylline, were higher. Based on orthogonal partial least squares discrimination analysis (OPLS-DA), 10 key traits, including total catechins, gallic acid, total alkaloids, gallated catechins, EC, caffeine, epigallocatechin gallate (ECG), EGCG, theobromine and axillary pubescence, with VIP >1 were screened out which could be used to distinguish Guizhou Dashu tea germplasms in different counties. Cluster analysis based on 10 biochemical components showed that the 121 Guizhou Dashu tea germplasms could be divided into 4 categories. There were 20 Guizhou Dashu tea germplasms in Group I, all from Huishui, had extremely significant higher content of EC and ECG than those in other three categories. 16 Guizhou Dashu tea germplasms in Group Ⅱ and the content of ECG was significant lower than that in other three categories. 9 Guizhou Dashu tea germplasms in Group Ⅲ, most of them came from Huishui, and the content of epicatechin-3-gallate (EGC) was significantly higher than that in other three categories. 76 Dashu tea germplasms in Group Ⅳ, mainly from Xishui, Tongzi, Daozhen and Wuchuan, and the content of caffeine, theobromine, theophylline, EGCG, C, and gallocatechin-3-gallate (GCG) were significant or extremely significant higher than those in other three categories. PCA was carried out with 14 biochemical traits, and a total of 3 principal components (PC1, PC2, and PC3) were extracted, with a cumulative contribution of 80.94%. The determinants of biochemical factors EGCG, total alkaloids and ester catechins in the PC1 were the key to evaluate the biochemical qualities of Guizhou Dashu tea.【Conclusion】Guizhou Dashu tea germplasms had abundant genetic diversity in morphological and biochemical traits. There were significant differences in morphological and biochemical characteristics between Dashu tea germplasms from Huishui, which located in southern Guizhou and those from other 6 counties, which located in northern Guizhou. Among them, GT-XS-08, GT-TZ-11, GT-DZ-06, GT-DZ-13, and GT-TZ-03 were Dashu tea germplasms with both superior biochemical quality and excellent biochemical content, which could be used as high potential breeding materials to select new tea varieties.

Key words: Guizhou, tea, Dashu tea, genetic diversity, principal component analysis, cluster analysis

Table 1

Sampling information of 121 Dashu tea germplasms"

样品序号
No.
样品名称
Name
取样地点
Sampling location
数量
Number
地理信息Geographic information 气候指标Meteorological factor
海拔
Altitude (m)
纬度
Latitude
经度
Longitude
MAT
(℃)
TMAX
(℃
TMIN
(℃)
AP
(mm)
1-17 GT-TZ-01、GT-TZ-02、GT-TZ-03、GT-TZ-04、GT-TZ-05、GT-TZ-06、GT-TZ-07、GT-TZ-08、GT-TZ-09、GT-TZ-10、GT-TZ-11、GT-TZ-12、GT-TZ-13、GT-TZ-14、GT-TZ-15、GT-TZ-16、GT-TZ-17 桐梓
Tongzi
17 1177-1259 28°29′57.22″
-28°30′32.73″
106°45′50.00″
-106°46′15.47″
14.6 37.5 -7.0 1039
18-28 GT-JS-01、GT-JS-02、GT-JS-03、GT-JS-04、GT-JS-05、GT-JS-06、GT-JS-07、GT-JS-08、GT-JS-09、GT-JS-10、GT-JS-11 金沙
Jinsha
11 926-1029 27°20′29.44″
-27°40′59.33″
105°37′33.37″
-106°37′36.36″
15.1 38.4 -6.8 1057
29-41 GT-DZ-01、GT-DZ-02、GT-DZ-03、GT-DZ-04、GT-DZ-05、GT-DZ-06、GT-DZ-07、GT-DZ-08、GT-DZ-09、GT-DZ-10、GT-DZ-11、GT-DZ-12、GT-DZ-13 道真
Daozhen
13 1498-1558 29°9′9.40″
-29°9′18.83″
107°40′16.49″
-107°40′27.57″
15.7 39.1 -7.2 1049
42-68 GT-HS-01、GT-HS-02、GT-HS-03、GT-HS-04、GT-HS-05、GT-HS-06、GT-HS-07、GT-HS-08、GT-HS-09、GT-HS-10、GT-HS-11、GT-HS-12、GT-HS-13、GT-HS-14、GT-HS-15、GT-HS-16、GT-HS-17、GT-HS-18、GT-HS-19、GT-HS-20、GT-HS-21、GT-HS-22、GT-HS-23、GT-HS-24、GT-HS-25、GT-HS-26、GT-HS-27 惠水
Huishui
27 1166-1260 25°50′26.10″
-25°53′22.41″
106°38′22.47″
-106°42′41.79″
15.7 35.0 -7.3 1200
68-102 GT-XS-01、GT-XS-02、GT-XS-03、GT-XS-04、GT-XS-05、GT-XS-06、GT-XS-07、GT-XS-08、GT-XS-09、GT-XS-10、GT-XS-11、GT-XS-12、GT-XS-13、GT-XS-14、GT-XS-15、GT-XS-16、GT-XS-17、GT-XS-18、GT-XS-19、GT-XS-20、GT-XS-21、GT-XS-22、GT-XS-23、GT-XS-24、GT-XS-25、GT-XS-26、GT-XS-27、GT-XS-28、GT-XS-29、GT-XS-30、GT-XS-31、GT-XS-32、GT-XS-33、GT-XS-34 习水
Xishui
34 961-1623 28°23′28.49″
-28°29′5.75″
106°8′2.53″
-106°40′15.62″
13.6 36.0 -6.4 1420
103-107 GT-RH-01、GT-RH-02、GT-RH-03、GT-RH-04、GT-RH-05 仁怀
Renhuai
5 614-724 27°42′14.75″
-28°6′35.26″
106°1′55.30″
-106°18′42.65″
16.3 37.4 -5.5 1174
108-121 GT-WC-01、GT-WC-02、GT-WC-03、GT-WC-04、GT-WC-05、GT-WC-06、GT-WC-07、GT-WC-08、GT-WC-09、GT-WC-10、GT-WC-11、GT-WC-12、GT-WC-13、GT-WC-14 务川
Wuchuan
14 960-1199 28°39′12.30″
-28°39′56.20″
107°48′57.57″
-107°50′14.40″
15.6 39.5 -6.5 1184

Table 2

Statistical analysis of morphological traits about 121 Dashu tea germplasms"

形态学性状
Morphological traits
最小值
MIN
最大值
MAX
平均值
Average value
标准差
Standard deviation
变异系数
Coefficient of variation (%)
遗传多样性指数
Genetic diversity index (H′)
叶长Leaf length (cm) 6.54 16.80 11.81 1.90 16.07 1.35
叶宽Leaf width (cm) 2.83 7.25 4.82 0.84 17.44 2.01
长宽比Length-width ratio 1.83 3.17 2.48 0.28 11.30 2.07
叶面积Leaf area (cm2) 13.10 81.85 40.94 12.38 30.25 2.05
腋芽茸毛Axillary pubescence 0 1 0.81 0.39 48.65 0.49
子房茸毛Ovary pubescence 0 1 0.32 0.47 145.61 0.63
子房室数Ovary locule number 3.00 5.00 3.43 0.63 18.50 1.43

Table 3

Statistical analysis of biochemical traits about 121 Dashu tea germplasms"

生化性状
Biochemical traits
最小值
MIN
(mg∙g-1)
最大值
MAX
(mg∙g-1)
平均值
Average
value (mg∙g-1)
标准差
Standard deviation (mg∙g-1)
变异系数
Coefficient of variation (%)
遗传多样性指数
Genetic diversity index (H′)
峰度
Kurtosis
偏度
Skewness
没食子酸Gallic acid 0.00 0.92 0.21 0.21 99.54 1.87 0.57 1.16
咖啡碱Caffeine 9.99 52.38 28.67 8.45 29.46 2.06 -0.56 -0.05
可可碱Theobromine 1.54 19.35 5.32 2.79 52.48 1.88 4.77 1.66
茶叶碱Theophylline 0.00 1.07 0.50 0.23 46.68 2.02 -0.37 0.04
EGC 0.00 73.41 14.86 14.03 94.45 1.87 2.18 1.44
C 0.00 31.48 11.50 7.95 69.13 1.92 -0.72 0.54
EC 6.69 70.65 18.41 16.76 91.03 1.36 1.51 1.71
EGCG 4.54 103.81 51.62 27.39 53.06 1.91 -0.74 -0.37
GCG 0.00 34.46 8.20 5.29 64.50 1.55 5.03 1.26
ECG 8.95 52.97 17.57 7.45 42.39 1.81 5.18 1.95
生物碱总量Total alkaloids 13.63 64.61 34.49 10.36 30.05 2.05 -0.37 0.13
非酯型儿茶素
Non-galloylated catechins
18.69 91.70 44.76 14.52 32.43 2.00 0.39 0.77
酯型儿茶素Gallated catechins 23.10 151.65 77.39 29.08 37.57 2.04 -0.42 0.20
儿茶素总量Total catechins 52.41 186.51 122.15 28.28 23.15 2.07 -0.38 0.29

Table 4

Distribution analysis of morphological traits about 121 Dashu tea germplasms"

形态学特征
Morphological traits
性状描述
Description
数量
Number
分布频率
Distribution frequency (%)
样品名称
Name
腋芽茸毛
Axillary pubescence
有毛
Hairy
98 80.99 GT-DZ-01、GT-DZ-02、GT-DZ-03、GT-DZ-04、GT-DZ-05、GT-DZ-06、GT-DZ-07、GT-DZ-08、GT-DZ-09、GT-DZ-10、GT-DZ-11、GT-DZ-12、GT-DZ-13、GT-HS-05、GT-HS-07、GT-HS-11、GT-HS-12、GT-HS-23、GT-JS-02、GT-JS-03、GT-JS-04、GT-JS-05、GT-JS-06、GT-JS-07、GT-JS-08、GT-JS-09、GT-JS-10、GT-JS-11、GT-RH-01、GT-RH-02、GT-RH-03、GT-RH-04、GT-RH-05、GT-TZ-01、GT-TZ-02、GT-TZ-03、GT-TZ-04、GT-TZ-05、GT-TZ-06、GT-TZ-07、GT-TZ-08、GT-TZ-09、GT-TZ-10、GT-TZ-11、GT-TZ-12、GT-TZ-13、GT-TZ-14、GT-TZ-15、GT-TZ-16、GT-TZ-17、GT-WC-01、GT-WC-02、GT-WC-03、GT-WC-04、GT-WC-05、GT-WC-06、GT-WC-07、GT-WC-08、GT-WC-09、GT-WC-10、GT-WC-11、GT-WC-12、GT-WC-13、GT-WC-14、GT-XS-01、GT-XS-02、GT-XS-03、GT-XS-04、GT-XS-05、GT-XS-06、GT-XS-07、GT-XS-08、GT-XS-09、GT-XS-10、GT-XS-11、GT-XS-12、GT-XS-13、GT-XS-14、GT-XS-15、GT-XS-16、GT-XS-17、GT-XS-18、GT-XS-19、GT-XS-20、GT-XS-21、GT-XS-22、GT-XS-23、GT-XS-24、GT-XS-25、GT-XS-26、GT-XS-27、GT-XS-28、GT-XS-29、GT-XS-30、GT-XS-31、GT-XS-32、GT-XS-33、GT-XS-34
无毛
Glabrous
23 19.01 GT-HS-01、GT-HS-02、GT-HS-03、GT-HS-04、GT-HS-06、GT-HS-08、GT-HS-09、GT-HS-10、GT-HS-13、GT-HS-14、GT-HS-15、GT-HS-16、GT-HS-17、GT-HS-18、GT-HS-19、GT-HS-20、GT-HS-21、GT-HS-22、GT-HS-24、GT-HS-25、GT-HS-26、GT-HS-27、GT-JS-01
子房茸毛
Ovary pubescence
有毛
Hairy
39 32.23 GT-DZ-02、GT-DZ-03、GT-DZ-04、GT-DZ-05、GT-DZ-06、GT-DZ-07、GT-DZ-09、GT-DZ-10、GT-DZ-11、GT-DZ-12、GT-DZ-13、GT-HS-05、GT-HS-07、GT-HS-11、GT-HS-12、GT-HS-23、GT-JS-02、GT-JS-03、GT-JS-04、GT-JS-05、GT-JS-07、GT-JS-08、GT-JS-09、GT-JS-10、GT-JS-11、GT-RH-01、GT-RH-02、GT-RH-03、GT-RH-04、GT-RH-05、GT-TZ-03、GT-WC-01、GT-WC-07、GT-WC-08、GT-WC-09、GT-WC-12、GT-WC-13、GT-XS-04、GT-XS-08
无毛
Glabrous
82 67.77 GT-HS-01、GT-HS-02、GT-HS-03、GT-HS-04、GT-HS-06、GT-HS-08、GT-HS-09、GT-HS-10、GT-HS-13、GT-HS-14、GT-HS-15、GT-HS-16、GT-HS-17、GT-HS-18、GT-HS-19、GT-HS-20、GT-HS-21、GT-HS-22、GT-HS-24、GT-HS-25、GT-HS-26、GT-HS-27、GT-JS-01、GT-DZ-01、GT-DZ-08、GT-JS-06、GT-TZ-01、GT-TZ-02、GT-TZ-04、GT-TZ-05、GT-TZ-06、GT-TZ-07、GT-TZ-08、GT-TZ-09、GT-TZ-10、GT-TZ-11、GT-TZ-12、GT-TZ-13、GT-TZ-14、GT-TZ-15、GT-TZ-16、GT-TZ-17、GT-WC-02、GT-WC-03、GT-WC-04、GT-WC-05、GT-WC-06、GT-WC-10、GT-WC-11、GT-WC-14、GT-XS-01、GT-XS-02、GT-XS-03、GT-XS-05、GT-XS-06、GT-XS-07、GT-XS-09、GT-XS-10、GT-XS-11、GT-XS-12、GT-XS-13、GT-XS-14、GT-XS-15、GT-XS-16、GT-XS-17、GT-XS-18、GT-XS-19、GT-XS-20、GT-XS-21、GT-XS-22、GT-XS-23、GT-XS-24、GT-XS-25、GT-XS-26、GT-XS-27、GT-XS-28、GT-XS-29、GT-XS-30、GT-XS-31、GT-XS-32、GT-XS-33、GT-XS-34
子房室数
Ovary locule number
3 67 55.37 GT-HS-22、GT-JS-01、GT-DZ-01、GT-JS-06、GT-TZ-02、GT-TZ-05、GT-TZ-06、GT-TZ-08、GT-TZ-09、GT-TZ-11、GT-TZ-12、GT-TZ-13、GT-TZ-15、GT-TZ-16、GT-WC-02、GT-WC-03、GT-WC-04、GT-WC-05、GT-WC-06、GT-WC-11、GT-WC-14、GT-XS-01、GT-XS-03、GT-XS-06、GT-XS-07、GT-XS-10、GT-XS-12、GT-XS-13、GT-XS-14、GT-XS-17、GT-XS-18、GT-XS-19、GT-XS-20、GT-XS-22、GT-XS-28、GT-XS-30、GT-XS-31、GT-XS-32、GT-DZ-02、GT-DZ-03、GT-DZ-04、GT-DZ-05、GT-DZ-07、GT-DZ-12、GT-DZ-13、GT-HS-05、GT-HS-23、GT-JS-02、GT-JS-03、GT-JS-04、GT-JS-05、GT-JS-08、GT-JS-09、GT-JS-10、GT-JS-11、GT-RH-01、GT-RH-03、GT-RH-04、GT-RH-05、GT-TZ-03、GT-WC-01、GT-WC-07、GT-WC-08、GT-WC-09、GT-WC-12、GT-XS-04、GT-XS-08
4 1 0.83 GT-HS-21
5 7 5.79 GT-HS-01、GT-HS-02、GT-HS-08、GT-HS-09、GT-HS-10、GT-HS-14、GT-HS-15
3-4 27 22.31 GT-HS-06、GT-HS-19、GT-HS-27、GT-DZ-08、GT-TZ-01、GT-TZ-04、GT-TZ-07、GT-TZ-14、GT-TZ-17、GT-WC-10、GT-WC-13、GT-XS-09、GT-XS-11、GT-XS-15、GT-XS-21、GT-XS-26、GT-XS-27、GT-XS-33、GT-XS-34、GT-DZ-09、GT-DZ-10、GT-DZ-11、GT-HS-11、GT-HS-12、GT-JS-07、GT-RH-02
3-5 8 6.61 GT-TZ-10、GT-XS-02、GT-XS-16、GT-XS-24、GT-XS-25、GT-XS-29、GT-DZ-06、GT-XS-23
4-5 9 7.44 GT-HS-03、GT-HS-04、GT-HS-13、GT-HS-16、GT-HS-17、GT-HS-20、GT-HS-25、GT-HS-26、GT-HS-07
3-6 1 0.83 GT-HS-18
4-6 1 0.83 GT-HS-24
叶形
Leaf shape
披针形
Lanceolate
5 4.13 GT-HS-10、GT-HS-05、GT-HS-01、GT-XS-04、GT-WC-03
长椭圆形
Long elliptical
54 44.63 GT-XS-24、GT-WC-04、GT-XS-12、GT-XS-22、GT-HS-07、GT-XS-26、GT-JS-01、GT-WC-06、GT-TZ-06、GT-DZ-01、GT-WC-13、GT-DZ-12、GT-RH-04、GT-HS-19、GT-WC-05、GT-DZ-05、GT-XS-33、GT-XS-09、GT-XS-21、GT-XS-06、GT-WC-07、GT-XS-19、GT-XS-28、GT-HS-17、GT-WC-10、GT-HS-08、GT-WC-12、GT-HS-03、GT-HS-26、GT-HS-14、GT-XS-17、GT-HS-21、GT-RH-05、GT-WC-02、GT-WC-09、GT-HS-22、GT-HS-27、GT-HS-13、GT-WC-01、GT-JS-08 、GT-JS-05、GT-HS-02、GT-WC-14、GT-XS-10、GT-HS-25、GT-HS-20、GT-HS-06、GT-TZ-04、GT-RH-02、GT-JS-11、GT-HS-15、GT-HS-04、GT-HS-18、GT-HS-09
椭圆形
Elliptical
59 48.76 GT-DZ-08、GT-TZ-16、GT-DZ-11、GT-TZ-17、GT-TZ-13、GT-XS-30、GT-XS-32、GT-TZ-11、GT-XS-03、GT-XS-34、GT-TZ-09、GT-XS-23、GT-DZ-06、GT-XS-05、GT-XS-29、GT-XS-08、GT-TZ-05、GT-TZ-07、GT-TZ-10、GT-HS-11、GT-JS-06、GT-XS-18、GT-XS-11、GT-DZ-10、GT-XS-01、GT-RH-01、GT-XS-07、GT-TZ-12、GT-JS-09、GT-DZ-07、GT-XS-14、GT-TZ-03、GT-DZ-02、GT-DZ-03、GT-RH-03、GT-DZ-13、GT-XS-02、GT-TZ-08、GT-XS-20、GT-WC-08、GT-DZ-09、GT-WC-11、GT-XS-16、GT-JS-10、GT-TZ-15、GT-XS-31、GT-HS-12、GT-TZ-01、GT-JS-03、GT-XS-13、GT-HS-24、GT-HS-23、GT-JS-02、GT-HS-16、GT-XS-25、GT-JS-04、GT-XS-27、GT-XS-15、GT-JS-07
近圆形Subrounded 3 2.48 GT-DZ-04、GT-TZ-02、GT-TZ-14
叶片大小
Leaf size
小叶
Small leaf
8 6.61 GT-DZ-03、GT-JS-10、GT-RH-04、GT-JS-07、GT-DZ-05、GT-JS-05、GT-RH-05、GT-HS-12
中叶
Medium leaf
48 39.67 GT-JS-08、GT-HS-07、GT-DZ-13、GT-HS-05、GT-JS-03、GT-HS-10、GT-XS-07、GT-WC-07、GT-DZ-02、GT-DZ-12、GT-WC-04、GT-TZ-03、GT-WC-06、GT-HS-16、GT-XS-04、GT-HS-20、GT-TZ-16、GT-DZ-09、GT-JS-09、GT-XS-08、GT-RH-03、GT-WC-12、GT-WC-13、GT-JS-11、GT-HS-21、GT-HS-23、GT-DZ-10、GT-JS-04、GT-WC-10、GT-JS-01、GT-DZ-11、GT-HS-06、GT-HS-01、GT-XS-24、GT-JS-02、GT-WC-08、GT-WC-01、GT-XS-22、GT-DZ-04、GT-TZ-13、GT-HS-11、GT-HS-14、GT-TZ-11、GT-XS-19、GT-RH-01、GT-TZ-14、GT-DZ-06、GT-TZ-02
大叶
Large leaf
58 47.93 GT-TZ-05、GT-HS-04、GT-XS-28、GT-HS-22、GT-HS-18、GT-HS-27、GT-XS-30、GT-XS-12、GT-HS-26、GT-XS-26、GT-HS-08、GT-XS-18、GT-HS-17、GT-HS-09、GT-HS-03、GT-RH-02、GT-HS-02、GT-TZ-12、GT-DZ-07、GT-XS-29、GT-XS-34、GT-TZ-08、GT-WC-09、GT-XS-03、GT-TZ-17、GT-XS-31、GT-WC-05、GT-XS-20、GT-XS-33、GT-WC-03、GT-XS-06、GT-XS-13、GT-XS-32、GT-XS-05、GT-XS-01、GT-TZ-04、GT-HS-13、GT-TZ-10、GT-XS-09、GT-HS-15、GT-TZ-06、GT-WC-14、GT-TZ-15、GT-XS-15、GT-HS-25、GT-XS-11、GT-TZ-09、GT-HS-24、GT-XS-16、GT-XS-14、GT-DZ-01、GT-TZ-07、GT-JS-06、GT-XS-27、GT-XS-17、GT-HS-19、GT-WC-02、GT-XS-25
特大叶
Extra large leaf
7 5.79 GT-XS-21、GT-DZ-08、GT-XS-10、GT-WC-11、GT-XS-02、GT-XS-23、GT-TZ-01

Fig. 1

The content distribution histogram of 14 biochemical traits about 121 Dashu tea germplasms"

Fig. 2

The correlation coefficient between geographic-climatic factors and morphological and biochemical traits * and ** indicate significant correlations at 0.05 and 0.01 level, respectively. X1: Leaf length; X2: Leaf width; X3: Length-width ratio; X4: Leaf area; X5: Axillary pubescence; X6: Ovary pubescence; X7: Ovary locule number; X8: Gallic acid; X9: Caffeine; X10: Theobromine; X11: Theophylline; X12: EGC; X13: C; X14: EC; X15: EGCG; X16: GCG; X17: ECG; X18: Total alkaloids; X19: Non-galloylated catechins; X20: Gallated catechins; X21: Total catechins. The same as below"

Fig. 3

Variable projection importance (VIP) score of morphological and biochemical traits in Guizhou Dashu tea germplasms"

Fig. 4

Comparison of differential traits of Guizhou Dashu tea germplasms from different regions in Guizhou DZ: Daozhen; HS: Huishui; JS: Jinsha; RH: Renhuai; TZ: Tongzi; WC: Wuchuan; XS: Xishui. Different capital letters indicate significant differences at 0.01 level, while different lowercase letters indicate significant differences at 0.05 level"

Table 5

The content of 10 biochemical components in 4 groups (mg∙g-1)"

生化组分
Biochemical component
第Ⅰ类Group Ⅰ 第Ⅱ类Group Ⅱ 第Ⅲ类Group Ⅲ 第Ⅳ类Group Ⅳ
含量范围
Content
range
平均值
Average
value
含量范围
Content
range
平均值
Average
value
含量范围
Content
range
平均值
Average
value
含量范围
Content
range
平均值
Average
value
没食子酸Gallic acid 0.00 0.00 bB 0.06-0.71 0.28±0.24aA 0.00-0.26 0.05±0.01bB 0.06-0.92 0.28±0.20aA
咖啡碱Caffeine 12.04-23.18 17.77±3.13cC 9.99-31.95 22.52±5.90bB 15.48-27.24 20.42±3.92bcBC 21.65-52.38 33.81±5.33aA
可可碱Theobromine 1.54-8.42 4.14±1.94bB 1.90-4.48 2.93±0.77bB 1.61-5.02 2.98±1.15bB 2.11-19.35 6.41±2.79aA
茶叶碱Theophylline 0.23-0.55 0.36±0.08bBC 0.23-0.69 0.40±0.16bB 0.00-0.42 0.20±0.14cC 0.00-1.07 0.59±0.23aA
EGC 0.00-3.56 1.04±1.50cC 0.00-28.07 13.10±8.71bB 31.37-73.41 44.41±12.81aA 2.58-51.46 15.35±11.16bB
C 2.14-7.47 3.74±1.70cB 4.77-22.53 9.79±4.92bA 0.00-12.12 3.21±3.61cB 1.86-31.38 14.88±7.59aA
EC 42.40-70.65 53.30±8.43aA 6.89-13.93 9.74±2.18cC 14.61-41.17 25.69±9.35bB 6.68-19.49 10.19±2.34cC
EGCG 4.54-7.71 5.61±0.78cC 5.21-47.10 37.07±10.69bB 18.55-54.09 32.84±11.99bB 43.40-103.81 69.01±14.27aA
GCG 0.00-12.54 2.59±4.26cC 6.00-10.35 6.98±1.19bAB 0.00-6.57 3.43±3.26cBC 5.72-34.46 10.50±4.68aA
ECG 18.55-52.97 30.42±8.28aA 9.05-20.08 11.45±2.67cB 9.87-26.07 15.40±5.45bB 8.95-25.43 15.73±3.28bB

Fig. 5

System cluster tree of 121 Guizhou Dashu tea germplasms based on 10 biochemical components"

Table 6

Total variance explain"

主成分
Principal component
特征值
Characteristic value
贡献率
Contribution rate (%)
累计贡献率
Accumulative contribution rate (%)
1 6.98 49.86 49.86
2 2.51 17.90 67.76
3 1.85 13.19 80.94

Table 7

Component matrix and coefficient of PCA"

生化性状
Biochemical traits
主成分1 Principal component 1 主成分2 Principal component 2 主成分3 Principal component 3
载荷Load 系数Coefficient 载荷Load 系数Coefficient 载荷Load 系数 Coefficient
没食子酸 Gallic acid (X8) 0.56 0.08 -0.41 -0.16 -0.15 -0.08
咖啡碱 Caffeine (X9) 0.91 0.13 0.04 0.02 0.01 0.01
可可碱 Theobromine (X10) 0.68 0.10 0.34 0.14 0.50 0.27
茶叶碱 Theophylline (X11) 0.58 0.08 -0.42 -0.17 0.36 0.20
EGC (X12) 0.10 0.01 0.68 0.27 -0.68 -0.37
C (X13) 0.52 0.08 -0.46 -0.18 0.05 0.02
EC (X14) -0.77 -0.11 0.29 0.12 0.49 0.26
EGCG (X15) 0.93 0.13 0.20 0.08 -0.18 -0.10
GCG (X16) 0.81 0.12 0.09 0.03 0.18 0.10
ECG (X17) -0.37 -0.05 0.35 0.14 0.80 0.43
生物碱总量 Total alkaloids (X18) 0.94 0.13 0.12 0.05 0.15 0.08
非酯型儿茶素
Non-galloylated catechins (X19)
-0.51 -0.07 0.74 0.30 -0.07 -0.04
酯型儿茶素 Gallated catechins (X20) 0.93 0.13 0.29 0.12 0.07 0.04
儿茶素总量Total catechins (X21) 0.70 0.10 0.68 0.27 0.03 0.02

Fig. 6

Biochemical quality comprehensive score of 121 Dashu tea germplasms"

Table 8

Excellent biochemical components germplasms selected from 121 Dashu tea plant"

生化成分 Biochemical composition 材料名称 Name
高咖啡碱 High caffeine (≥50.0 mg∙g-1) GT-WC-08 (52.38)
低咖啡碱 Low caffeine (≤15.0 mg∙g-1) GT-HS-04 (14.83)、GT-HS-01 (14.81)、GT-HS-26 (14.46)、GT-HS-16 (14.45)、GT-HS-06 (14.15)、GT-HS-02 (12.04)、GT-JS-01 (9.99)
高EGCG High EGCG (≥100.0 mg∙g-1) GT-TZ-11 (103.81)
高GCG High GCG (≥15.0 mg∙g-1) GT-XS-08 (34.46)、GT-TZ-03 (23.28)、GT-XS-01 (21.11)、GT-TZ-11 (20.52)、GT-DZ-13 (20.34)、GT-DZ-02 (20.23)、GT-DZ-06 (18.15)、GT-XS-09 (15.26)
[1]
陈椽, 陈震古. 中国云南是茶树原产地. 中国农业科学, 1979(1): 91-96.
CHEN Y, CHEN Z J. Yunnan, China is the birthplace of tea trees. Scientia Agricultura Sinica, 1979(1): 91-96. (in Chinese)
[2]
虞富莲. 论茶树原产地和起源中心. 茶叶科学, 1986, 6(1): 1-8.
YU F L. Discussion on the originating place and the originating center of tea plant. Journal of Tea Science, 1986, 6(1):1-8. (in Chinese)
[3]
谢孝明, 罗以洪. 中国茶树原产地中心新论. 茶叶通讯, 2021, 48(3): 385-391.
XIE X M, LUO Y H. New view on the origin center of tea tree in China. Journal of Tea Communication, 2021, 48(3): 385-391. (in Chinese)
[4]
LIU Y J, ZHAO G F, LI X, SHEN Q, WU Q, ZHUANG J H, ZHANG X Q, XIA E H, ZHANG Z Z, QIAN Y M, GAO L P, XIA T. Comparative analysis of phenolic compound metabolism among tea plants in the section Thea of the genus Camellia. Food Research International, 2020, 135: 109276.
[5]
罗雯, 陈艳艳, 尹世华, 王莉飞, 黄晓霞, 耿芳, 程小毛. 贵州普安四球茶(Camellia tetracocca Zhang)种质资源的遗传多样性分析. 江西农业大学学报, 2022, 44(1): 74-85.
LUO W, CHEN Y Y, YIN S H, WANG L F, HUANG X X, GENG F, CHENG X M. Genetic diversity of Camellia tetracocca Zhang germplasm resources in Pu’an, Guizhou Province. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(1): 74-85. (in Chinese)
[6]
MI X Z, YANG C, QIAO D H, TANG M S, GUO Y, LIANG S H, LI Y, CHEN Z W, CHEN J. De novo full length transcriptome analysis of a naturally caffeine-free tea plant reveals specificity in secondary metabolic regulation. Scientific Reports, 2023, 13: 6015.

doi: 10.1038/s41598-023-32435-5 pmid: 37045909
[7]
官兴丽, 肖海军, 梁俊涛, 陈孝权, 刘敏, 白兵, 赵亚华. 云南西双版纳7个产地大树茶(晒青毛茶)品质分析. 中国农学通报, 2012, 28(28): 297-303.
GUAN X L, XIAO H J, LIANG J T, CHEN X Q, LIU M, BAI B, ZHAO Y H. Analysis of quality of big plant tea (crude green tea) of seven areas in Xishuangbanna of Yunnan. Chinese Agricultural Science Bulletin, 2012, 28(28): 297-303. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2012-2110
[8]
段学艺, 胡华健, 朱强, 王家伦, 陈正武, 何萍, 高秀兵. 贵州大树茶儿茶素组分及其品质分析. 中国农学通报, 2013, 29(1): 138-140.
DUAN X Y, HU H J, ZHU Q, WANG J L, CHEN Z W, HE P, GAO X B. Guizhou tree tea catechin and its quality analysis. Chinese Agricultural Science Bulletin, 2013, 29(1): 138-140. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2012-2410
[9]
李小恋, 李伟, 李久炎, 童华荣. 南川大树茶红茶初制过程中品质特征分析. 西南大学学报(自然科学版), 2019, 41(12): 15-23.
LI X L, LI W, LI J Y, TONG H R. Analysis of quality characteristics of Camellia nanchuanica during primary processing of black tea. Journal of Southwest University (Natural Science Edition), 2019, 41(12): 15-23. (in Chinese)
[10]
孙前, 兰锡国, 张雅琪, 虞富莲. 川西大茶树. 中国茶叶, 2018, 40(10): 30-34.
SUN Q, LAN X G, ZHANG Y Q, YU F L. Tea tree in western Sichuan. China Tea, 2018, 40(10): 30-34. (in Chinese)
[11]
王小萍, 刘飞, 李明红, 张厅, 赖谦, 刘晓, 熊元元, 唐晓波, 李春华, 王云. 基于GBS测序的古蔺野生茶树遗传多样性与群体遗传结构分析. 西南农业学报, 2023, 36(6): 1141-1149.
WANG X P, LIU F, LI M H, ZHANG T, LAI Q, LIU X, XIONG Y Y, TANG X B, LI C H, WANG Y. Genetic diversity and structure analysis of Gulin wild tea resources based on GBS technology. Southwest China Journal of Agricultural Sciences, 2023, 36(6): 1141-1149. (in Chinese)
[12]
朱艳宇, 王泽涵, 黄世建, 刘财国, 侯炳豪, 廖献盛, 叶乃兴. 建阳茶树种质资源叶片和花器形态性状观测分析. 福建茶叶, 2021, 43(1):17-19.
ZHU Y Y, WANG Z H, HUANG S J, LIU C G, HOU B H, LIAO X S, YE N X. Observation and analysis of leaf and flower morphological traits of Jianyang tea germplasm resources. Tea in Fujian, 2021, 43(1): 17-19. (in Chinese)
[13]
唐璐, 李长乐, 葛悦, 王璞, 赵华, 王明乐, 王郁, 郭飞, 倪德江. 茶树地方群体种资源叶片表型及生化组分多样性分析. 茶叶科学, 2023, 43(4): 473-488.
TANG L, LI C L, GE Y, WANG P, ZHAO H, WANG M L, WANG Y, GUO F, NI D J. Diversity analysis of leaf phenotype and biochemical components in tea local population resources. Journal of Tea Science, 2023, 43(4): 473-488. (in Chinese)
[14]
蒋会兵, 宋维希, 矣兵, 李友勇, 马玲, 陈林波, 田易萍, 段志芬, 刘本英. 云南茶树种质资源的表型遗传多样性. 作物学报, 2013, 39(11): 2000-2008.

doi: 10.3724/SP.J.1006.2013.02000
JIANG H B, SONG W X, YI B, LI Y Y, MA L, CHEN L B, TIAN Y P, DUAN Z F, LIU B Y. Genetic diversity of tea germplasm resources in Yunnan province based on phenotypic characteristics. Acta Agronomica Sinica, 2013, 39(11): 2000-2008. (in Chinese)
[15]
董方, 李小飞, 沈思言, 杨菲颖, 金玲莉, 涂娟, 吴月坤, 董越, 陈罗君, 谢枫. 江西茶树资源的遗传多样性分析及优异种质筛选. 江西农业大学学报, 2022, 44(6): 1466-1477.
DONG F, LI X F, SHEN S Y, YANG F Y, JIN L L, TU J, WU Y K, DONG Y, CHEN L J, XIE F. Genetic diversity analysis and screening of excellent germplasm of tea plant resources in Jiangxi. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(6): 1466-1477. (in Chinese)
[16]
丁一, 郑旭霞, 黄海涛, 毛宇骁, 赵芸. 浙江4个主要茶树群体种资源表型性状及遗传多样性分析. 浙江农业学报, 2023, 35(2): 364-372.

doi: 10.3969/j.issn.1004-1524.2023.02.14
DING Y, ZHENG X X, HUANG H T, MAO Y X, ZHAO Y. Analysis of agronomic traits and genetic diversity of four major tea populations in Zhejiang Province, China. Acta Agriculturae Zhejiangensis, 2023, 35(2): 364-372. (in Chinese)

doi: 10.3969/j.issn.1004-1524.2023.02.14
[17]
黄政, 李芳, 尹杰, 牛素贞. 贵州低热河谷地方茶树种质资源基于表型性状的遗传多样性分析. 分子植物育种, 2024, 22(4): 1193-1204.
HUANG Z, LI F, YIN J, NIU S Z. Analysis of genetic diversity based on phenotypic traits of local tea germplasm resources in low heat valley of Guizhou. Molecular Plant Breeding, 2024, 22(4): 1193-1204. (in Chinese)
[18]
葛立雯, 郭维, 潘正康, 王嵩. 贵州姑菁野生茶树形态多样性及相关性研究. 植物遗传资源学报, 2015, 16(3): 497-502.
GE L W, GUO W, PAN Z K, WANG S. The morphological diversity and correlation research of Gu Jing wild tea plant from Guizhou. Journal of Plant Genetic Resources, 2015, 16(3): 497-502. (in Chinese)
[19]
曹雨, 乔大河, 赵华富, 王家伦, 陈娟, 陈正武, 何顺峰. 25份贵州镇宁野生茶树种质资源的表型及生化组分多样性分析. 中国农学通报, 2018, 34(14): 81-88.

doi: 10.11924/j.issn.1000-6850.casb17070015
CAO Y, QIAO D H, ZHAO H F, WANG J L, CHEN J, CHEN Z W, HE S F. Diversity analysis of 25 wild tea germplasms in Zhenning, Guizhou: Phenotype and biochemical components. Chinese Agricultural Science Bulletin, 2018, 34(14): 81-88. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb17070015
[20]
杨春, 郭灿, 乔大河, 郭燕, 梁思慧, 李燕, 陈正武. 三都野生茶树表型性状和生化组分多样性分析. 江苏农业科学, 2023, 51(8): 111-119.
YANG C, GUO C, QIAO D H, GUO Y, LIANG S H, LI Y, CHEN Z W. Diversity analysis of phenotypic characters and biochemical component in Sandu wild tea plant. Jiangsu Agricultural Sciences, 2023, 51(8): 111-119. (in Chinese)
[21]
吴河饶, 任青艳, 黄大玉, 刘应召, 蒋勇, 杨青华, 田景卫, 伍家盛, 杨胜安, 陈涛林. 榕江茶种质资源表型性状多样性及相关分析. 南方农业学报, 2023, 54(1): 56-67.
WU H R, REN Q Y, HUANG D Y, LIU Y Z, JIANG Y, YANG Q H, TIAN J W, WU J S, YANG S A, CHEN T L. Diversity and correlation analysis of phenotypic traits in Camellia yungkiangensis H. T. Chang germplasm resources. Journal of Southern Agriculture, 2023, 54(1): 56-67. (in Chinese)
[22]
CHEN Y J, NIU S Z, DENG X Y, SONG Q F, HE L M, BAI D C, HE Y Q. Genome-wide association study of leaf-related traits in tea plant in Guizhou based on genotyping-by-sequencing. BMC Plant Biology, 2023, 23(1): 196.

doi: 10.1186/s12870-023-04192-0 pmid: 37046207
[23]
WANG Y H, NIU S Z, DENG X Y, BAI D C, CHEN Z W, DENG X L, HUANG D J. Genome-wide association study, population structure, and genetic diversity of the tea plant in Guizhou Plateau. BMC Plant Biology, 2024, 24(1): 79.

doi: 10.1186/s12870-024-04761-x pmid: 38287242
[24]
金基强, 周晨阳, 马春雷, 姚明哲, 马建强, 陈亮. 我国代表性茶树种质嘌呤生物碱的鉴定. 植物遗传资源学报, 2014, 15(2): 279-285.

doi: 10.13430/j.cnki.jpgr.2014.02.008
JIN J Q, ZHOU C Y, MA C L, YAO M Z, MA J Q, CHEN L. Identification on alkaloids of representative tea germplasms in China. Journal of Plant Genetic Resources, 2014, 15(2): 279-285. (in Chinese)
[25]
JIN J Q, MA J Q, MA C L, YAO M Z, CHEN L. Determination of catechin content in representative Chinese tea germplasms. Journal of Agricultural and Food Chemistry, 2014, 62(39): 9436-9441.
[26]
ZHAO F, LIN H T, ZHANG S, LIN Y F, YANG J F, YE N X. Simultaneous determination of caffeine and some selected polyphenols in Wuyi Rock tea by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 2014, 62(13): 2772-2781.

doi: 10.1021/jf4056314 pmid: 24625357
[27]
刘玉飞, 庞丹丹, 蒋会兵, 田易萍, 李友勇, 孙云南, 陈林波. 66份云南茶树种质生化成分的分析及特异种质筛选. 南方农业学报, 2021, 52(3): 693-699.
LIU Y F, PANG D D, JIANG H B, TIAN Y P, LI Y Y, SUN Y N, CHEN L B. Biochemical component analysis and specific resource selection of 66 accessions of tea germplasms in Yunnan. Journal of Southern Agriculture, 2021, 52(3): 693-699. (in Chinese)
[28]
韦圻, 吴河饶, 陈美丽, 葛智文, 王熙富, 杨雪梅, 廖寅平, 陆舒婕, 陈志平, 陈涛林. 广西大苗山区65个茶树新品(株)系主要品质化学成分分析. 南方农业学报, 2022, 53(11):3037-3048.
WEI X, WU H R, CHEN M L, GE Z W, WANG X F, YANG X M, LIAO Y P, LU S J, CHEN Z P, CHEN T L. Main quality chemical components of 65 new tea plant strains in Damiao Mountain of Guangxi. Journal of Southern Agriculture, 2022, 53(11): 3037-3048. (in Chinese)
[29]
陈潇敏, 赵峰, 金珊, 吴文晞, 王鹏杰, 叶乃兴. 福建云霄地方茶树品种资源生化成分特征分析与评价. 西北植物学报, 2022, 42(1): 127-137.
CHEN X M, ZHAO F, JIN S, WU W X, WANG P J, YE N X. Analysis and evaluation on biochemical components of local tea variety resources in Yunxiao, Fujian. Acta Botanica Boreali- Occidentalia Sinica, 2022, 42(1):127-137. (in Chinese)
[30]
赵熙, 赵洋, 杨培迪, 宁静, 杨阳, 成杨, 刘振. 茶树种质资源汝城白毛茶的代谢物差异研究. 热带作物学报, 2023, 44(1): 83-91.

doi: 10.3969/j.issn.1000-2561.2023.01.009
ZHAO X, ZHAO Y, YANG P D, NING J, YANG Y, CHENG Y, LIU Z. Metabonomic analysis of metabolic differences in Rucheng Baimaocha tea germplasm. Chinese Journal of Tropical Crops, 2023, 44(1): 83-91. (in Chinese)

doi: 10.3969/j.issn.1000-2561.2023.01.009
[31]
杨春, 陈正武, 乔大河, 郭燕, 李燕, 梁思慧. 115份贵州茶树种质茶多酚及儿茶素多样性分析及特异种质筛选. 西北农业学报, 2022, 31(11): 1470-1480.
YANG C, CHEN Z W, QIAO D H, GUO Y, LI Y, LIANG S H. Diversity analysis of tea polyphenols and catechins of 115 tea plant germplasms in Guizhou and its screening of specific resources. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(11): 1470-1480. (in Chinese)
[32]
吴河饶, 任青艳, 陈莹, 黄大玉, 陈思冶, 韦圻, 刘应召, 蒋勇, 杨青华, 吴秀林, 田景卫, 伍家盛, 杨胜安, 陈涛林. 榕江茶(Camellia yungkiangensis)种质资源主要品质性状的遗传多样性分析. 植物遗传资源学报, 2023, 24(5): 1367-1379.

doi: 10.13430/j.cnki.jpgr.20230311001
WU H R, REN Q Y, CHEN Y, HUANG D Y, CHEN S Y, WEI Q, LIU Y Z, JIANG Y, YANG Q H, WU X L, TIAN J W, WU J S, YANG S A, CHEN T L. Genetic diversity analysis of main quality traits in Camellia yungkianensis germplasm resources. Journal of Plant Genetic Resources, 2023, 24(5): 1367-1379. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20230311001
[33]
刘亚兵, 赵华富, 乔大河, 陈娟, 陈翔, 曹雨. 野生大树茶种质资源的品质指标多样性分析评鉴. 食品工业, 2020, 41(9): 168-172.
LIU Y B, ZHAO H F, QIAO D H, CHEN J, CHEN X, CAO Y. Evaluation and analysis of quality indicator diversity of wild Dashu tea germplasm resources. The Food Industry, 2020, 41(9): 168-172. (in Chinese)
[34]
刘冠群, 杜素华, 杨再琴, 罗金龙, 陈璐瑶, 林竹, 周芳. 贵州桐梓野生古茶树的种质资源保护与开发利用. 农技服务, 2022, 39(10): 112-115.
LIU G Q, DU S H, YANG Z Q, LUO J L, CHEN L Y, LIN Z, ZHOU F. Protection and development of germplasm resources of wild ancient tea trees in Tongzi, Guizhou. Agricultural Technical Services, 2022, 39(10):112-115. (in Chinese)
[35]
罗显扬, 蒲蓉, 刘声传. 贵州古茶树. 北京: 中国农业出版社, 2018.
LUO X Y, PU R, LIU S C. Ancient Tea Plant in Guizhou. Beijing: China Agriculture Press, 2018. (in Chinese)
[36]
刘声传, 曹雨, 鄢东海, 魏杰, 赵华富, 段学艺. 贵州野生茶树资源地理分布和形态特征与气候要素的关系. 茶叶科学, 2013, 33(6): 517-525.
LIU S C, CAO Y, YAN D H, WEI J, ZHAO H F, DUAN X Y. Geographical distribution and morphology of wild tea germplasm resources in Guizhou and its relationship with climatic factors. Journal of Tea Science, 2013, 33(6): 517-525. (in Chinese)
[37]
靖翠翠, 杨秀芳, 谭蓉, 王静. 微波制样对茶叶内质成分的影响. 食品安全质量检测学报, 2015, 6(4): 1265-1270.
JING C C, YANG X F, TAN R, WANG J. Effect of microwave fixation on tea chemical components. Journal of Food Safety and Quality, 2015, 6(4): 1265-1270. (in Chinese)
[38]
杨春, 梁思慧, 陈正武, 陈娟, 李燕, 乔大河, 郭燕, 张小琴. 黄色芽叶茶树新品种黄金芽自然杂交后代的生化品质分析评价. 西南农业学报, 2023, 36(9):1859-1868.
YANG C, LIANG S H, CHEN Z W, CHEN J, LI Y, QIAO D H, GUO Y, ZHANG X Q. Biochemical quality analysis and evaluation of natural hybrid prngenies fromnew tea variety with yellow bud leaf ‘Huangjinya’. Southwest China Journal of Agricultural Sciences, 2023, 36(9):1859-1868. (in Chinese)
[39]
王丽丽, 宋振硕, 陈键, 杨军国, 张应根, 陈林. 茶鲜叶萎凋过程中儿茶素和生物碱的动态变化规律. 福建农业学报, 2015, 30(9): 856-862.
WANG L L, SONG Z S, CHEN J, YANG J G, ZHANG Y G, CHEN L. Changes on catechin and alkaloid contents in fresh tea leaves during withering. Fujian Journal of Agricultural Sciences, 2015, 30(9): 856-862. (in Chinese)
[40]
梁月荣. 茶树品种性状的相关性和聚类分析. 茶叶科学简报, 1989, 122(1):26-29.
LIANG Y R. Diversity analysis of the main morphological traits of tea plant flower and its biochemical components. Acta Tea Sinica, 1989, 122(1):26-29. (in Chinese)
[41]
杨世雄. 茶组植物的分类历史与思考. 茶叶科学, 2021, 41(4): 439-453.
YANG S X. Thinking on the Taxonomy of Camellia Sect. Thea. Journal of Tea Science, 2021, 41(4): 439-453. (in Chinese)
[42]
闵天禄. 世界山茶属的研究. 昆明: 云南科技出版社, 2000.
MIN T L. Monograph of the Genus Camellia. Yunnan: Yunnan Science & Technology Press, 2000. (in Chinese)
[43]
李欢, 鄢小青, 杨占烈, 谭金玉, 黎小冰, 陈能刚, 吴荣菊, 陈惠查, 阮仁超. 贵州香禾糯地方稻种资源表型遗传多样性分析与综合评价. 中国农业科学, 2023, 56(11): 2035-2046. doi: 10.3864/j.issn.0578-1752.2023.11.001.
LI H, YAN X Q, YANG Z L, TAN J Y, LI X B, CHEN N G, WU R J, CHEN H C, RUAN R C. Analysis and comprehensive evaluation of phenotype genetic diversity in kam sweet rice germplasm resources in Guizhou. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046. doi: 10.3864/j.issn.0578-1752.2023.11.001. (in Chinese)
[44]
张一中, 张晓娟, 梁笃, 郭琦, 范昕琦, 聂萌恩, 王绘艳, 赵文博, 杜维俊, 柳青山. 基于表型性状的高粱育种材料遗传多样性分析及综合评价. 中国农业科学, 2023, 56(15): 2837-2853. doi: 10.3864/j.issn.0578-1752.2023.15.001.
ZHANG Y Z, ZHANG X J, LIANG D, GUO Q, FAN X Q, NIE M E, WANG H Y, ZHAO W B, DU W J, LIU Q S. Genetic diversity analysis and comprehensive evaluation of Sorghum breeding materials based on phenotypic traits. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853. doi: 10.3864/j.issn.0578-1752.2023.15.001. (in Chinese)
[45]
班秋艳, 纪晓明, 余有本, 闫满朝, 胡歆, 潘宇婷, 任华江, 丁帅涛, 江昌俊. 陕西茶树种质资源表型性状的遗传多样性研究. 安徽农业大学学报, 2018, 45(4): 575-579.
BAN Q Y, JI X M, YU Y B, YAN M Z, HU X, PAN Y T, REN H J, DING S T, JIANG C J. Genetic diversity of leaf phenotypic traits of tea germplasm resources in Shaanxi. Journal of Anhui Agricultural University, 2018, 45(4): 575-579. (in Chinese)
[46]
谢文钢, 李晓松, 李伟, 唐茜. 四川地方中小叶茶树资源的表型遗传多样性. 浙江农业学报, 2019, 31(9): 1405-1415.

doi: 10.3969/j.issn.1004-1524.2019.09.02
XIE W G, LI X S, LI W, TANG Q. Genetic diversity of small and medium leaf tea resources in Sichuan province based on phenotypic characteristics. Acta Agriculturae Zhejiangensis, 2019, 31(9): 1405-1415. (in Chinese)
[47]
王治会, 彭华, 江新凤, 杨普香. 江西茶树种质资源芽叶表型多样性分析. 江苏农业科学, 2020, 48(1): 134-138, 142.
WANG Z H, PENG H, JIANG X F, YANG P X. Analysis of phenotypic diversity of germplasm resources of tea trees in Jiangxi province. Jiangsu Agricultural Sciences, 2020, 48(1): 134-138, 142. (in Chinese)
[48]
王新超, 陈亮, 杨亚军. 广西茶树资源生化成分多样性分析. 植物遗传资源学报, 2010, 11(3): 309-314, 319.

doi: 10.13430/j.cnki.jpgr.2010.03.011
WANG X C, CHEN L, YANG Y J. Biochemical diversity analysis of tea germplasms in Guangxi. Journal of Plant Genetic Resources, 2010, 11(3): 309-314, 319. (in Chinese)
[49]
丁帅涛, 程晓梅, 张亚, 万斌, 任华江, 江昌俊, 余有本, 纪晓明, 胡歆. 基于表型性状和生化成分的陕西茶树种质资源遗传多样性研究. 西北农业学报, 2019, 28(4):607-619.
DING S T, CHENG X M, ZHANG Y, WAN B, REN H J, JIANG C J, YU Y B, JI X M, HU X. Genetic diversity in phenotypic traits and biochemical components of tea germplasm resources in Shaanxi. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(4):607-619. (in Chinese)
[50]
王治会, 岳翠男, 李琛, 蔡海兰, 彭华, 李文金, 胡瑶根, 杨普香. 江西省茶树种质化学特性多样性分析与鉴定评价. 江苏农业学报, 2020, 36(1): 172-179.
WANG Z H, YUE C N, LI C, CAI H L, PENG H, LI W J, HU Y G, YANG P X. Diversity analysis and evaluation of chemical characteristics of tea germplasms in Jiangxi province. Jiangsu Journal of Agricultural Sciences, 2020, 36(1): 172-179. (in Chinese)
[51]
JIN J Q, DAI W D, ZHANG C Y, LIN Z, CHEN L. Genetic, morphological, and chemical discrepancies between Camellia sinensis (L.) O. Kuntze and its close relatives. Journal of Food Composition and Analysis, 2022, 108: 104417.
[52]
姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状. 生物多样性, 2023, 31(2): 23-37.
YAO R X, CHEN Y, X Q, WANG J H, YANG F J, WANG X Y. Altitude-related environmental factors shape the phenotypic characteristics and chemical profile of Rhododendron. Biodiversity Science, 2023, 31(2): 23-37. (in Chinese)
[53]
郭灿, 皮发娟, 吴昌敏, 高秀兵, 乔大河, 周媛. 基于GBS测序的全基因组SNP揭示贵州地方茶组植物资源的亲缘关系. 南方农业学报, 2021, 52(3): 660-670.
GUO C, PI F J, WU C M, GAO X B, QIAO D H, ZHOU Y. Genome-wide SNP developed by genotyping-by-sequencing revealed the phylogenetic relationship of Sect. Thea (L.) Dyer resources in Guizhou. Journal of Southern Agriculture, 2021, 52(3): 660-670. (in Chinese)
[54]
何涛, 樊小莉, 鲁璐, 黄田钫. 不同种源石斛表型性状多样性及其与地理因子的相关性. 植物资源与环境学报, 2021, 30(2): 1-11.
HE T, FAN X L, LU L, HUANG T F. Phenotypic trait diversity of Dendrobium nobile from different provenances and their correlations with geographical factors. Journal of Plant Resources and Environment, 2021, 30(2): 1-11. (in Chinese)
[55]
赵鹏霞, 杨旭, 杨志玲, 田朝霞, 羊奕珣. 基于腊叶标本分析的木姜叶柯表型性状变异及地理分化研究. 江西农业大学学报, 2023, 45(2): 285-297.
ZHAO P X, YANG X, YANG Z L, TIAN Z X, YANG Y X. Phenotypic variation and geographical differentiation of Lithocarpus litseifolius based on herbarium-specimen analysis. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(2): 285-297. (in Chinese)
[56]
郭燕, 张树航, 李颖, 张馨方, 王广鹏. 中国板栗36个叶片表型性状的多样性. 中国农业科学, 2022, 55(5): 991-1009. doi: 10.3864/j.issn.0578-1752.2022.05.012.
GUO Y, ZHANG S H, LI Y, ZHANG X F, WANG G P. Diversity analysis of 36 leaf phenotypic traits of Chinese chestnut. Scientia Agricultura Sinica, 2022, 55(5): 991-1009. doi: 10.3864/j.issn.0578-1752.2022.05.012. (in Chinese)
[57]
李小伟, 张宏涛, 张泽婧. 西藏沙棘叶片黄酮含量与生态因子的相关性. 生态环境学报, 2018, 27(2):239-245.

doi: 10.16258/j.cnki.1674-5906.2018.02.006
LI X W, ZHANG H T, ZHANG Z J. The relation between contents of flavonoids in leaves of Hippophae tibetana Schlecht. and ecological factors. Ecology and Environmental Sciences, 2018, 27(2):239-245. (in Chinese)
[58]
宛晓春. 茶叶生物化学. 3版. 北京: 中国农业出版社, 2003: 164.
WAN X C. Tea Biochemistry. 3rd ed. Beijing: China Agriculture Press, 2003: 164. (in Chinese)
[59]
HE L M, LUO J, NIU S Z, BAI D C, CHEN Y J. Population structure analysis to explore genetic diversity and geographical distribution characteristics of wild tea plant in Guizhou Plateau. BMC Plant Biology, 2023, 23(1): 255.

doi: 10.1186/s12870-023-04239-2 pmid: 37189087
[1] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[2] CHEN XiHong, CAI Wei, YU Yun, LI Min, WANG NianWu, DU ZhenGuo, SHEN JianGuo, GAO FangLuan. Identification of Tea Plant Viruses in Fujian Province and Establishment of Multiplex PCR Detection Assay [J]. Scientia Agricultura Sinica, 2024, 57(4): 698-710.
[3] RONG YaSi, LI Feng, ZHANG PengYu, WANG DongYong, SU XiaoYu, TIAN Yuan, GAO TongMei. Evaluation of High Temperature Tolerance and Selection of Sesame (Sesamum indicum L.) Cultivars at Full Flowering Stage Based on Principal Components-Cluster Analysis [J]. Scientia Agricultura Sinica, 2024, 57(20): 3957-3973.
[4] ZHANG Yi, LIU Ying, CHENG CunGang, LI YanQing, LI Zhuang. Effects of Combined Application Proportion of Cow Manure and Chemical Fertilizer on Soil Organic Carbon Pool and Enzyme Activity in Apple Orchard [J]. Scientia Agricultura Sinica, 2024, 57(20): 4107-4118.
[5] LU KeDan, LU Yuan, WANG Rui, DANG TingHui. Effects of Different Nitrogen Application Patterns on Yield and Nitrous Oxide Emission of Spring Maize in Dryland Farming of the Loess Plateau [J]. Scientia Agricultura Sinica, 2024, 57(18): 3642-3653.
[6] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[7] ZHAI CaiJiao, GE LiJiao, CHENG YuJing, QIU Liang, WANG XiaoQiu, LIU ShuiDong. Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers [J]. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457.
[8] HUANG TingMiao, LU NaiKun, XIE BingQiang, CAO HanBing, QIAO YueJing, YANG ZhenPing, GAO ZhiQiang, LI TingLiang. Response of Wheat Zinc Nutrition to Zinc Fertilization into Soils with Variable Available Zinc [J]. Scientia Agricultura Sinica, 2024, 57(14): 2815-2826.
[9] LEI MengLin, LIU Xia, WANG YanZhen, CUI GuoQing, MU ZhiXin, LIU LongLong, LI Xin, LU LaHu, LI XiaoLi, ZHANG XiaoJun. Genetic Diversity Analysis of Winter Wheat Germplasm Resources in Shanxi Province Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2024, 57(10): 1845-1856.
[10] SONG Xiang, WANG ZhongMan, ZHANG QiuLing, WEI YuanYuan, ZHAO XiaoGang, LIU Bo, DAI SiLan. Comprehensive Evaluation and Selection of Hybrid Offsprings of Early Flowering Spray Outdoor Chrysanthemum [J]. Scientia Agricultura Sinica, 2024, 57(1): 173-189.
[11] HOU ZhaoYu, GONG YiZhao, QIAN Yi, CHENG ZhuoYa, TAO Jun, ZHAO DaQiu. Evaluation of Heat Tolerance of Herbaceous Peony and Screening of Its Identification Indices [J]. Scientia Agricultura Sinica, 2023, 56(23): 4742-4756.
[12] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[13] ZHOU MingXing, DAI ZiJun, FAN Jun, FU Wei, HAO MingDe. Effect of No-Tillage Combined with Mulching on the Structure and Organic Carbon Content of Aggregates in Heilu Soil of the Weibei Dry Plateau [J]. Scientia Agricultura Sinica, 2023, 56(12): 2329-2340.
[14] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[15] YIN YanZhen, HOU LiMing, LIU Hang, TAO Wei, SHI ChuanZong, LIU KaiYue, ZHANG Ping, NIU PeiPei, LI Qiang, LI PingHua, HUANG RuiHua. Identifying Quantitative Trait Loci Associated with Teat Number of Pig by Genomic Analysis [J]. Scientia Agricultura Sinica, 2023, 56(10): 1994-2006.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!