Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (2): 355-386.doi: 10.3864/j.issn.0578-1752.2025.02.011

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Functional Modification of Genetically Engineered Antibodies and Their Application Strategies in Agriculture and Food Safety

XU ChongXin1,2(), SHEN JianXing1,2, JIN JiaFeng1,2, HE Xin1, XIE YaJing1, ZHANG Xiao1, ZHU Qing1, LIU Yuan1, LIU XianJin1   

  1. 1 Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Food Quality and Safety-Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014
    2 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu
  • Received:2024-06-12 Accepted:2024-11-27 Online:2025-01-21 Published:2025-01-21

Abstract:

Genetically engineered antibodies (GEAbs) represent a giant leap forward in the artificial directed design of antibodies. They exist in forms such as recombinant antigen binding fragment, single chain variable fragment and nanobodies, etc., and have been widely used in various fields of agricultural and food safety. Relevant innovation exploration and research are still ongoing, and their development is extremely rapid. This paper summarized the main derivative forms of GEAbs, the carrying platforms of phage, yeast, ribosomal and mammalian cells on which they rely, and the corresponding antigen-specific antibody targeting screening system. The key technical characteristics of their characteristic functional modifications, such as affinity maturation and enhancement of environmental stress stability, were analyzed through strategies, such as site-directed mutagenesis, chain-shuffling, error-prone PCR, DNA shuffling, homologous or heterologous antibody functional fragments and functional protein fusion. The preparation of corresponding antibody proteins using the expression systems of insect and animal cells, plant tissues, yeast, Escherichia coli (E. coli) and other microorganisms and the potential optimization strategies were summarized too. The application and research status of GEAbs in the immunoassay of agricultural and food safety hazards, such as environmental hazards of origin growing area, pesticides and veterinary drugs inputs, mycotoxins, foodborne pathogenic microorganisms and their toxic metabolites, foodborne allergens were reviewed. Combined with the latest achievements and research experience in the innovative research and development of the simulants for simulating Bt Cry toxin structure and even anti-insect function of Ab2β anti-idiotypic GEAbs and for simulating vancomycin anti-Staphylococcus aureus (S. aureus) function of Ab2β anti-idiotypic GEAbs from author’s team, which is based on the theoretical basis that Ab2β anti-idiotypic antibody, could simulate the structure of antigen and even the function of biological activity. The future development trend and feasible shortcut of GEAbs in green detection and green prevention and control of agricultural and food safety hazards were further discussed. This paper was expected to provide the latest and comprehensive literature with reference value and potential inspiration for the application of GEAbs in the fields of agricultural, food safety and nutrition quality assessment.

Key words: genetically engineered antibody, antibody affinity maturation, expression of antibody protein, immunoassay, anti- idiotype antibody, insecticidal antibody, bactericidal antibody

Fig. 1

The evolution form of novel genetically engineered antibody based on traditional antibody and its antibody library carrying and displaying platform"

Table 1

Common functional modification strategies of genetically engineered antibodies and corresponding representative examples"

功能修饰及策略
Functional modification
and strategies
供试对象
Experimental subject
修饰区位
Modified region or site
实施效果
Implementation effect
参考文献
Reference
亲和力修饰Affinity modification 定点突变
Site-directed mutagenesis
anti-TpoR rFab VH-CDR3
“DRKLGGSDYW→DRKLGGLDYW”、VL-CDR3 “QQSNSFPWTF→ QRSNSPPYTF”
目标突变体的亲和力提高了20.68倍
The affinity of the target mutant was increased 20.68-fold
[58]
anti-PD-L1 scFv VH-CDR3
“TKWELVDPYDY→SKWELVDPYAY”
目标突变体的亲和力提高了9.8倍
The affinity of the target mutant was increased 9.8-fold
[59]
anti-sarafloxacin scFv VH-CDR3 “Y99H” 目标突变体的亲和力提高了7倍
The affinity of the target mutant was increased 7-fold
[95]
anti-Bt Cry sdAb VH-CDR3 “N105L、R106L、V107Y、R114K” 目标突变体的抗原识别灵敏度提高了1.34-2.7倍
The antigen recognition sensitivity of target mutant was increased 1.34-2.7-fold.
[55]
anti-cortisol scFv VH-FR1
1QVQLQQPGAE101QVQLQQDPGAE10
目标突变体的亲和力提高了31倍
The affinity of the target mutant was increased 31-fold
[66]
anti-amantadine scFv VL-CDR3 “G107F” 目标突变体的亲和力提高了3.9倍
The affinity of the target mutant was increased 3.9-fold
[56]
anti-ciprofloxacin scFv VL-CDR1 “V160S” 目标突变体的亲和力提高了16.6倍
The affinity of the target mutant was increased 16.6-fold
[61]
anti-estradiol-17β scFv VL-CDR1 “I29V” 目标突变体的亲和力提高了5倍
The affinity of the target mutant was increased 5-fold
[62]
anti-MC-LR scFv VL-CDR1 “ATWNMAY→ARYYWYGAFDI” 目标突变体的亲和力提高了27.8倍
The affinity of the target mutant was increased 27.8-fold
[63]
anti-MC-LR scFv VL-CDR3 “F91Y” 目标突变体的亲和力提高了63.3倍
The affinity of the target mutant was increased 63.3-fold
[57]
anti-amoxicillin scFv VL-CDR3 “S95E” 目标突变体的亲和力提高了6倍
The affinity of the target mutant was increased 6-fold
[64]
anti-dengue virus scFv VH-CDR1 “D31L”、VH-CDR3 “Y105W”、
VL-CDR3 “S227W”
目标突变体的亲和力提高了~100倍
The affinity of the target mutant was increased ~100-fold
[96]
anti-HBV scFv VL-CDR3 “Y96S”、VH-CDR3 “D98S” 目标突变体的亲和力和热稳定性显著提高
The affinity and thermal stability of the target mutant were significantly improved
[97]
anti-quinalphos Nbs CDR1 “R29W” 目标突变体的抗原识别灵敏度提高了25倍
The antigen recognition sensitivity of target mutant was increased 25-fold
[32]
anti-deoxynivalenol
Nbs
CDR3 “T102Y” 目标突变体的亲和力提高了3.2倍
The affinity of the target mutant was increased 3.2-fold
[60]
anti-aflatoxin B1
Nbs
CDR3 “S102D” 目标突变体的抗原识别灵敏度提高了3.3倍
The antigen recognition sensitivity of target mutant was improved 3.3-fold
[98]
anti-ochratoxin A
Nbs
FR1 “G53Q”、CDR2 “S102D” 目标突变体的亲和力提高了1.36倍
The affinity of the target mutant was increased 1.36-fold
[65]
anti-syn Nbs FR3 “N77D” 目标突变体的亲和力提高了48.5倍
The affinity of the target mutant was increased 48.5-fold
[67]
链置换
Chain-
shuffling
anti-aflatoxin B1 scFv 重链置换重组VH-VL
Heavy chain replacement recombination VH-VL
目标突变体的抗原识别灵敏度提高了7.5倍
The antigen recognition sensitivity of target mutant was increased 7.5-fold
[69]
anti-HBV scFv 重链置换重组VH-VL
Heavy chain replacement recombination VH-VL
目标突变体的亲和力提高了6.5倍
The affinity of the target mutant was increased 6.5-fold
[99]
anti-halofuginone
scFv
轻链置换重组VH-VL
Light chain replacement recombination VH-VL
目标突变体的抗原识别灵敏度提高了185倍
The antigen recognition sensitivity of target mutant was increased 185-fold
[70]
anti-BoNT scFv 轻链置换重组VH-VL
Light chain replacement recombination VH-VL
目标突变体的亲和力提高了77倍
The affinity of the target mutant was increased 77-fold
[100]
anti-MC-LR scFv 轻链置换重组VH-VHH
Light chain replacement recombination VH-VHH
目标突变体的抗原结合活性显著提高
The antigen-binding activity of target mutant was significantly improved
[5]
anti-Bt Cry toxin
idiotypic scFv
双轻链置换重组VL-VL
Double light chain replacement recombination VL-VL
目标突变体的亲和力提高了1.37倍
The affinity of the target mutant was increased 1.37-fold
[6]
anti-Cry toxin scFv 双轻链置换重组VL-VL
Double light chain replacement recombination VL-VL
目标突变体的抗原结合活性提高了1.44倍
The antigen-binding activity of target mutant was increased 1.44-fold
[101]
易错PCR
Error-prone
PCR
anti-streptavidin rFab VL-CDR1 “H34R”、VL-CDR3 “Y96H” 目标突变体的亲和力提高了10.7倍
The affinity of the target mutant was increased 10.7-fold
[73]
anti-TCR scFv VH-CDR2 “Q50L”、VL-FR1 “D1N”、VL-CDR2 “Q53L”、VL-FR3 “S65N” 目标突变体的亲和力提高了100倍
The affinity of the target mutant was increased 100-fold
[75]
anti-aflatoxin B1 scFv VH-FR1 “T28P”、VH-FR3 “A94V”、VH-RF4 “T110A”、VL-FR2 “E40V”、VL-CDR2 “A57V” 目标突变体的亲和力提高了9倍
The affinity of the target mutant was increased 9-fold
[76]
anti-CD22 scFv VL-CDR1 “N34A” 目标突变体的亲和力提高了10倍
The affinity of the target mutant was increased 10-fold
[102]
anti-CIT scFv VH-CDR3 “T100P”、VL-FR1 “M151T” 目标突变体的亲和力提高了13.25倍
The affinity of the target mutant was increased 13.25-fold
[25]
anti-cortisol scFv VH “S21P” & linker “S8P”、VL “K27R” 目标突变体的亲和力提高了63倍
The affinity of the target mutant was increased 63-fold
[77]
anti-estradiol-17β scFv VH-FR1 “K19R”、VH-CDR2 “Y57F”、VH-RF3 “S88P、E89G”、VH-CDR3 “L111Q”、VL-CDR1 “Q166R、I168V”、VL-FR2 “L175M”、VL-CDR2 “H189N”、VL-FR3 “S202G、S216G” 目标突变体的亲和力提高了151倍
The affinity of the target mutant was increased 151-fold
[103]
anti-SAL scFv VH-CDR3 “T101S、F103Y”、VL- CDR3 “S216N、V218T、T221L” 目标突变体的亲和力提高了~25倍
The affinity of the target mutant was increased ~25-fold
[74]
anti-UreC Nbs FR2 “N23K、P29R、R34Q”、CDR2 “F42I、F43S”、FR3 “N54D、G58R、N64D、F71Y、V84M”、FR4 “R109Q、R118Q、A119P” 目标突变体的抗原结合活性提高了1.5倍
The antigen-binding activity of target mutant was increased 1.5-fold
[104]
anti-ClfA Nbs FR1 “R19Y”、CDR1 “A24G”、CDR2 “G50A”、FR3 “D61V、K75R” 目标突变体的抗原结合活性提高了~80倍
The antigen-binding activity of target mutant was increased ~80-fold
[105]
DNA改组
DNA
shuffling
anti-fusarium scFv VH-FR1 “V23A” & VH-CDR1 “D30G”、VL-FR3 “G209S” 目标突变体的抗原结合活性提高了15倍
The antigen-binding activity of target mutant was increased 15-fold
[106]
anti-ProGRP scFv VL-FR1 “P12A”、VL-CDR1 “T36A”、VH-CDR1 “V162M、S165P”、VH- CDR3 “D238N”、VH-FR3 “T248I” 目标突变体的亲和力提高了9倍
The affinity of the target mutant was increased 9-fold
[79]
anti-SARS-CoV scFv VH-CDR2 “S52G、N57S”、VH-FR3 “T91A”、VH-FR4 “S117N”、VL- CDR1 “S167N”、VL-CDR2 “S189N”、VL-FR3 “S202N”、VL-FR4 “T239A” 目标突变体的亲和力提高了270倍
The affinity of the target mutant was increased 270-fold
[80]
其他策略
Other
strategies
anti-Salmonella Nbs VHH→VHH-linker-VHH 目标二价抗体复合物的抗原识别灵敏度提高了7.5倍
The antigen recognition sensitivity of the target bivalent-antibody complex was increased 7.5-fold
[81]
anti-SARS-COV2 Nbs Bivalent-VHH recombinant fused
by SpyTag/SpyCatcher protien
目标二价抗体复合物的亲和力提高了56倍
The affinity of the targeted bivalent-antibody complex was increased 56-fold
[107]
anti-HER3 scFv Tri-scFv recombinant fused by SpyTag/SpyCatcher protien 目标三价抗体复合物的亲和力提高了12倍
The affinity of the targeted trivalent-antibody complex was increased 12-fold
[82]
anti-aflatoxin B1 scFv scFv fused to alkaline phosphatase (ALP) 目标scFv-ALP复合物的抗原识别灵敏度提高了3倍
The antigen recognition sensitivity of the target scFv-ALP complex was increased 3-fold
[9]
anti-HIV-1 Nbs VHH fused to ligand-tailored SH3 domain 目标VHH-SH3融合复合物的亲和力提高了28倍
The affinity of the target VHH-SH3 fusion complex was increased 28-fold
[10]
anti-hCG Nbs VHH fused to PMMA-binding peptide 目标VHH-PMMA-tag融合复合物的抗原结合活性提高了10倍
The antigen-binding activity of the target VHH-PMMA- tag fusion complex was increased 10-fold
[108]
稳定性修饰Stability modification 热稳定性
Thermal
stability
anti-adalimumab rFab VH “G10C/P210C” & VL “P40C/ E165C” 目标突变体的热稳定耐受性提高了6.5 ℃
The thermal stability tolerance of the target mutant was improved 6.5 ℃
[11]
anti-MS2 rFab VL-FR2 “F36Y、R46L”、
VL-FR3 “Y87F”
目标突变体的热稳定耐受性提高了8.4 ℃
The thermal stability tolerance of the target mutant was improved 8.4 ℃
[109]
anti-interleukin-
17A
rFab
VL-CDR1 “S30G”、VL-CDR2 “D53A”、VL-CDR3 “D92V” & VH-CDR1 “V61P、S65G”、VH-CDR3 “E97D” 目标突变体的热稳定耐受性提高了10.8 ℃
The thermal stability tolerance of the target mutant was improved 10.8 ℃
[110]
anti-aflatoxin B1 scFv VH “G44HC”、VL “Q100C” 目标突变体的热稳定性显著增强
The thermal stability of the target mutant was significantly enhanced
[83]
anti-CXCL13 scFv VL-CDR3
“SSYTYYDTYV→ASATLLDTYV”
目标突变体的热稳定耐受性提高了5 ℃
The thermal stability tolerance of the target mutant was improved 5 ℃
[111]
anti-cTnI scFv VH-CDR3
“SSYQCSGDYC→SSYQASGDYA”
目标突变体的热稳定性显著增强
The thermal stability of the target mutant was significantly enhanced
[112]
anti-EGFR scFv VH-VL (lambda framework)→ VH-VL (kappa framework) 目标突变体的热稳性显著增强
The thermal stability of the target mutant was significantly enhanced
[84]
anti-carbaryl Nbs VHH→VHH-linker-VHH 目标二价抗体复合物的热稳定性和亲和力显著提高
The thermal stability and affinity of the target bivalent antibody complex were significantly improved
[85]
anti-hCG Nbs CDR2 “N52S”、FR3 “N74S、N84T” 目标突变体的热稳性提高了~50%
The thermal stability tolerance of the target mutant was improved ~50%
[86]
anti-HAS Nbs CDR1 “G32D”、CDR2 “R50L”、FR3 “G78A”、FR4 “S133R” 目标突变体的热稳定耐受性提高了12 ℃
The thermal stability tolerance of the target mutant was improved 12 ℃
[113]
anti-TNF-α Nbs CDR2 “E50Q、T53W” 目标突变体的热稳定耐受性提高了7.4 ℃且亲和力提高了3.86倍
The thermal stability tolerance of the target mutant was increased 7.4 ℃ and the affinity was increased 3.86- fold
[87]
anti-α-synuclein peptide Nbs FR3 “S96F” 目标突变体的热稳定耐受性提高了7.4 ℃且亲和力提高了7倍
The thermal stability tolerance of the target mutant was increased 7.4 ℃ and the affinity was increased 7-fold
[89]
anti-lysozyme Nbs FR3 “A79I” 目标突变体的热稳定耐受性提高了5 ℃
The thermal stability tolerance of the target mutant was increased 5 ℃
[114]
anti-CD47 Nbs CDR3 “G107W、T108H、S109V、F110A” 目标突变体的热稳定耐受性提高了7.36 ℃且亲和力提高了87.4倍
The thermal stability tolerance of the target mutant was increased 7.36 ℃ and the affinity was increased 87.4-fold
[88]
pH稳定性
pH stability
anti-SAG1 scFv VH-14 sites/VL-4 sites
(突变位点较多,未细列
There are many mutation sites, not detailed list)
目标突变体的碱性pH耐受性增强了21%
The alkaline pH tolerance of target mutant was enhanced 21%
[12]
anti-alpaca-Fab Nbs CDR1 “S30N”、FR2 “Q39E”、
CDR2 “H56Y”
目标突变体的碱性pH耐受性增强了~37%且亲和力提高了10倍
The alkaline pH tolerance of target mutant was enhanced ~37% and the affinity was increased 10-fold
[90]

Table 2

The main expression strategies of genetically engineered antibodies and corresponding representative examples"

表达策略Expression strategy 供试对象
Experimental subject
蛋白表达量
Protein expression level
参考文献
Reference
宿主Host 载体Vector
大肠杆菌表达系统
E. coli expression systems
E. coli BL21-DE3 pRSFDuet phoA-STII anti-IGF1R rFab 6.3 mg∙L-1* [13]
E. coli BL21-DE3 pLK04 synthetic human rFab 10 mg∙L-1* [116]
E. coli BL21-DE3 pLac-DsbA/C anti-MMP-14 rFab 30 mg∙L-1* [134]
E. coli-CyDisCo pET23 anti-Herceptin rFab 42 mg∙L-1* [118]
E. coli FA113 pFAB1 anti-NhaA rFab 30 mg∙L-1* [117]
E. coli BL21-pLysS pET22b anti-EGFRvIII scFv 133.33 mg∙L-1 [135]
E. coli Rosetta pET22b anti-CRP scFv 3.0 g∙L-1* [122]
E. coli Rosetta pET23a anti-influenza PB2 scFv 20 mg∙L-1* [136]
E. coli BL21-DE3 pET28a anti-HER2 scFv 30 mg∙L-1* [119]
E. coli BL21-DE3 pSAR-2 anti-HIV scFv 0.8 g∙L-1* [121]
E. coli HB2151 pIT2 phagemid anti-MC-LR scFv 2.56 mg∙L-1* [41]
E. coli BL21-DE3 pET26b anti-Van idiotypic sdAb 3.01 mg∙L-1 [3]
E. coli BL21-DE3 pET26b anti-MC-LR Nbs 1.27 mg∙L-1* [115]
E. coli Rosetta pET25b anti-DON Nbs 40 mg∙L-1* [137]
E. coli BL21-DE3 pET45b anti-α-Amylase Nbs 70 mg∙L-1* [138]
酵母表达系统
Yeast expression systems
Saccharomyces cerevisiae pYE anti-HIV-1 scFv 0.5 mg∙L-1* [14]
pUR4548 anti-hapten Nbs 100 mg∙L-1* [123]
Pichia pastoris pPink-αHC anti-ranibizumab rFab 30 mg∙L-1* [124]
pPICZαA anti-MC-LR scFv 44.6 mg∙L-1* [125]
pPICZαA anti-αIIbβ3 TEG4 scFv 30 mg∙L-1* [139]
pTHI11-synMsn4 anti-gelsolin Nbs 8 g∙L-1* [126]
昆虫及动物细胞表达系统
Insect and animal cell expression systems

HEK293 cells pJK7 anti-HPep rFab 5 mg∙L-1* [140]
pcDNA scFv 22 mg∙L-1* [141]
CHO cells pBIC-PS anti-AIS rFab 1 g∙L-1* [15]
Sf9 cells pIB/V5 anti-VcHK scFv - [142]
pFast-Bac anti-AFB1 scFv - [143]
anti-parathion-ethyl scFv - [144]
Trichoplusia ni BTI-Tn5B1 cells pIHAneo::pXINSECT anti-bovine RNaseA rFab 120 mg∙L-1* [145]
Bombyx mori BmN cells pENTR11::pDEST8/v
BmNPV/T3 bacmid
anti-SARS-CoV scFv 2.34 g∙L-1* [127]
植物表达系统
Plant expression systems
Tobacco pENTR4®::
pK7WG2D
anti-venom scFv ~62 mg∙kg-1** [16]
pBI-Ω anti-TNC scFv 50—100 mg∙kg-1 ** [146]
pBI121 anti-HER2 Nbs - [147]
Arabidopsis thaliana pPhasBar anti-TNF-α scFv 0.634 g∙kg-1 ** [128]
pPphas-GBP anti-F4+ETEC Nbs 44.3 g∙kg-1 ** [148]
Rice pZH2B anti-human norovirus Nbs 4.63 g∙kg-1 ** [129]
Spirodela punctata pRT100::pCAMBIA1304 anti-TNFα scFv 126 mg∙kg-1 ** [130]
Chlamydomonas reinhardtii pBS anti-αCD22 scFv ~61.5 mg∙kg-1 ** [131]
其他表达系统
Other expression systems
Corynebacterium glutamicum pPKStrast anti-HER2 rFab 57.6 mg∙L-1 * [17]
Bifidobacterium longum pESH100 anti-exotoxin-A Nbs 1 mg∙L-1 * [18]
Bacillus subtilis pRBBm117 anti-lysozyme scFv 130 mg∙L-1 * [132]
Brevibacillus choshinensis pBIC anti-trastuzumab rFab 145 mg∙L-1 * [149]
anti-IZUMO1 Nbs 3 g∙L-1 * [150]
Aspergillus niger pAnGlaA anti-DEC205 scFv 54 mg∙L-1 * [151]
Aspergillus oryzae phlACB Nbs 0.61 g∙L-1 * [133]

Fig. 2

Application of genetically engineered antibody-based conventional immunoassay for the monitoring of agricultural and food safety hazards"

Table 3

Application and representative examples of immunoassay strategy based on genetically engineered antibodies for monitoring the hazards of agricultural and food safety"

免疫分析策略
Immunoassay strategy
检测对象
Testing objects*
检测实效Detection effectiveness 参考文献
Reference
灵敏度 LOD 线性范围 LDR
酶联免疫分析ELISA IC-ELISA 重金属
Heavy metal

Uranium (scFv)
2.2 nM - [19]
农药
Pesticides
有机磷类农药
Organophosphorus pesticides (scFv)
4.1-17.6 ng∙mL-1 - [20]
甲基对硫磷
Parathion-methyl (scFv)
0.9 ng∙mL-1 - [201]
拟除虫菊酯Pyrethroid (scFv) 0.05 μg∙mL-1 0.15—2.64 μg∙mL-1 [157]
胺甲萘Carbaryl (bispecific-Nbs) 0.8 ng∙mL-1 2.1—270.9 ng∙mL-1 [85]
呋喃丹Carbofuran (Nbs) 0.65 ng∙mL-1 1.44—30.39 ng∙mL-1 [202]
百草敌Dicamba (Nbs) - 0.11—8.01μg∙mL-1 [203]
Bt Cry1F (scFv) 0.18 ng∙mL-1 0.92—107.36 ng∙mL-1 [42]
兽药
Veterinary drugs
氯霉素Chloramphenicol (scFv) 1.11 ng∙mL-1 - [21]
庆大霉素Gentamicin (scFv) 0.147 ng∙mL-1 0.14—204.16 ng∙mL-1 [204]
环丙沙星Ciprofloxacin (scFv) - 5.68—201.55 ng∙mL-1 [61]
沙氟沙星Sarafloxacin (scFv) 0.3 ng∙mL-1 - [95]
恩诺沙星Enrofloxacin (Nbs) 0.975 ng∙mL-1 - [205]
泰乐菌素Tylosin (scFv) 7.1 μg∙kg- - [206]
19-去甲睾酮
19-nortestosterone (Nbs)
0.1 ng∙mL-1 - [159]
真菌毒素
Fungal-toxins
赭曲霉
Ochratoxin A (Nbs** & mAb)
0.001μg∙mL-1 0.027—0.653μg∙mL-1 [22]
黄曲霉毒素
Aflatoxins(Nbs** & mAb)
0.015 ng∙mL-1 0.018—0.079 ng∙mL-1 [207]
黄曲霉毒素Aflatoxins (rFab) 12 ng∙mL-1 - [152]
呕吐毒素
Deoxynivalenol (Nbs** & mAb)
1.16 ng∙mL-1 2.18—62.25 ng∙mL-1 [137]
呕吐毒素
Deoxynivalenol (scFv** & mAb)
<77.7 ng∙mL-1 - [208]
稻曲病毒素Ustilaginoidins (Nbs) - 1.17—32.13μg∙mL-1 [209]
青霉菌毒素Citreoviridin (scFv) 14.7 ng∙mL-1 25—562 ng∙mL-1 [25]
桔霉毒素Citrinin (Nbs** & mAb) - 5—300 ng∙mL-1 [210]
食源性致病微生物Food-borne pathogenic microorganisms 猪2型环状病毒
PCV2 (Nbs)
0.05μg∙mL-1 - [160]
其他危害物
Other hazards
蘑菇毒伞肽Amatoxins (scFv) 1.91 ng∙mL-1 - [26]
海豚毒素Citreoviridin (scFv) 14.7 ng∙mL-1 25—562 ng∙mL-1 [25]
微囊藻毒素
MC-LR (Nbs** & mAb)
0.8 ng∙mL-1 1.2—6.9 ng∙mL-1 [27]
膝沟藻毒Gonyautoxin (rFab) 0.7 ng∙mL-1 - [211]
杏仁过敏原
Almond allergens (scFv)
40 ng∙mL-1 - [154]
DAS-ELISA 农药
Pesticides
Bt Cry1Ab (scFv & pAbs) 0.008μg∙mL-1 0.018—6.230μg∙mL-1 [158]
Bt Cry1Ac (Nbs & Nbs) 5 ng∙mL-1 10—1000 ng∙mL-1 [212]
真菌毒素
Fungal-toxins
交链孢霉毒素TeA
Alternaria TeA (sdAb & sdAb)
0.08 ng∙mL-1 0.26—25.90 ng∙mL-1 [213]
食源性致病微生物
及其代谢毒素
Food-borne pathogenic microorganisms and their metabolizing toxins
金黄色葡萄球菌
S. aureus (Nbs & Nbs)
1.4×105 CFU∙mL-1 104—105 CFU∙mL-1 [23]
沙门氏菌
Salmonella (Nbs & Nbs)
4.23-9.15×103 CFU∙mL-1 103—107 CFU∙mL-1 [161]
李斯特菌
Listeria monocytogenes
(Nbs & mAb)
1×104 CFU∙mL-1 - [214]
霉菌Aspergillus (Nbs & pAbs) 1μg∙mL-1 - [215]
葡萄球菌肠毒素
A Staphylococcal enterotoxin A
(Nbs & Nbs)
0.43 ng∙mL-1 0.5—512.0 ng∙mL-1 [24]
肉毒杆菌ε毒素
Clostridium botulinum ε-toxin
(rFab & mAb)
100 ng∙mL-1 - [162]
H7N2禽流感病毒
H7N2-AIV (Nbs & Nbs)
2.946 ng∙mL-1 5—100 ng∙mL-1 [216]
锦鲤疱疹病毒
Koi herpesvirus (scFv & scFv)
5 ng∙μL-1 - [217]
柑橘衰退病毒CTV (scFv & scFv) 0.01μg CP∙mL-1 - [218]
其他危害物
Other hazards
微囊藻毒素MC-LR (sdAb & sdAb) 0.14 nM 0.14—10000 nM [219]
膝沟藻毒
Gonyautoxin (sdAb & sdAb)
0.5 ng∙mL-1 0.1->1000 ng∙mL-1 [211]
侧流向免疫分析LFIA Biotin & SA-AuNPs-LFIA 农药Pesticides 腐霉利
Procymidone (Nbs & mAb)
0.88 ng∙mL-1 - [165]
Au@Pt-LFIA 3-苯氧基苯甲酸
3-PBA (Nbs & mAb)
0.005 ng∙mL-1 - [167]
TRFM-LFIA 噻虫啉Thiacloprid (scFv & mAb) 0.003 ng∙mL-1 0.01-10 ng∙mL-1 [169]
eGFP-AcmA@BMC-LFIA 兽药
Veterinary drugs
氟甲砜霉素
Florfenicol (scFv&mAb)
0.21 pg∙mL-1 - [170]
Colloidal AuNPs-LFIA 真菌毒素
Fungal-toxins
伏马毒素Fumonisin B1 (scFv@mAb) 2.5 ng∙mL-1 - [29]
Avi/SA@QDs-LFIA 黄曲霉毒素
Aflatoxin B1 (Nbs & mAb)
1.25 ng∙mL-1 - [168]
GFP-LFIA 黄曲霉毒Aflatoxin B1 (Nbs & mAb) 4.8 ng∙mL-1 - [220]
AuCPNs@PDA-
photothermal-LFIA
食源性致病微
生物代谢毒
Food-borne pathogenic microorganisms and their metabolizing toxins
葡萄球菌肠毒素B
Staphylococcal enterotoxin B
(Nbs & mAb)
0.58 ng∙mL-1 - [166]
Colloidal AuNPs-LFIA 其他危害物
Other hazards
毒伞肽Amatoxins (scFv & mAb) 4 ng∙mL-1 - [164]
AuMBA@AgNPs-CM/
SERS-LFIA
甲壳类过敏原原肌球蛋白
Crustacean allergen tropomyosin
(Nbs & mAb)
0.01 μg∙mL-1 - [44]
荧光免疫分析
FLIA
ALP-dc-FEIA 农药
Pesticides
对硫磷Parathion (Nbs) 0.2 ng∙mL-1 - [175]
Rhodamine based FLIA 吡虫啉Imidacloprid (rFab) 10 ng∙mL-1 - [172]
IC-TRFIA Cry1Ie (scFv) 0.04 ng∙mL-1 0.08—6.44 ng∙mL-1 [30]
QDs-FLISA Cry2A (Nbs & pAbs) 0.41 ng∙mL-1 2.6—1000 ng∙mL-1 [171]
QDs-FLISA Cry3Bb (Nbs & Nbs) 8.45 ng∙mL-1 31.25—500 ng∙mL-1 [221]
GFP-FLIA 阿维菌素Avermectin (scFv) 1.07 ng∙mL-1 - [173]
HCR & CRISPR/
Cas12a-FLIA
兽药
Veterinary drugs
氯霉素
Chloramphenicol (scFv)
3.31 pg∙mL-1 3.81 pg∙mL-1—1 μg∙mL-1 [178]
Nanoluciferase (Nluc)-FLIA 真菌毒素
Fungal-toxins
交链孢霉毒素TeA
Alternaria-TeA(Nbs** & mAb)
0.7 ng∙mL-1 - [174]
ALP-FLIA 黄曲霉毒素
Aflatoxins (Nbs** & mAb)
0.005—100 ng∙mL-1 [222]
Resonance energy transfer- FLIA 赭曲霉
Ochratoxin A/B (Nbs-mAb)
0.06/0.12 ng∙mL-1 0.25—20 ng∙mL-1 [177]
MBs&OPD/DAP-FLIA 食源性致病微生物Food-borne pathogenic microorganisms 大肠杆菌
E. coli F17 (Nb s& Nbs)
1.8 CFU∙mL-1 101—109 CFU∙mL-1 [176]
化学发光免疫分析CLIA AS@HRP-IC-CLIA 农药
Pesticides
二嗪农Diazinon (Nbs) 0.03 ng∙mL-1 0.12—25.96 ng∙mL-1 [181]
HRP@luminol-DAS-CLIA Bt Cry2A (pAbs-Nbs) 0.09 ng∙mL-1 0.1—1000 ng∙mL-1 [223]
HRP@luminol-IC-CLIA Bt Cry1Ab (mAb-Nbs**) 6.45 ng∙mL-1 10.49—307.1 ng∙mL-1. [31]
ALP@AMPPD-IC-CLIA 兽药
Veterinary drugs
庆大霉素Gentamicin (scFv) 0.38 ng∙mL-1 0.546—3.428 ng∙mL-1 [179]
ALP@AMPPD-IC-CLIA 孔雀石绿Malachite green (scFv) 0.04 ng∙mL-1 0.09—11.5 ng∙mL-1 [182]
HRP@luminol-IC-CLIA 诺氟沙星Norfloxacin (scFv) 0.105μg∙kg-1 - [224]
ALP@CSPD-CLIA 真菌毒素
Fungal-toxins
伏马毒素
Fumonisin B1 (Nbs** & mAb)
0.12 ng∙mL-1 0.93—7.73 ng∙mL-1 [180]
HRP@luminol-DAS-CLIA 食源性致病微生物及其代谢毒
Food-borne pathogenic microorganisms and their metabolizing toxins
克罗诺杆菌
Cronobacter sakazakii (Nbs & Nbs)
1.04×104 CFU∙mL-1 - [183]
HRP@luminol-DAS-CLIA 鼠伤寒沙门氏菌
Salmonella Typhimurium (Nbs & Nbs)
3.63×103 CFU∙mL-1 5.1×103—1.2×106 CFU∙mL-1 [225]
ALP@AMPPD-DAS-CLIA 葡萄球菌肠毒素-B
Staphylococcal enterotoxin-B
(Nbs & mAb)
1.44 ng∙mL-1 3.12—50 ng∙mL-1 [184]
(光)电化学免疫分析(P)
ECLIA
PVA-CA-NFM@HRP-ECLIA 农药
Pesticides
对硫磷Parathion (Nbs) 2.26 pg∙mL-1 0.01—100 pg∙mL-1 [185]
ATTO520 -PECLIA 喹硫磷Quinalphos (Nbs) 7 ng∙mL-1 - [32]
EDC/NHS@HRP-ECLIA Bt Cry1Ab (Nbs & Nbs) 0.07 ng∙mL-1 0.1—1000 ng∙mL-1 [186]
GO-Th@GCE-ECLIA Bt Cry1C (Nbs & Nbs) 3.2 pg∙mL-1 0.01—100 pg∙mL-1 [188]
IMBs@HRP-ECLIA 真菌毒素
Fungal-toxins
呕吐毒素Deoxynivalenol (rFab) 63 ng∙mL-1 100—4500 ng∙mL-1 [187]
SPCEs@HRP-ECLIA 黄曲霉毒素
Aflatoxin M1 (Nbs** & mAb)
0.09 ng∙mL-1 0.25—5 ng∙mL-1 [226]
HRP-ECLIA 其他危害物
Other hazards
丙烯酰胺Acrylamide (Nbs) 0.033μg∙mL-1 0.39—50 μg∙mL-1 [227]
SA & ALP-ECLIA 花生过敏原Ara h1
Peanut allergen Ara h1 (Nbs)
0.86 ng∙mL-1 4.5—55 ng∙mL-1 [28]
表面等离子共振免疫分析
SPRIA
Sensor chip CM5-SPRIA 真菌毒素
Fungal-toxins
玉米赤霉烯酮
Zearalenone (scFv)
7.8 ng∙mL-1 - [228]
AuNPs-SPRIA 食源性致病微生物Food-borne pathogenic microorganisms 副溶血弧菌
Vibrio parahaemolyticus (Nbs)
103 CFU∙mL-1 - [189]
2-carboxyethyl-SPRIA 肠炎沙门氏菌
Salmonella Enteritidis (rFab)
- 103—108 CFU∙mL-1 [153]
Sensor chip CM5-SPRIA 其他危害物
Other hazards
蘑菇毒伞肽
Amatoxins (scFv)
0.17 ng∙mL-1 0.554—44.7 ng∙mL-1 [26]
免疫PCR
IM-PCR
IM-PCR 农药Pesticides Bt Cry1Ac (Nbs) 0.1 pg∙mL-1 0.001—100 pg∙mL-1 [33]
PD-IM-PCR 真菌毒素
Fungal-toxins
玉米赤霉烯酮
Zearalenone (Nbs** & mAb)
6.5 pg∙mL-1 0.01—100 pg∙mL-1 [190]
rt-IM-PCR 桔霉毒素
Citrinin (Nbs** & mAb)
0.08 ng∙mL-1 0.1—1000 ng∙mL-1 [229]
IM-PCR 赭曲霉毒素
Ochratoxin A (Nbs** & mAb)
4.17 pg∙mL-1 0.01—1000 pg∙mL-1 [191]
[1]
SIVELLE C, SIEROCKI R, FERREIRA-PINTO K, SIMON S, MAILLERE B, NOZACH H. Fab is the most efficient format to express functional antibodies by yeast surface display. mAbs, 2018, 10(5): 720-729.

doi: 10.1080/19420862.2018.1468952 pmid: 29708852
[2]
LI L, WU S M, SI Y, LI H M, YIN X Y, PENG D P. Single-chain fragment variable produced by phage display technology: construction, selection, mutation, expression, and recent applications in food safety. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(5): 4354-4377.

doi: 10.1111/1541-4337.13018 pmid: 35904244
[3]
XU C X, YU M Z, XIE Y J, ZHONG J F, CHEN W, LIN M M, HU X D, SHEN Y. Screening and identification of vancomycin anti-idiotypic antibodies for against Staphylococcus aureus from a human phage display domain antibody library. Immunology Letters, 2022, 246: 1-9.
[4]
WANG Y Z, FAN Z, SHAO L, KONG X W, HOU X J, TIAN D R, SUN Y, XIAO Y Z, YU L. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. International Journal of Nanomedicine, 2016, 11: 3287-3303.

doi: 10.2147/IJN.S107194 pmid: 27499623
[5]
XU C X, HE D, ZU Y, HONG S J, HAO J, LI J H. Microcystin-LR heterologous genetically engineered antibody recombinant and its binding activity improvement and application in immunoassay. Journal of Hazardous Materials, 2021, 406: 124596.
[6]
XIE Y J, XU C X, GAO M J, ZHANG X, LU L N, HU X D, CHEN W, JURAT-FUENTES J L, ZHU Q, LIU Y, LIN M M, ZHONG J F, LIU X J. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth (Plutella xylostella). Pest Management Science, 2021, 77(10): 4593-4606.
[7]
陈遥, 舒星富, 赵钰, 张博文, 马忠仁, 张海霞. 单链抗体展示系统研究进展. 生物工程学报, 2023, 39(9): 3681-3694.
CHEN Y, SHU X F, ZHAO Y, ZHANG B W, MA Z R, ZHANG H X. Single chain antibody fragment display systems: a review. Chinese Journal of Biotechnology, 2023, 39(9): 3681-3694. (in Chinese)
[8]
刘媛, 林曼曼, 张霄, 徐重新, 焦凌霞, 仲建锋, 武爱华, 刘贤金. 基因突变技术在抗体亲和力体外成熟中的应用. 浙江大学学报(农业与生命科学版), 2016, 42(1): 1-7.
LIU Y, LIN M M, ZHANG X, XU C X, JIAO L X, ZHONG J F, WU A H, LIU X J. Applications of mutagenesis methods on affinity maturation of antibodies in vitro. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 1-7. (in Chinese)
[9]
RANGNOI K, JARUSERANEE N, O’KENNEDY R, PANSRI P, YAMABHAI M. One-step detection of aflatoxin-B(1) using scFv-alkaline phosphatase-fusion selected from human phage display antibody library. Molecular Biotechnology, 2011, 49(3): 240-249.

doi: 10.1007/s12033-011-9398-2 pmid: 21465334
[10]
JÄRVILUOMA A, STRANDIN T, LÜLF S, BOUCHET J, MÄKELÄ A R, GEYER M, BENICHOU S, SAKSELA K. High-affinity target binding engineered via fusion of a single-domain antibody fragment with a ligand-tailored SH3 domain. PLoS One, 2012, 7(7): e40331.
[11]
YOSHIKAWA M, SENDA M, NAKAMURA H, ODA-UEDA N, UEDA T, SENDA T, OHKURI T. Stabilization of adalimumab Fab through the introduction of disulfide bonds between the variable and constant domains. Biochemical and Biophysical Research Communications, 2024, 700: 149592.
[12]
CNUDDE T, LAKHRIF Z, BOURGOIN J, BOURSIN F, HORIOT C, HENRIQUET C, DI TOMMASO A, JUSTE M O, JIACOMINI I G, DIMIER-POISSON I, PUGNIÈRE M, MÉVÉLEC M N, AUBREY N. Exploration and modulation of antibody fragment biophysical properties by replacing the framework region sequences. Antibodies, 2020, 9(2): 9.
[13]
LUO M Y, ZHAO M Q, CAGLIERO C, JIANG H, XIE Y Q, ZHU J W, YANG H, ZHANG M X, ZHENG Y, YUAN Y S, DU Z X, LU H L. A general platform for efficient extracellular expression and purification of Fab from Escherichia coli. Applied Microbiology and Biotechnology, 2019, 103(8): 3341-3353.
[14]
WANG Y, SHAN Y M, GAO X Y, GONG R, ZHENG J, ZHANG X D, ZHAO Q. Screening and expressing HIV-1 specific antibody fragments in Saccharomyces cerevisiae. Molecular Immunology, 2018, 103: 279-285.
[15]
LEBOZEC K, JANDROT-PERRUS M, AVENARD G, FAVRE- BULLE O, BILLIALD P. Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: A case study prior to pharmaceutical development. New Biotechnology, 2018, 44: 31-40.

doi: S1871-6784(18)30052-9 pmid: 29689305
[16]
GOMES M, ALVAREZ M A, QUELLIS L R, BECHER M L, DE ANDRADE CASTRO J M, GAMEIRO J, CAPORRINO M C, MOURA-DA-SILVA A M, DE OLIVEIRA SANTOS M. Expression of an scFv antibody fragment in Nicotiana benthamiana and in vitro assessment of its neutralizing potential against the snake venom metalloproteinase BaP1 from Bothrops asper. Toxicon, 2019, 160: 38-46.
[17]
MATSUDA Y, ITAYA H, KITAHARA Y, THERESIA N M, KUTUKOVA E A, YOMANTAS Y A V, DATE M, KIKUCHI Y, WACHI M. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum. Microbial Cell Factories, 2014, 13(1): 56.
[18]
SHKOPOROV A N, KHOKHLOVA E V, SAVOCHKIN K A, KAFARSKAIA L I, EFIMOV B A. Production of biologically active scFv and VHH antibody fragments in Bifidobacterium longum. FEMS Microbiology Letters, 2015, 362(12): fnv083.
[19]
ZHU X X, KRIEGEL A M, BOUSTANY C A, BLAKE D A. Single-chain variable fragment (scFv) antibodies optimized for environmental analysis of uranium. Analytical Chemistry, 2011, 83(10): 3717-3724.

doi: 10.1021/ac200159x pmid: 21473651
[20]
ZHAO F C, TIAN Y, WANG H M, LIU J Y, HAN X, YANG Z Y. Development of a biotinylated broad-specificity single-chain variable fragment antibody and a sensitive immunoassay for detection of organophosphorus pesticides. Analytical and Bioanalytical Chemistry, 2016, 408(23): 6423-6430.

doi: 10.1007/s00216-016-9760-0 pmid: 27411546
[21]
DU X J, ZHOU X N, LI P, SHENG W, DUCANCEL F, WANG S. Development of an immunoassay for chloramphenicol based on the preparation of a specific single-chain variable fragment antibody. Journal of Agricultural and Food Chemistry, 2016, 64(14): 2971-2979.
[22]
ZHANG C X, ZHANG Q, TANG X Q, ZHANG W, LI P W. Development of an anti-idiotypic VHH antibody and toxin-free enzyme immunoassay for ochratoxin A in cereals. Toxins, 2019, 11(5): 280.
[23]
HU Y Z, SUN Y, GU J X, YANG F E, WU S H, ZHANG C, JI X M, LV H, MUYLDERMANS S, WANG S. Selection of specific nanobodies to develop an immuno-assay detecting Staphylococcus aureus in milk. Food Chemistry, 2021, 353: 129481.
[24]
CUI Y, WANG X T, WU H F, ZHANG X L, XU Y J, YU G G, LIU X J, YAO Q, WANG J L, JI Y W. A “one to two” novel sandwich immunoassay based on nanobodies for detection of staphylococcal enterotoxin A in food samples. Food Control, 2024, 160: 110313.
[25]
WANG R Z, GU X S, ZHUANG Z H, ZHONG Y F, YANG H, WANG S H. Screening and molecular evolution of a single chain variable fragment antibody (scFv) against citreoviridin toxin. Journal of Agricultural and Food Chemistry, 2016, 64(40): 7640-7648.

pmid: 27622814
[26]
ZHANG X Y, HE K, ZHAO R P, FENG T T, WEI D. Development of a single chain variable fragment antibody and application as amatoxin recognition molecule in surface plasmon resonance sensors. Food Analytical Methods, 2016, 9(12): 3278-3286.
[27]
LIU S, LIN M M, HU X D, SHEN C, ZHANG X, XU C X, ZHU Q, XIE Y J, LU H Y, WANG Y, P, POOE O J, LIU Y, SUN A D, LIU X J. Improved sensitivity of the anti-microcystin-LR ELISA using phage-displayed alpha-type anti-idiotypic nanobody. Analytical Biochemistry, 2023, 664: 115030.
[28]
HU Y Z, LIN J, PENG L J, WANG Y, WU S H, JI X M, LV H, WU J, ZHANG Y, WANG S. Nanobody-based electrochemical immunoassay for sensitive detection of peanut allergen Ara h 1. Journal of Agricultural and Food Chemistry, 2023, 71(19): 7535-7545.
[29]
REN W J, XU Y, HUANG Z B, LI Y P, TU Z, ZOU L, HE Q H, FU J H, LIU S W, HAMMOCK B D. Single-chain variable fragment antibody-based immunochromatographic strip for rapid detection of fumonisin B1 in maize samples. Food Chemistry, 2020, 319: 126546.
[30]
XU C X, LIU X Q, ZHANG C Z, ZHANG X, ZHONG J F, LIU Y, HU X D, LIN M M, LIU X J. Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library. Analytical Biochemistry, 2017, 518: 53-59.
[31]
QIU Y L, LI P, DONG S, ZHANG X S, YANG Q R, WANG Y L, GE J, HAMMOCK B D, ZHANG C Z, LIU X J. Phage-mediated competitive chemiluminescent immunoassay for detecting Cry1Ab toxin by using an anti-idiotypic camel nanobody. Journal of Agricultural and Food Chemistry, 2018, 66(4): 950-956.

doi: 10.1021/acs.jafc.7b04923 pmid: 29293334
[32]
LIANG Y F, LI J D, FANG R Y, XU Z L, LUO L, CHEN Z J, YANG J Y, SHEN Y D, UEDA H, HAMMOCK B, WANG H. Design of an antigen-triggered nanobody-based fluorescence probe for PET immunoassay to detect quinalphos in food samples. Analytical Chemistry, 2023, 95(33): 12321-12328.
[33]
LIU Y Y, JIANG D J, LU X, WANG W, XU Y, HE Q H. Phage-mediated immuno-PCR for ultrasensitive detection of Cry1Ac protein based on nanobody. Journal of Agricultural and Food Chemistry, 2016, 64(41): 7882-7889.

doi: 10.1021/acs.jafc.6b02978 pmid: 27684201
[34]
徐重新, 刘媛, 张霄, 刘贤金. Bt Cry毒素抗虫模拟物靶向创新设计. 生物工程学报, 2023, 39(2): 446-458.
XU C X, LIU Y, ZHANG X, LIU X J. Targeted innovative design of Bt Cry toxin insecticidal mimics. Chinese Journal of Biotechnology, 2023, 39(2): 446-458. (in Chinese)
[35]
HUANG W L, CHUANG S C, YANG C D. Anti-idiotype vaccine provides protective immunity against Vibrio harveyi in grouper (Epinephelus coioides). Vaccines, 2019, 7(4): 210.
[36]
NIAN S J, WU T, YE Y C, WANG X, XU W F, YUAN Q. Development and identification of fully human scFv-Fcs against Staphylococcus aureus. BMC Immunology, 2016, 17(1): 8.
[37]
GUPTA S K, SHUKLA P. Microbial platform technology for recombinant antibody fragment production: A review. Critical Reviews in Microbiology, 2017, 43(1): 31-42.

doi: 10.3109/1040841X.2016.1150959 pmid: 27387055
[38]
SUN Z H, LI W, MELLORS J W, ORENTAS R, DIMITROV D S. Construction of a large size human immunoglobulin heavy chain variable (VH) domain library, isolation and characterization of novel human antibody VH domains targeting PD-L1 and CD22. Frontiers in Immunology, 2022, 13: 869825.
[39]
BARDERAS R, BENITO-PEÑA E. The 2018 Nobel prize in chemistry: Phage display of peptides and antibodies. Analytical and Bioanalytical Chemistry, 2019, 411(12): 2475-2479.
[40]
KIM H Y, WANG X L, WAHLBERG B, EDWARDS W B. Discovery of hapten-specific scFv from a phage display library and applications for HER2-positive tumor imaging. Bioconjugate Chemistry, 2014, 25(7): 1311-1322.
[41]
XU C X, LIU X Q, LIU Y, ZHANG X, ZHANG C Z, LI J H, LIU X J. High sensitive single chain variable fragment screening from a microcystin-LR immunized mouse phage antibody library and its application in immunoassay. Talanta, 2019, 197: 397-405.

doi: S0039-9140(19)30066-9 pmid: 30771953
[42]
XU C X, ZHANG C Z, ZHONG J F, HU H, LUO S M, LIU X Q, ZHANG X, LIU Y, LIU X J. Construction of an immunized rabbit phage display library for selecting high activity against Bacillus thuringiensis Cry1F toxin single-chain antibodies. Journal of Agricultural and Food Chemistry, 2017, 65(29): 6016-6022.
[43]
LI J Q, XU Y P, WANG X T, LI Y, WANG L L, LI X Y. Construction and characterization of a highly reactive chicken-derived single-chain variable fragment (scFv) antibody against Staphylococcus aureus developed with the T7 phage display system. International Immunopharmacology, 2016, 35: 149-154.
[44]
JIAO S J, CHEN X C, HE Z Y, WU L, XIE X X, SUN Z C, ZHANG S H, CAO H M, HAMMOCK B D, LIU X. Colorimetric and surface-enhanced Raman scattering dual-mode lateral flow immunosensor using phage-displayed shark nanobody for the detection of crustacean allergen tropomyosin. Journal of Hazardous Materials, 2024, 468: 133821.
[45]
CHAO G, LAU W L, HACKEL B J, SAZINSKY S L, LIPPOW S M, WITTRUP K D. Isolating and engineering human antibodies using yeast surface display. Nature Protocols, 2006, 1(2): 755-768.

pmid: 17406305
[46]
BODER E T, RAEESZADEH-SARMAZDEH M, PRICE J V. Engineering antibodies by yeast display. Archives of Biochemistry and Biophysics, 2012, 526(2): 99-106.

doi: 10.1016/j.abb.2012.03.009 pmid: 22450168
[47]
SALEMA V, FERNÁNDEZ L Á. Escherichia coli surface display for the selection of nanobodies. Microbial Biotechnology, 2017, 10(6): 1468-1484.
[48]
FLEETWOOD F, DEVOOGDT N, PELLIS M, WERNERY U, MUYLDERMANS S, STÅHL S, LÖFBLOM J. Surface display of a single-domain antibody library on Gram-positive bacteria. Cellular and Molecular Life Sciences, 2013, 70(6): 1081-1093.

doi: 10.1007/s00018-012-1179-y pmid: 23064703
[49]
KIM D, KIM W, KIM J. New bacterial surface display system development and application based on Bacillus subtilis YuaB biofilm component as an anchoring motif. Biotechnology and Bioprocess Engineering, 2021, 26(1): 39-46.
[50]
ZHANG J, ZHANG X A, LIU Q, LI M Y, GAO L C, GAO X, XIANG S S, WU L L, FU J, SONG H F. Mammalian cell display for rapid screening scFv antibody therapy. Acta Biochimica et Biophysica Sinica, 2014, 46(10): 859-866.
[51]
ZHOU C, JACOBSEN F W, CAI L, CHEN Q, SHEN W D. Development of a novel mammalian cell surface antibody display platform. mAbs, 2010, 2(5): 508-518.

doi: 10.4161/mabs.2.5.12970 pmid: 20716968
[52]
KUNAMNENI A, OGAUGWU C, BRADFUTE S, DURVASULA R. Ribosome display technology: applications in disease diagnosis and control. Antibodies, 2020, 9(3): 28.
[53]
TABATA N, SAKUMA Y, HONDA Y, DOI N, TAKASHIMA H, MIYAMOTO-SATO E, YANAGAWA H. Rapid antibody selection by mRNA display on a microfluidic chip. Nucleic Acids Research, 2009, 37(8): e64.
[54]
LI L, HOU R, SHEN W, CHEN Y S, WU S M, WANG Y L, WANG X Q, YUAN Z H, PENG D P. Development of a monoclonal-based ic-ELISA for the determination of kitasamycin in animal tissues and simulation studying its molecular recognition mechanism. Food Chemistry, 2021, 363: 129465.
[55]
JIAO L X, LIU Y, ZHANG X, LIU B B, ZHANG C Z, LIU X J. Site-saturation mutagenesis library construction and screening for specific broad-spectrum single-domain antibodies against multiple Cry1 toxins. Applied Microbiology and Biotechnology, 2017, 101(15): 6071-6082.

doi: 10.1007/s00253-017-8347-9 pmid: 28601895
[56]
XIE S L, WANG J Y, YU X Z, PENG T, YAO K, WANG S H, LIANG D M, KE Y B, WANG Z H, JIANG H Y. Site-directed mutations of anti-amantadine scFv antibody by molecular dynamics simulation: prediction and validation. Journal of Molecular Modeling, 2020, 26(3): 49.

doi: 10.1007/s00894-020-4286-y pmid: 32020367
[57]
MURPHY C, STACK E, KRIVELO S, BREHENY M, MA H, O’KENNEDY R. Enhancing recombinant antibody performance by optimally engineering its format. Journal of Immunological Methods, 2018, 463: 127-133.

doi: S0022-1759(18)30332-6 pmid: 30321550
[58]
YANG Z, DU M J, WANG W, XIN X, MA P X, ZHANG H K, LERNER R A. Affinity maturation of an TpoR targeting antibody in full-length IgG form for enhanced agonist activity. Protein Engineering, Design & Selection, 2018, 31(7/8): 233-241.
[59]
CEMBROLA B, RUZZA V, TROISE F, ESPOSITO M L, SASSO E, CAFARO V, PASSARIELLO M, VISCONTE F, RAIA M, DEL VECCHIO L, D’ALISE A M, CORTESE R, SCARSELLI E, ZAMBRANO N, DE LORENZO C, NICOSIA A. Rapid affinity maturation of novel anti-PD-L1 antibodies by a fast drop of the antigen concentration and FACS selection of yeast libraries. BioMed Research International, 2019, 2019: 6051870.
[60]
QIU Y L, HE Q H, XU Y, WANG W, LIU Y Y. Modification of a deoxynivalenol-antigen-mimicking nanobody to improve immunoassay sensitivity by site-saturation mutagenesis. Analytical and Bioanalytical Chemistry, 2016, 408(3): 895-903.
[61]
WANG F Y, LI N, ZHANG Y S, SUN X F, HU M, ZHAO Y L, FAN J M. Preparation and directed evolution of anti-ciprofloxacin ScFv for immunoassay in animal-derived food. Foods, 2021, 10(8): 1933.
[62]
KOBAYASHI N, OYAMA H, KATO Y, GOTO J, SÖDERLIND E, BORREBAECK C A K. Two-step in vitro antibody affinity maturation enables estradiol-17beta assays with more than 10-fold higher sensitivity. Analytical Chemistry, 2010, 82(3): 1027-1038.
[63]
BROCKMANN E C, PYYKKÖ M, HANNULA H, KHAN K, LAMMINMÄKI U, HUOVINEN T. Combinatorial mutagenesis with alternative CDR-L1 and-H2 loop lengths contributes to affinity maturation of antibodies. New Biotechnology, 2021, 60: 173-182.
[64]
HE X, DUAN C F, QI Y H, DONG J, WANG G N, ZHAO G X, WANG J P, LIU J. Virtual mutation and directional evolution of anti-amoxicillin ScFv antibody for immunoassay of penicillins in milk. Analytical Biochemistry, 2017, 517: 9-17.

doi: S0003-2697(16)30356-6 pmid: 27780696
[65]
WANG X R, CHEN Q, SUN Z C, WANG Y D, SU B C, ZHANG C H, CAO H M, LIU X. Nanobody affinity improvement: Directed evolution of the anti-ochratoxin A single domain antibody. International Journal of Biological Macromolecules, 2020, 151: 312-321.

doi: S0141-8130(20)30424-4 pmid: 32084462
[66]
KIGUCHI Y, OYAMA H, MORITA I, NAGATA Y, UMEZAWA N, KOBAYASHI N. The V(H) framework region 1 as a target of efficient mutagenesis for generating a variety of affinity-matured scFv mutants. Scientific Reports, 2021, 11(1): 8201.
[67]
MAHAJAN S P, MEKSIRIPORN B, WARAHO-ZHMAYEV D, WEYANT K B, KOCER I, BUTLER D C, MESSER A, ESCOBEDO F A, DELISA M P. Computational affinity maturation of camelid single-domain intrabodies against the nonamyloid component of alpha-synuclein. Scientific Reports, 2018, 8(1): 17611.

doi: 10.1038/s41598-018-35464-7 pmid: 30514850
[68]
WEN J X, YUAN K P. Research progress of phage display system. Advances in Microbiology, 2021, 11: 181-189.
[69]
RANGNOI K, CHOOWONGKOMON K, O’KENNEDY R, RÜKER F, YAMABHAI M. Enhancement and analysis of human antiaflatoxin B1 (AFB1) scFv antibody-ligand interaction using chain shuffling. Journal of Agricultural and Food Chemistry, 2018, 66(22): 5713-5722.

doi: 10.1021/acs.jafc.8b01141 pmid: 29781609
[70]
FITZGERALD J, LEONARD P, DARCY E, DANAHER M, O’KENNEDY R. Light-chain shuffling from an antigen-biased phage pool allows 185-fold improvement of an anti-halofuginone single-chain variable fragment. Analytical Biochemistry, 2011, 410(1): 27-33.

doi: 10.1016/j.ab.2010.11.009 pmid: 21078281
[71]
SIMONS J F, LIM Y W, CARTER K P, WAGNER E K, WAYHAM N, ADLER A S, JOHNSON D S. Affinity maturation of antibodies by combinatorial Codon mutagenesis versus error-prone PCR. mAbs, 2020, 12(1): 1803646.
[72]
秦秀林, 钱江潮, 储炬. 优化易错PCR条件以提高毕赤酵母GAP启动子文库突变效率. 生物技术通报, 2014, 30(6): 211-217.
QIN X L, QIAN J C, CHU J. High-error-rate random mutagenesis of GAP promoter in Pichia pastoris using an optimited error prone PCR. Biotechnology Bulletin, 2014, 30(6): 211-217. (in Chinese)
[73]
VAN DEN BEUCKEN T, PIETERS H, STEUKERS M, VAN DER VAART M, LADNER R C, HOOGENBOOM H R, HUFTON S E. Affinity maturation of Fab antibody fragments by fluorescent- activated cell sorting of yeast-displayed libraries. FEBS Letters, 2003, 546(2/3): 288-294.
[74]
HU S, YANG G B, CHEN Z, LI Q Y, LIU B, LIU M, ZHANG D W, CHANG S, KONG R. Docking guided phase display to develop fusion protein with novel scFv and alkaline phosphatase for one-step ELISA salbutamol detection. Frontiers in Microbiology, 2023, 14: 1190793.
[75]
ZHAO Q, AHMED M, TASSEV D V, HASAN A, KUO T Y, GUO H F, O’REILLY R J, CHEUNG N K V. Affinity maturation of T-cell receptor-like antibodies for Wilms tumor 1 peptide greatly enhances therapeutic potential. Leukemia, 2015, 29(11): 2238-2247.

doi: 10.1038/leu.2015.125 pmid: 25987253
[76]
MIN W K, KIM S G, SEO J H. Affinity maturation of single-chain variable fragment specific for aflatoxin B(1) using yeast surface display. Food Chemistry, 2015, 188: 604-611.
[77]
KIGUCHI Y, OYAMA H, MORITA I, MORIKAWA M, NAKANO A, FUJIHARA W, INOUE Y, SASAKI M, SAIJO Y, KANEMOTO Y, MURAYAMA K, BABA Y, TAKEUCHI A, KOBAYASHI N. Clonal array profiling of scFv-displaying phages for high-throughput discovery of affinity-matured antibody mutants. Scientific Reports, 2020, 10(1): 14103.

doi: 10.1038/s41598-020-71037-3 pmid: 32839506
[78]
BODER E T, MIDELFORT K S, WITTRUP K D. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(20): 10701-10705.
[79]
FERMÉR C, ANDERSSON I, NILSSON K, NILSSON O. Specificity rescue and affinity maturation of a low-affinity IgM antibody against pro-gastrin-releasing peptide using phage display and DNA shuffling. Tumour Biology, 2004, 25(1/2): 7-13.
[80]
RANI M, BOLLES M, DONALDSON E F, VAN BLARCOM T, BARIC R, IVERSON B, GEORGIOU G. Increased antibody affinity confers broad in vitro protection against escape mutants of severe acute respiratory syndrome coronavirus. Journal of Virology, 2012, 86(17): 9113-9121.
[81]
LIAO X R, ZHANG Y, LIANG Y F, ZHANG L J, WANG P, WEI J, YIN X C, WANG J L, WANG H, WANG Y R. Enhanced sandwich immunoassay based on bivalent nanobody as an efficient immobilization approach for foodborne pathogens detection. Analytica Chimica Acta, 2024, 1289: 342209.
[82]
ALAM M K, BRABANT M, VISWAS R S, BARRETO K, FONGE H, RONALD GEYER C. A novel synthetic trivalent single chain variable fragment (tri-scFv) construction platform based on the SpyTag/SpyCatcher protein ligase system. BMC Biotechnology, 2018, 18(1): 55.

doi: 10.1186/s12896-018-0466-6 pmid: 30200951
[83]
ZHAO J X, YANG L, GU Z N, CHEN H Q, TIAN F W, CHEN Y Q, ZHANG H, CHEN W. Stabilization of the single-chain fragment variable by an interdomain disulfide bond and its effect on antibody affinity. International Journal of Molecular Sciences, 2010, 12(1): 1-11.
[84]
LEHMANN A, WIXTED J H F, SHAPOVALOV M V, RODER H, DUNBRACK R L Jr, ROBINSON M K. Stability engineering of anti-EGFR scFv antibodies by rational design of a lambda-to-kappa swap of the VL framework using a structure-guided approach. mAbs, 2015, 7(6): 1058-1071.

doi: 10.1080/19420862.2015.1088618 pmid: 26337947
[85]
LIU M L, CHEN Z J, HUANG X Q, WANG H, ZHAO J L, SHEN Y D, LUO L, WEN X W, HAMMOCK B, XU Z L. A bispecific nanobody with high sensitivity/efficiency for simultaneous determination of carbaryl and its metabolite 1-naphthol in the soil and rice samples. Environmental Pollution, 2023, 335: 122265.
[86]
AKAZAWA-OGAWA Y, TAKASHIMA M, LEE Y H, IKEGAMI T, GOTO Y, UEGAKI K, HAGIHARA Y. Heat-induced irreversible denaturation of the camelid single domain VHH antibody is governed by chemical modifications. The Journal of Biological Chemistry, 2014, 289(22): 15666-15679.
[87]
BAI Z X, WANG J W, LI J Q, YUAN H B, WANG P, ZHANG M, FENG Y H, CAO X T, CAO X G, KANG G B, DE MARCO A, HUANG H. Design of nanobody-based bispecific constructs by in silico affinity maturation and umbrella sampling simulations. Computational and Structural Biotechnology Journal, 2023, 21: 601-613.
[88]
CHENG X, WANG J W, KANG G B, HU M, YUAN B, ZHANG Y T, HUANG H. Homology modeling-based in silico affinity maturation improves the affinity of a nanobody. International Journal of Molecular Sciences, 2019, 20(17): 4187.
[89]
TILLER K E, CHOWDHURY R, LI T, LUDWIG S D, SEN S, MARANAS C D, TESSIER P M. Facile affinity maturation of antibody variable domains using natural diversity mutagenesis. Frontiers in Immunology, 2017, 8: 986.

doi: 10.3389/fimmu.2017.00986 pmid: 28928732
[90]
RAFIQUE A, SATAKE K, KISHIMOTO S, KHAN K H, KATO D I, ITO Y. Efficient screening and design of variable domain of heavy chain antibody ligands through high throughput sequencing for affinity chromatography to purify fab fragments. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38(5): 190-200.

doi: 10.1089/mab.2019.0027 pmid: 31411543
[91]
DING G P, CHEN X M, ZHU J, DUESBERY N S, CHENG X J, CAO B. A human/murine chimeric fab antibody neutralizes Anthrax lethal toxin in vitro. Clinical & Developmental Immunology, 2013, 2013: 475809.
[92]
ZHANG Y F, SUN Y P, HONG J, HO M. Humanization of the shark V(NAR) single domain antibody using CDR grafting. Current Protocols, 2023, 3(1): e630.
[93]
SKRLJ N, VRANAC T, POPOVIĆ M, CURIN ŠERBEC V, DOLINAR M. Specific binding of the pathogenic prion isoform: development and characterization of a humanized single-chain variable antibody fragment. PLoS ONE, 2011, 6(1): e15783.
[94]
LU Z P, KAMAT K, JOHNSON B P, YIN C C, SCHOLLER N, ABBOTT K L. Generation of a Fully Human scFv that binds Tumor-Specific Glycoforms. Scientific Reports, 2019, 9(1): 5101.

doi: 10.1038/s41598-019-41567-6 pmid: 30911061
[95]
WANG J P, DONG J, DUAN C F, ZHANG H C, HE X, WANG G N, ZHAO G X, LIU J. Production and directional evolution of antisarafloxacin ScFv antibody for immunoassay of fluoroquinolones in milk. Journal of Agricultural and Food Chemistry, 2016, 64(42): 7957-7965.

doi: 10.1021/acs.jafc.6b03356 pmid: 27718569
[96]
SARKER A, RATHORE A S, KHALID M F, GUPTA R D. Structure- guided affinity maturation of a single-chain variable fragment antibody against the Fu-bc epitope of the dengue virus envelope protein. Journal of Biological Chemistry, 2022, 298(4): 101772.
[97]
WANG Z H, LI Y, LIANG W B, ZHENG J S, LI S H, HU C M, CHEN A. A highly sensitive detection system based on proximity- dependent hybridization with computer-aided affinity maturation of a scFv antibody. Scientific Reports, 2018, 8(1): 3837.
[98]
HE T, NIE Y, YAN T T, ZHU J, HE X L, LI Y, ZHANG Q, TANG X Q, HU R, YANG Y H, LIU M L. Enhancing the detection sensitivity of nanobody against aflatoxin B1 through structure-guided modification. International Journal of Biological Macromolecules, 2022, 194: 188-197.
[99]
PARK S G, LEE J S, JE E Y, KIM I J, CHUNG J H, CHOI I H. Affinity maturation of natural antibody using a chain shuffling technique and the expression of recombinant antibodies in Escherichia coli. Biochemical and Biophysical Research Communications, 2000, 275(2): 553-557.
[100]
LOU J, GEREN I, GARCIA-RODRIGUEZ C, FORSYTH C M, WEN W, KNOPP K, BROWN J, SMITH T, SMITH L A, MARKS J D. Affinity maturation of human botulinum neurotoxin antibodies by light chain shuffling via yeast mating. Protein Engineering, Design & Selection, 2010, 23(4): 311-319.
[101]
DONG S, GAO M J, GUAN L J, ZHANG H, WANG Y L, LIU B B, LI P, QIAO K, LIU X J, ZHANG C Z. Construction, expression, and identification of double light chain (VL-VL) antibody from a unique bt Cry1-specific monoclonal antibody. Food Analytical Methods, 2020, 13(8): 1570-1582.
[102]
KAWA S, ONDA M, HO M, KREITMAN R J, BERA T K, PASTAN I. The improvement of an anti-CD22 immunotoxin: conversion to single-chain and disulfide stabilized form and affinity maturation by alanine scan. mAbs, 2011, 3(5): 479-486.

doi: 10.4161/mabs.3.5.17228 pmid: 22048691
[103]
OYAMA H, YAMAGUCHI S, NAKATA S, NIWA T, KOBAYASHI N. “Breeding” diagnostic antibodies for higher assay performance: A 250-fold affinity-matured antibody mutant targeting a small biomarker. Analytical Chemistry, 2013, 85(10): 4930-4937.
[104]
HOSEINPOOR R, MOUSAVI GARGARI S L, RASOOLI I, RAJABIBAZL M, SHAHI B. Functional mutations in and characterization of VHH against Helicobacter pylori urease. Applied Biochemistry and Biotechnology, 2014, 172(6): 3079-3091.
[105]
MEI M, LU M Q, LI S Q, REN X Y, XING B B, HU Y, WU Y Q, CHEN H, WANG L H, YI L, MING K, WEI Z G. Development of nanobodies specific to clumping factors A of Staphylococcus aureus by yeast surface display. International Journal of Biological Macromolecules, 2024, 259: 129208.
[106]
LIU J L, HU Z Q, XING S, XUE S, LI H P, ZHANG J B, LIAO Y C. Attainment of 15-fold higher affinity of a Fusarium-specific single- chain antibody by directed molecular evolution coupled to phage display. Molecular Biotechnology, 2012, 52(2): 111-122.
[107]
XIAO Y M, DONG H J, WU C C, ZHANG K D, JIANG X Q, CHEN J Y, WANG H W, XU S J, ZHANG F Y, GU L C. Nanobody in a double “Y” -shaped assembly: A promising candidate for lateral flow immunoassays. Analytical Chemistry, 2024, 96(18): 7130-7137.
[108]
KUMADA Y, KANG B, YAMAKAWA K, KISHIMOTO M, HORIUCHI J I. Efficient preparation and site-directed immobilization of VHH antibodies by genetic fusion of poly(methylmethacrylate)- binding peptide (PMMA-Tag). Biotechnology Progress, 2015, 31(6): 1563-1570.
[109]
MCCONNELL A D, SPASOJEVICH V, MACOMBER J L, KRAPF I P, CHEN A, SHEFFER J C, BERKEBILE A, HORLICK R A, NEBEN S, KING D J, BOWERS P M. An integrated approach to extreme thermostabilization and affinity maturation of an antibody. Protein Engineering, Design & Selection, 2013, 26(2): 151-164.
[110]
SUN W, YANG Z N, LIN H, LIU M, ZHAO C X, HOU X Y, HU Z W, CUI B. Improvement in affinity and thermostability of a fully human antibody against interleukin-17A by yeast-display technology and CDR grafting. Acta Pharmaceutica Sinica B, 2019, 9(5): 960-972.

doi: 10.1016/j.apsb.2019.02.007 pmid: 31649846
[111]
TU C, TERRAUBE V, TAM A S P, STOCHAJ W, FENNELL B J, LIN L, STAHL M, LAVALLIE E R, SOMERS W, FINLAY W J J, MOSYAK L, BARD J, CUNNINGHAM O. A combination of structural and empirical analyses delineates the key contacts mediating stability and affinity increases in an optimized biotherapeutic single-chain fv (scFv). Journal of Biological Chemistry, 2016, 291(3): 1267-1276.

doi: 10.1074/jbc.M115.688010 pmid: 26515064
[112]
MA H, Ó'FÁGÁIN C, O’KENNEDY R. Unravelling enhancement of antibody fragment stability-Role of format structure and cysteine modification. Journal of Immunological Methods, 2019, 464: 57-63.
[113]
IKEUCHI E, KURODA D, NAKAKIDO M, MURAKAMI A, TSUMOTO K. Delicate balance among thermal stability, binding affinity, and conformational space explored by single-domain V(H)H antibodies. Scientific Reports, 2021, 11(1): 20624.
[114]
TOMIMOTO Y, YAMAZAKI R, SHIRAI H. Increasing the melting temperature of VHH with the in silico free energy score. Scientific Reports, 2023, 13(1): 4922.

doi: 10.1038/s41598-023-32022-8 pmid: 36966210
[115]
XU C X, YANG Y, LIU L W, LI J H, LIU X Q, ZHANG X, LIU Y, ZHANG C Z, LIU X J. Microcystin-LR nanobody screening from an alpaca phage display nanobody library and its expression and application. Ecotoxicology and Environmental Safety, 2018, 151: 220-227.

doi: S0147-6513(18)30005-8 pmid: 29353171
[116]
KULMALA A, HUOVINEN T, LAMMINMÄKI U. Effect of DNA sequence of Fab fragment on yield characteristics and cell growth of E. coli. Scientific Reports, 2017, 7(1): 3796.
[117]
VENTURI M, SEIFERT C, HUNTE C. High level production of functional antibody fab fragments in an oxidizing bacterial cytoplasm. Journal of Molecular Biology, 2002, 315(1): 1-8.

pmid: 11771962
[118]
GACIARZ A, VEIJOLA J, UCHIDA Y, SAARANEN M J, WANG C G, HÖRKKÖ S, RUDDOCK L W. Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli. Microbial Cell Factories, 2016, 15: 22.
[119]
WANG Z, ZHANG J, WANG X D, WEI D Z. High level expression and characterization of the recombinant immunotoxin DAB389-4D5 scFv targeting HER2/neu-positive ovarian carcinoma cells. Process Biochemistry, 2019, 80: 26-34.
[120]
WANG Y, YUAN W J, GUO S Q, LI Q Q, CHEN X M, LI C, LIU Q Y, SUN L, CHEN Z G, YUAN Z H, LUO C, CHEN S J, TONG S P, NASSAL M, WEN Y M, WANG Y X. A 33-residue peptide tag increases solubility and stability of Escherichia coli produced single-chain antibody fragments. Nature Communications, 2022, 13(1): 4614.
[121]
PETRUS M L C, KIEFER L A, PURI P, HEEMSKERK E, SEAMAN M S, BAROUCH D H, ARIAS S, VAN WEZEL G P, HAVENGA M. A microbial expression system for high-level production of scFv HIV-neutralizing antibody fragments in Escherichia coli. Applied Microbiology and Biotechnology, 2019, 103(21/22): 8875-8888.
[122]
NGHIA N H, KUMADA Y, KISHIMOTO M, HORIUCHI J I. Effective production of single-chain variable fragment (scFv) antibody using recombinant Escherichia coli by DO-stat fed-batch culture. Journal of Bioscience and Bioengineering, 2021, 132(1): 56-63.
[123]
FRENKEN L G J, VAN DER LINDEN R H J, HERMANS P W J J, BOS J W, RUULS R C, DE GEUS B, VERRIPS C T. Isolation of antigen specific Llama V HH antibody fragments and their high level secretion by Saccharomyces cerevisiae. Journal of Biotechnology, 2000, 78(1): 11-21.
[124]
MOVAGHAR ASAREH S, SAVEI T, ARJMAND S, RANAEI SIADAT S O, FATEMI F, POURMADADI M, SHABANI SHAYEH J. Expression of functional eGFP-fused antigen-binding fragment of ranibizumab in Pichia pastoris. BioImpacts, 2022, 12(3): 203-210.
[125]
GÓMEZ-RAMÍREZ I V, CORRALES-GARCÍA L L, POSSANI L D, RIAÑO-UMBARILA L, BECERRIL B. Expression in Pichia pastoris of human antibody fragments that neutralize venoms of Mexican scorpions. Toxicon, 2023, 223: 107012.
[126]
ZAHRL R J, PRIELHOFER R, BURGARD J, MATTANOVICH D, GASSER B. Synthetic activation of yeast stress response improves secretion of recombinant proteins. New Biotechnology, 2023, 73: 19-28.

doi: 10.1016/j.nbt.2023.01.001 pmid: 36603701
[127]
EBIHARA T, MASUDA A, TAKAHASHI D, HINO M, MON H, KAKINO K, FUJII T, FUJITA R, UEDA T, LEE J M, KUSAKABE T. Production of scFv fab, and IgG of CR3022 antibodies against SARS-CoV-2 using silkworm-baculovirus expression system. Molecular Biotechnology, 2021, 63(12): 1223-1234.
[128]
YAO N, AI L, DONG Y Y, LIU X M, WANG D Z, WANG N, LI X W, WANG F W, LI X, LI H Y, JIANG C. Expression of recombinant human anti-TNF-α scFv-Fc in Arabidopsis thaliana seeds. Genetics and Molecular Research, 2016, 15(2): gmr7726.
[129]
AI S S, YUKI Y, KUROKAWA S, SATO S, GODA Y, UCHIDA M, MATSUMOTO N, SAGARA H, WATANABE Y, KURODA M, SAKON N, SUGIURA K, NAKAHASHI-OUCHIDA R, USHIJIMA H, FUJIHASHI K, KIYONO H. Development of antibody- fragment-producing rice for neutralization of human norovirus. Frontiers in Plant Science, 2021, 12: 639953.
[130]
BALAJI P, SATHEESHKUMAR P K, VENKATARAMAN K, VIJAYALAKSHMI M A. Expression of anti-tumor necrosis factor alpha (TNFα) single-chain variable fragment (scFv) in Spirodela punctata plants transformed with Agrobacterium tumefaciens. Biotechnology and Applied Biochemistry, 2016, 63(3): 354-361.
[131]
MUNJAL N, GARZON-SANABRIA A, QUINONES K, GREGORY J, NIKOLOV Z. Light-induced production of an antibody fragment and malaria vaccine antigen from Chlamydomonas reinhardtii. Processes, 2014, 2(3): 625-638.
[132]
LAKOWITZ A, KRULL R, BIEDENDIECK R. Recombinant production of the antibody fragment D1.3 scFv with different Bacillus strains. Microbial Cell Factories, 2017, 16(1): 14.
[133]
HISADA H, TSUTSUMI H, ISHIDA H, HATA Y. High production of llama variable heavy-chain antibody fragment (VHH) fused to various reader proteins by Aspergillus oryzae. Applied Microbiology and Biotechnology, 2013, 97(2): 761-766.
[134]
RODRIGUEZ C, NAM D H, KRUCHOWY E, GE X. Efficient antibody assembly in E. coli periplasm by disulfide bond folding factor co-expression and culture optimization. Applied Biochemistry and Biotechnology, 2017, 183(2): 520-529.
[135]
RAHBARNIA L, FARAJNIA S, BABAEI H, MAJIDI J, DARIUSHNEJAD H, HOSSEINI M K. Isolation and characterization of a novel human scFv inhibiting EGFR vIII expressing cancers. Immunology Letters, 2016, 180: 31-38.

doi: S0165-2478(16)30229-2 pmid: 27984065
[136]
LIU M, WANG B, WANG F, YANG Z, GAO D, ZHANG C Y, MA L X, YU X L. Soluble expression of single-chain variable fragment (scFv) in Escherichia coli using superfolder green fluorescent protein as fusion partner. Applied Microbiology and Biotechnology, 2019, 103(15): 6071-6079.
[137]
QIU Y L, HE Q H, XU Y, BHUNIA A K, TU Z, CHEN B, LIU Y Y. Deoxynivalenol-mimic nanobody isolated from a naive phage display nanobody library and its application in immunoassay. Analytica Chimica Acta, 2015, 887: 201-208.
[138]
MAGGI M, SCOTTI C. Enhanced expression and purification of camelid single domain VHH antibodies from classical inclusion bodies. Protein Expression and Purification, 2017, 136: 39-44.

doi: S1046-5928(17)30017-7 pmid: 28214589
[139]
VALLET-COURBIN A, LARIVIÈRE M, HOCQUELLET A, HEMADOU A, PARIMALA S N, LAROCHE-TRAINEAU J, SANTARELLI X, CLOFENT-SANCHEZ G, JACOBIN-VALAT M J, NOUBHANI A. A recombinant human anti-platelet scfv antibody produced in Pichia pastoris for atheroma targeting. PLoS ONE, 2017, 12(1): e0170305.
[140]
KOERBER J T, HORNSBY M J, WELLS J A. An improved single-chain fab platform for efficient display and recombinant expression. Journal of Molecular Biology, 2015, 427(2): 576-586.

doi: 10.1016/j.jmb.2014.11.017 pmid: 25481745
[141]
FANG X T, SEHLIN D, LANNFELT L, SYVÄNEN S, HULTQVIST G. Efficient and inexpensive transient expression of multispecific multivalent antibodies in Expi293 cells. Biological Procedures Online, 2017, 19: 11.
[142]
DOLGIKH V V, ZHURAVLYOV V S, SENDERSKIY I V, IGNATIEVA A N, TIMOFEEV S A, SELIVERSTOVA E V. Heterologous expression of scFv fragment against Vairimorpha (Nosema) ceranae hexokinase in Sf9 cell culture inhibits microsporidia intracellular growth. Journal of Invertebrate Pathology, 2022, 191: 107755.
[143]
刘爱平, 李诚, 刘书亮, 王小红, 陈福生. 抗黄曲霉毒素B1单链抗体在Sf9昆虫细胞中的表达与性质分析. 中国生物工程杂志, 2016, 36(5): 40-45.
LIU A P, LI C, LIU S L, WANG X H, CHEN F S. Expression and characterization of anti-AFB1 scFv expressed in Sf9 cell. China Biotechnology, 2016, 36(5): 40-45. (in Chinese)
[144]
刘蕊, 项丹丹, 刘鹏琰, 梁晓, 郭逸蓉, 朱国念. 抗对硫磷单链抗体在昆虫细胞中的表达及活性鉴定. 农药学学报, 2016, 18(2): 177-184.
LIU R, XIANG D D, LIU P Y, LIANG X, GUO Y R, ZHU G N. Expression and characterization of single-chain variable fragment (scFv) antibody against parathion-ethyl in insect cells. Chinese Journal of Pesticide Science, 2016, 18(2): 177-184. (in Chinese)
[145]
MORI K, HAMADA H, OGAWA T, OHMURO-MATSUYAMA Y, KATSUDA T, YAMAJI H. Efficient production of antibody Fab fragment by transient gene expression in insect cells. Journal of Bioscience and Bioengineering, 2017, 124(2): 221-226.

doi: S1389-1723(17)30123-8 pmid: 28410897
[146]
VILLANI M E, MORGUN B, BRUNETTI P, MARUSIC C, LOMBARDI R, PISONI I, BACCI C, DESIDERIO A, BENVENUTO E, DONINI M. Plant pharming of a full-sized, tumour-targeting antibody using different expression strategies. Plant Biotechnology Journal, 2009, 7(1): 59-72.

doi: 10.1111/j.1467-7652.2008.00371.x pmid: 18793269
[147]
PARK S R, LEE J H, KIM K, KIM T M, LEE S H, CHOO Y K, KIM K S, KO K. Expression and in vitro function of anti-breast cancer llama-based single domain antibody VHH expressed in tobacco plants. International Journal of Molecular Sciences, 2020, 21(4): 1354.
[148]
DE MEYER T, LAUKENS B, NOLF J, VAN LERBERGE E, DE RYCKE R, DE BEUCKELAER A, DE BUCK S, CALLEWAERT N, DEPICKER A. Comparison of VHH-Fc antibody production in Arabidopsis thaliana, Nicotiana benthamiana and Pichia pastoris. Plant Biotechnology Journal, 2015, 13(7): 938-947.
[149]
MIZUKAMI M, ONISHI H, HANAGATA H, MIYAUCHI A, ITO Y, TOKUNAGA H, ISHIBASHI M, ARAKAWA T, TOKUNAGA M. Efficient production of Trastuzumab Fab antibody fragments in Brevibacillus choshinensis expression system. Protein Expression and Purification, 2018, 150: 109-118.
[150]
MIZUKAMI M, TOKUNAGA H, ONISHI H, UENO Y, HANAGATA H, MIYAZAKI N, KIYOSE N, ITO Y, ISHIBASHI M, HAGIHARA Y, ARAKAWA T, MIYAUCHI A, TOKUNAGA M. Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Protein Expression and Purification, 2015, 105: 23-32.
[151]
MAGAÑA-ORTÍZ D, FERNÁNDEZ F, LOSKE A M, GÓMEZ-LIM M A. Extracellular Expression in Aspergillus niger of an Antibody Fused to Leishmania sp. Antigens. Current Microbiology, 2018, 75(1): 40-48.
[152]
EDUPUGANTI S R, EDUPUGANTI O P, HEARTY S, O’KENNEDY R. A highly stable, sensitive, regenerable and rapid immunoassay for detecting aflatoxin B1 in corn incorporating covalent AFB1 immobilization and a recombinant Fab antibody. Talanta, 2013, 115: 329-335.

doi: 10.1016/j.talanta.2013.05.012 pmid: 24054599
[153]
ESER E, EKIZ O Ö, EKIZ H İ. Utilizing fab fragment-conjugated surface plasmon resonance-based biosensor for detection of Salmonella Enteritidis. Journal of Molecular Recognition, 2024, 37(3): e3078.
[154]
DE LA CRUZ S, CUBILLOS-ZAPATA C, LÓPEZ-CALLEJA I M, GHOSH S, ALCOCER M, GONZÁLEZ I, MARTÍN R, GARCÍA T. Isolation of recombinant antibody fragments (scFv) by phage display technology for detection of almond allergens in food products. Food Control, 2015, 54: 322-330.
[155]
ARSALAN A, ZOFAIR S F F, KHAN M A, ZAKARIYA S M, KHAN R H, YOUNUS H. Modulation of alkaline phosphatase based ELISA in the presence of ions and citrate stabilized nanoparticles. Catalysis Letters, 2024, 154(7): 3839-3857.
[156]
XIONG Y, PEI K, WU Y Q, XIONG Y H. Colorimetric ELISA based on glucose oxidase-regulated the color of acid-base indicator for sensitive detection of aflatoxin B1 in corn samples. Food Control, 2017, 78: 317-323.
[157]
LIU Y, LIU D, SHEN C, DONG S, HU X D, LIN M M, ZHANG X, XU C X, ZHONG J F, XIE Y J, ZHANG C Z, WANG D L, LIU X J. Construction and characterization of a class-specific single-chain variable fragment against pyrethroid metabolites. Applied Microbiology and Biotechnology, 2020, 104(17): 7345-7354.

doi: 10.1007/s00253-020-10728-3 pmid: 32666189
[158]
ZHANG X, XU C X, ZHANG C Z, LIU Y, XIE Y J, LIU X J. Established a new double antibodies sandwich enzyme-linked immunosorbent assay for detecting Bacillus thuringiensis (Bt) Cry1Ab toxin based single-chain variable fragments from a naive mouse phage displayed library. Toxicon, 2014, 81: 13-22.
[159]
YANG Y Y, WANG Y, ZHANG Y F, WANG F, LIANG Y F, YANG J Y, XU Z L, SHEN Y D, WANG H. Nanobody-based indirect competitive ELISA for sensitive detection of 19-nortestosterone in animal urine. Biomolecules, 2021, 11(2): 167.
[160]
YANG S L, SHANG Y J, YIN S H, WANG D, CAI J P, GONG Z L, SERGE M, LIU X T. A phage-displayed single domain antibody fused to alkaline phosphatase for detection of porcine circovirus type 2. Journal of Virological Methods, 2015, 213: 84-92.
[161]
REN Y R, WEI J, WANG Y, WANG P, JI Y W, LIU B Y, WANG J L, GONZÁLEZ-SAPIENZA G, WANG Y R. Development of a streptavidin-bridged enhanced sandwich ELISA based on self-paired nanobodies for monitoring multiplex Salmonella serogroups. Analytica Chimica Acta, 2022, 1203: 339705.
[162]
CHAN C E Z, CHAN A H Y, LIM A P C, HANSON B J. Comparison of the efficiency of antibody selection from semi-synthetic scFv and non-immune Fab phage display libraries against protein targets for rapid development of diagnostic immunoassays. Journal of Immunological Methods, 2011, 373(1/2): 79-88.
[163]
WU P C, SONG J R, SUN C X, ZUO W C, DAI J J, JU Y M. Recent advances of lateral flow immunoassay for bacterial detection: capture-antibody-independent strategies and high-sensitivity detection technologies. TrAC Trends in Analytical Chemistry, 2023, 166: 117203.
[164]
HE K, ZHANG X Y, ZHAO R P, WANG L X, FENG T T, WEI D. An enzyme-linked immunosorbent assay and a gold-nanoparticle based immunochromatographic test for amatoxins using recombinant antibody. Microchimica Acta, 2016, 183(7): 2211-2219.
[165]
LIU M L, HE X T, XU Z L, DENG H, SHEN Y D, LUO L, SHEN X, CHEN Z J, HAMMOCK B, WANG H. Development of a biotinylated nanobody-based gold nanoparticle immunochromatographic assay for the detection of procymidone in crops. Journal of Agricultural and Food Chemistry, 2023, 71(35): 13137-13146.
[166]
WU H F, LI Y H, LI Y C, CUI Y, JIA C H, WANG J L, PAN J C, YU G G, ZHANG X L, WANG X T, GUO P R, JI Y W. The “umbrella of tolerance”: Nanobodies-armed photothermal lateral flow immunoassay for the detection of staphylococcal enterotoxin B. Chemical Engineering Journal, 2023, 470: 144273.
[167]
ZHANG C, HU J N, WU X X, SHI J Y, HAMMOCK B D. Development of the Au@Pt-labeled nanobody lateral-flow nanozyme immunoassay for visual detection of 3-phenoxybenzoic acid in milk and lake water. ACS Agricultural Science & Technology, 2022, 2(3): 573-579.
[168]
WANG X Y, SUN T Q, SHEN W L, LIU M Z, LIU W T, ZUO H, ZHANG Y Y, GENG L, WANG W, SHAO C L, BAI J L. A lateral flow immunochromatographic assay based on nanobody-oriented coupling strategy for aflatoxin B1 detection. Sensors and Actuators B: Chemical, 2023, 394: 134419.
[169]
XU J, SUN J D, LU X, WANG Y Y, ZHANG Y Z, SUN X L. A highly sensitive fluorescence immunochromatography strip for thiacloprid in fruits and vegetables using recombinant antibodies. Talanta, 2023, 256: 124258.
[170]
ZHANG F Y, CHEN J J, ZHAO F K, LIU M X, PENG K G, PU Y H, SANG Y X, WANG S, WANG X H. Microfabrication of engineered Lactococcus lactis biocarriers with genetically programmed immunorecognition probes for sensitive lateral flow immunoassay of antibiotic in milk and lake water. Biosensors and Bioelectronics, 2024, 252: 116139.
[171]
QIU Y L, YOU A J, FU X S, ZHANG M Z, CUI H F, ZHANG B, QIN W W, YE Z H, YU X P. Quantum-dot-bead-based fluorescence- linked immunosorbent assay for sensitive detection of Cry2A toxin in cereals using nanobodies. Foods, 2022, 11(18): 2780.
[172]
ZHAO S T, DONG J H, JEONG H J, OKUMURA K, UEDA H. Rapid detection of the neonicotinoid insecticide imidacloprid using a quenchbody assay. Analytical and Bioanalytical Chemistry, 2018, 410(17): 4219-4226.

doi: 10.1007/s00216-018-1074-y pmid: 29704031
[173]
CHEN M, DING S Y, WEN K, XIE S L, WANG Q, PEI X Y, XIE J, WANG Z H, JIANG H Y. Development of a fluorescence-linked immunosorbent assay for detection of avermectins using a fluorescent single-domain antibody. Analytical Methods, 2015, 7(9): 3728-3734.
[174]
WANG F, LI Z F, WAN D B, VASYLIEVA N, SHEN Y D, XU Z L, YANG J Y, GETTEMANS J, WANG H, HAMMOCK B D, SUN Y M. Enhanced non-toxic immunodetection of Alternaria mycotoxin tenuazonic acid based on ferritin-displayed anti-idiotypic nanobody- nanoluciferase multimers. Journal of Agricultural and Food Chemistry, 2021, 69(16): 4911-4917.
[175]
ZHANG Y Q, XU Z L, WANG F, CAI J, DONG J X, ZHANG J R, SI R, WANG C L, WANG Y, SHEN Y D, SUN Y M, WANG H. Isolation of Bactrian camel single domain antibody for parathion and development of one-step dc-FEIA method using VHH-alkaline phosphatase fusion protein. Analytical Chemistry, 2018, 90(21): 12886-12892.
[176]
DHEHIBI A, ALLAOUI A, RAOUAFI A, TERRAK M, BOUHAOUALA- ZAHAR B, HAMMADI M, RAOUAFI N, SALHI I. Nanobody-based sandwich immunoassay for pathogenic Escherichia coli F17 strain detection. Biosensors, 2023, 13(2): 299.
[177]
TANG Z W, LIU X, WANG Y Y, CHEN Q, HAMMOCK B D, XU Y. Nanobody-based fluorescence resonance energy transfer immunoassay for noncompetitive and simultaneous detection of ochratoxin A and ochratoxin B. Environmental Pollution, 2019, 251: 238-245.
[178]
ZHANG F Y, HAO D Y, LIU R B, WANG J T, SANG Y X, WANG S, WANG X H. Preparation and recognition mechanism study of an scFv targeting chloramphenicol for a hybridization chain reaction-CRISPR/ Cas12a amplified fluoroimmunoassay. Analytica Chimica Acta, 2024, 1293: 342283.
[179]
DENG W J, WANG D, DAI P, HONG Y P, XIONG J H, DUAN L Y, LU R M, WAN J C, DU H Y, HAMMOCK B D, YANG W Y. Development of a sensitive direct competitive chemiluminescent enzyme immunoassay for gentamicin based on the construction of a specific single-chain variable fragment-alkaline phosphatase fusion protein. Microchemical Journal, 2024, 197: 109706.
[180]
SHU M, XU Y, LIU X, LI Y P, HE Q H, TU Z, FU J H, GEE S J, HAMMOCK B D. Anti-idiotypic nanobody-alkaline phosphatase fusion proteins: development of a one-step competitive enzyme immunoassay for fumonisin B1 detection in cereal. Analytica Chimica Acta, 2016, 924: 53-59.

doi: S0003-2670(16)30403-2 pmid: 27181644
[181]
GUO P Y, HUANG K Y, CHEN Z J, XU Z L, OU A F, YIN Q C, WANG H, SHEN X, ZHOU K. A chemiluminescence enzyme immunoassay based on biotinylated nanobody and streptavidin amplification for diazinon sensitive quantification. Biosensors, 2023, 13(6): 577.
[182]
DONG J X, LI Z F, WANG Y, JIN M J, SHEN Y D, XU Z L, ABD EL-ATY A M, GEE S J, HAMMOCK B D, SUN Y M, WANG H. Generation of functional single-chain fragment variable from hybridoma and development of chemiluminescence enzyme immunoassay for determination of total malachite green in Tilapia fish. Food Chemistry, 2021, 337: 127780.
[183]
ZHANG Y, LIAO X R, YU G G, WEI J, WANG P, WANG Y Q, JING Y N, WANG J M, CHEN P Y, WANG J L, WANG H, WANG Y R. Phage-displayed nanobody as a sensitive nanoprobe to enhance chemiluminescent immunoassay for Cronobacter sakazakii detection in dairy products. Analytical Chemistry, 2023, 95(36): 13698-13707.
[184]
SUN T Q, ZHAO Z Q, LIU W T, XU Z H, HE H W, NING B A, JIANG Y Q, GAO Z X. Development of sandwich chemiluminescent immunoassay based on an anti-staphylococcal enterotoxin B Nanobody-Alkaline phosphatase fusion protein for detection of staphylococcal enterotoxin B. Analytica Chimica Acta, 2020, 1108: 28-36.
[185]
YIN W J, ZHANG J X, WANG H, WANG Y, ZENG X, XU Z L, YANG J Y, XIAO Z L, HAMMOCK B D, WEN P. A highly sensitive electrochemical immunosensor based on electrospun nanocomposite for the detection of parathion. Food Chemistry, 2023, 404: 134371.
[186]
ZHU M, LI M, LI G H, ZHOU Z K, LIU H, LEI H T, SHEN Y F, WAN Y K. Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline. Microchimica Acta, 2015, 182(15): 2451-2459.
[187]
ROMANAZZO D, RICCI F, VOLPE G, ELLIOTT C T, VESCO S, KROEGER K, MOSCONE D, STROKA J, VAN EGMOND H, VEHNIÄINEN M, PALLESCHI G. Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples. Biosensors and Bioelectronics, 2010, 25(12): 2615-2621.
[188]
ZHOU Q, LI G H, ZHANG Y J, ZHU M, WAN Y K, SHEN Y F. Highly selective and sensitive electrochemical immunoassay of Cry1C using nanobody and π-π stacked graphene oxide/thionine assembly. Analytical Chemistry, 2016, 88(19): 9830-9836.

pmid: 27617345
[189]
WANG P, YU G G, WEI J, LIAO X R, ZHANG Y, REN Y R, ZHANG C, WANG Y Q, ZHANG D H, WANG J L, WANG Y R. A single thiolated-phage displayed nanobody-based biosensor for label-free detection of foodborne pathogen. Journal of Hazardous Materials, 2023, 443: 130157.
[190]
WANG X X, HE Q H, XU Y, LIU X, SHU M, TU Z, LI Y P, WANG W, CAO D M. Anti-idiotypic VHH phage display-mediated immuno- PCR for ultrasensitive determination of mycotoxin Zearalenone in cereals. Talanta, 2016, 147: 410-415.
[191]
JI Y W, HE Q H, XU Y, TU Z, YANG H W, QIU Y L, WANG X X, LIU Y Y. Phage displayed anti-idiotypic nanobody mediated immuno-PCR for sensitive and environmentally friendly detection of mycotoxin ochratoxin A. Analytical Methods, 2016, 8(43): 7824-7831.
[192]
WANG R Z, FANG S, XIANG S S, LING S M, YUAN J, WANG S H. Generation and characterization of a scFv antibody against T3SS needle of Vibrio parahaemolyticus. Indian Journal of Microbiology, 2014, 54(2): 143-150.
[193]
HEMMER C, DJENNANE S, ACKERER L, HLEIBIEH K, MARMONIER A, GERSCH S, GARCIA S, VIGNE E, KOMAR V, PERRIN M, GERTZ C, BELVAL L, BERTHOLD F, MONSION B, SCHMITT-KEICHINGER C, LEMAIRE O, LORBER B, GUTIÉRREZ C, MUYLDERMANS S, DEMANGEAT G, RITZENTHALER C. Nanobody-mediated resistance to Grapevine fanleaf virus in plants. Plant Biotechnology Journal, 2018, 16(2): 660-671.

doi: 10.1111/pbi.12819 pmid: 28796912
[194]
GHANNAM A, KUMARI S, MUYLDERMANS S, ABBADY A Q. Camelid nanobodies with high affinity for broad bean mottle virus: A possible promising tool to immunomodulate plant resistance against viruses. Plant Molecular Biology, 2015, 87(4/5): 355-369.
[195]
JERNE N K. Towards a network theory of the immune system. Annales D’immunologie, 1974, 125: 373-389.
[196]
徐重新, 金嘉凤, 孙晓明, 沈成, 张霄, 陈澄宇, 刘贤金, 刘媛. 基于Bt毒素的杀虫蛋白理性设计与创新应用策略. 中国农业科学, 2024, 57(1): 96-125. doi: 10.3864/j.issn.0578-1752.2024.01.008.
XU C X, JIN J F, SUN X M, SHEN C, ZHANG X, CHEN C Y, LIU X J, LIU Y. Rational design and innovative application strategy for the insecticidal protein based on bt toxin. Scientia Agricultura Sinica, 2024, 57(1): 96-125. doi: 10.3864/j.issn.0578-1752.2024.01.008. (in Chinese)
[197]
QIN H, JIN X H, HUANG W Q, LIU Y L. Production of an anti-idiotypic antibody single chain variable fragment vaccine against Edwardsiella tarda. Acta Biochimica et Biophysica Sinica, 2010, 42(2): 129-136.
[198]
KHAING K K, RANGNOI K, MICHLITS H, BOONKERD N, TEAUMROONG N, TITTABUTR P, YAMABHAI M. Application of recombinant human scFv antibody as a powerful tool to monitor nitrogen fixing biofertilizer in rice and legume. Microbiology Spectrum, 2021, 9(3): e0209421.
[199]
GARCIA-CALVO E, GARCÍA-GARCÍA A, RODRÍGUEZ S, TAKKINEN K, MARTÍN R, GARCÍA T. Production and characterization of novel fabs generated from different phage display libraries as probes for immunoassays for gluten detection in food. Foods, 2023, 12(17): 3274.
[200]
MUKHAMETOVA L I, EREMIN S A, ARUTYUNYAN D A, GORYAINOVA O S, IVANOVA T I, TILLIB S V. Fluorescence polarization immunoassay of human lactoferrin in milk using small single-domain antibodies. Biochemistry Biokhimiia, 2022, 87(12): 1679-1688.
[201]
WANG H M, ZHAO F C, HAN X, YANG Z Y. Production and characterization of a biotinylated single-chain variable fragment antibody for detection of parathion-methyl. Protein Expression and Purification, 2016, 126: 1-8.

doi: S1046-5928(16)30083-3 pmid: 27181246
[202]
ZHANG J R, WANG Y, DONG J X, YANG J Y, ZHANG Y Q, WANG F, SI R, XU Z L, WANG H, XIAO Z L, SHEN Y D. Development of a simple pretreatment immunoassay based on an organic solvent-tolerant nanobody for the detection of carbofuran in vegetable and fruit samples. Biomolecules, 2019, 9(10): 576.
[203]
WANG Y S, ZHOU H, FU Y N, WANG Z Z, GAO Q Q, YANG D C, KANG J, CHEN L, AN Z X, HAMMOCK B D, ZHANG J L, HUO J Q. Establishment of an indirect competitive immunoassay for the detection of dicamba based on a highly specific nanobody. Science of the Total Environment, 2024, 917: 170567.
[204]
LI C, HE J X, REN H, ZHANG X Y, DU E Q, LI X P. Preparation of a chicken scFv to analyze gentamicin residue in animal derived food products. Analytical Chemistry, 2016, 88(7): 4092-4098.

doi: 10.1021/acs.analchem.6b00426 pmid: 26980703
[205]
LIU C, LIN H, CAO L M, WANG K Q, SUI J X. Characterization, specific recognition, and the performance in fish matrix of a shark-derived single-domain antibody against enrofloxacin. Talanta, 2023, 265: 124852.
[206]
LI L, WANG X Q, HOU R, WANG Y L, WANG X, XIE C Q, CHEN Y S, WU S M, PENG D P. Single-chain variable fragment antibody-based ic-ELISA for rapid detection of macrolides in porcine muscle and computational simulation of its interaction mechanism. Food Control, 2022, 133: 108571.
[207]
WANG Y R, LI P W, ZHANG Q, HU X F, ZHANG W. A toxin-free enzyme-linked immunosorbent assay for the analysis of aflatoxins based on a VHH surrogate standard. Analytical and Bioanalytical Chemistry, 2016, 408(22): 6019-6026.

doi: 10.1007/s00216-016-9370-x pmid: 27002610
[208]
LEIVO J, VEHNIÄINEN M, LAMMINMÄKI U. Phage display selection of an anti-idiotype-antibody with broad-specificity to deoxynivalenol mycotoxins. Toxins, 2020, 13(1): 18.
[209]
WANG W X, GU G, YIN R Y, FU J J, JING M P, SHEN Z, LAI D W, WANG B M, ZHOU L G. A nanobody-based immunoassay for detection of ustilaginoidins in rice samples. Toxins, 2022, 14(10): 659.
[210]
XU Y, XIONG L, LI Y P, XIONG Y H, TU Z, FU J H, CHEN B. Anti-idiotypic nanobody as citrinin mimotope from a naive alpaca heavy chain single domain antibody library. Analytical and Bioanalytical Chemistry, 2015, 407(18): 5333-5341.

doi: 10.1007/s00216-015-8693-3 pmid: 25910884
[211]
HARA Y, DONG J H, UEDA H. Open-sandwich immunoassay for sensitive and broad-range detection of a shellfish toxin gonyautoxin. Analytica Chimica Acta, 2013, 793: 107-113.

doi: 10.1016/j.aca.2013.07.024 pmid: 23953213
[212]
LI M, ZHU M, ZHANG C Z, LIU X J, WAN Y K. Uniform orientation of biotinylated nanobody as an affinity binder for detection of Bacillus thuringiensis (Bt) Cry1Ac toxin. Toxins, 2014, 6(12): 3208-3222.
[213]
LIANG Y F, WANG Y, WANG F, LI J D, WANG C L, DONG J H, UEDA H, XIAO Z L, SHEN Y D, XU Z L, WANG H. An enhanced open sandwich immunoassay by molecular evolution for noncompetitive detection of Alternaria mycotoxin tenuazonic acid. Food Chemistry, 2021, 361: 130103.
[214]
TU Z, CHEN Q, LI Y P, XIONG Y H, XU Y, HU N, TAO Y. Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk. Analytical Biochemistry, 2016, 493: 1-7.
[215]
WANG T, LI P W, ZHANG Q, ZHANG W, ZHANG Z W, WANG T, HE T. Determination of Aspergillus pathogens in agricultural products by a specific nanobody-polyclonal antibody sandwich ELISA. Scientific Reports, 2017, 7(1): 4348.
[216]
GONG X, ZHU M, LI G H, LU X L, WAN Y K. Specific determination of influenza H7N2 virus based on biotinylated single-domain antibody from a phage-displayed library. Analytical Biochemistry, 2016, 500: 66-72.

doi: 10.1016/j.ab.2015.09.020 pmid: 26450565
[217]
SEO H, LUBIS A D M, CHOI T J, JUNG T S, LEE T K, LEE S. Development of an immunoassay detection system for koi herpesvirus using recombinant single-chain variable fragments. Fishes, 2022, 7(6): 370.
[218]
RAEISI H, SAFARNEJAD M R, SADEGHKHANI F. A new single-chain variable fragment (scFv) antibody provides sensitive and specific detection of Citrus tristeza virus. Journal of Virological Methods, 2022, 300: 114412.
[219]
CHEN L M, TAN R Y, ZHOU Y M, ZHANG L Q, ZHANG S S, LI X Y, CONG Y, LI H M, SUN P P, UEDA H, DONG J H. Development of an Open sandwich ELISA for the detection of microcystin-LR. Microchemical Journal, 2020, 158: 105325.
[220]
SALVADOR J P, VASYLIEVA N, GONZALEZ-GARCIA I, JIN M J, CASTER R, SIEGEL J B, HAMMOCK B D. Nanobody-based lateral flow immunoassay for the rapid detection of aflatoxin B1 in almond milk. ACS Food Science & Technology, 2022, 2(8): 1276-1282.
[221]
QIU Y L, YOU A J, ZHANG M Z, CUI H F, FU X S, WANG J P, HUANG H Z, SHENTU X P, YE Z H, YU X P. Phage-displayed nanobody-based fluorescence-linked immunosorbent assay for the detection of Cry3Bb toxin in corn. LWT, 2022, 171: 114094.
[222]
YU G G, WANG J M, ZHANG Y, WU H F, WANG Y Q, CUI Y, YANG Y F, TANG X Q, ZHANG Q, WANG J L, SUN J, CHEN R, WANG Y R, LI P W. Anti-idiotypic nanobody alkaline phosphatase fusion protein-triggered on-off-on fluorescence immunosensor for aflatoxin in cereals. Journal of Agricultural and Food Chemistry, 2023, 45: 17391-17398.
[223]
QIU Y L, LI P, LIU B B, LIU Y, WANG Y L, TAO T T, XU J L, HAMMOCK B D, LIU X J, GUAN R F, ZHANG C Z. Phage- displayed nanobody based double antibody sandwich chemiluminescent immunoassay for the detection of Cry2A toxin in cereals. Food and Agricultural Immunology, 2019, 30(1): 924-936.
[224]
TAO X Q, CHEN M, JIANG H Y, SHEN J Z, WANG Z H, WANG X, WU X P, WEN K. Chemiluminescence competitive indirect enzyme immunoassay for 20 fluoroquinolone residues in fish and shrimp based on a single-chain variable fragment. Analytical and Bioanalytical Chemistry, 2013, 405(23): 7477-7484.

doi: 10.1007/s00216-013-7174-9 pmid: 23842902
[225]
ZHANG C, LIU Z L, BAI M F, WANG Y, LIAO X R, ZHANG Y, WANG P, WEI J, ZHANG H Y, WANG J L, WANG H, WANG Y R. An ultrasensitive sandwich chemiluminescent enzyme immunoassay based on phage-mediated double-nanobody for detection of Salmonella typhimurium in food. Sensors and Actuators B: Chemical, 2022, 352: 131058.
[226]
TANG X Q, CATANANTE G, HUANG X R, MARTY J L, WANG H, ZHANG Q, LI P W. Screen-printed electrochemical immunosensor based on a novel nanobody for analyzing aflatoxin M1 in milk. Food Chemistry, 2022, 383: 132598.
[227]
LIANG Y F, ZENG Y Y, LUO L, XU Z L, SHEN Y D, WANG H, HAMMOCK B D. Detection of acrylamide in foodstuffs by nanobody-based immunoassays. Journal of Agricultural and Food Chemistry, 2022, 70(29): 9179-9186.

doi: 10.1021/acs.jafc.2c01872 pmid: 35819336
[228]
EDUPUGANTI S R, EDUPUGANTI O P, O’KENNEDY R. Generation of anti-Zearalenone scFv and its incorporation into surface plasmon resonance-based assay for the detection of Zearalenone in Sorghum. Food Control, 2013, 34(2): 668-674.
[229]
HUANG W P, TU Z, NING Z Q, HE Q H, LI Y P. Development of real-time immuno-PCR based on phage displayed an anti-idiotypic nanobody for quantitative determination of citrinin in Monascus. Toxins, 2019, 11(10): 572.
[230]
YU X W, YANG Y P, DIKICI E, DEO S K, DAUNERT S. Beyond antibodies as binding partners: the role of antibody mimetics in bioanalysis. Annual Review of Analytical Chemistry, 2017, 10(1): 293-320.
[231]
刘媛, Huovinen Tuomas, 刘贤金, 梁颖, 张存政, 谢雅晶, 贺江, 王耘, 张霄. 基于磁珠和时间分辨荧光免疫分析的微囊藻毒素LR单链抗体筛选与鉴定. 中国农业科学, 2012, 45(2): 330-337. doi: 10.3864/j.issn.0578-1752.2012.02.015.
LIU Y, TUOMAS H, LIU X J, LIANG Y, ZHANG C Z, XIE Y J, HE J, WANG Y, ZHANG X. Screening and identification of single-chain antibodies against microcystin-LR by magnetic beads and time resolved fluorescence immunoassay. Scientia Agricultura Sinica, 2012, 45(2): 330-337. doi: 10.3864/j.issn.0578-1752.2012.02.015. (in Chinese)
[232]
ABRAMSON J, ADLER J, DUNGER J, EVANS R, GREEN T, PRITZEL A, RONNEBERGER O, WILLMORE L, BALLARD A J, BAMBRICK J, BODENSTEIN S W, EVANS D A, HUNG C C, O’NEILL M, REIMAN D, TUNYASUVUNAKOOL K, WU Z, ŽEMGULYTE A, KOHLI P, JADERBERG M, HASSABIS D, JUMPER J M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630: 493-500.
[233]
CHIBA C H, KNIRSCH M C, AZZONI A R, MOREIRA A R, STEPHANO M A. Cell-free protein synthesis: Advances on production process for biopharmaceuticals and immunobiological products. BioTechniques, 2021, 70(2): 126-133.

doi: 10.2144/btn-2020-0155 pmid: 33467890
[234]
林伟琦. 食品安全快速检测技术的应用研究进展. 食品安全质量检测学报, 2020, 11(3): 961-967.
LIN W Q. Research progress on application of rapid food safety detection technology. Journal of Food Safety & Quality, 2020, 11(3): 961-967. (in Chinese)
[1] BAO YanFang, JIANG Tao, HE Li, LÜ Lü, LI TaoShan, LI Xin, SUN YanYan, YANG Guang, WEI Ting, PAN XiaoLe, LIN Mi. Development of a Full-Automated Magnetic Particle Chemiluminescence Immunoassay Assay for Quantitative Detection of Antibodies Against Foot and Mouth Disease Virus Serotype O [J]. Scientia Agricultura Sinica, 2024, 57(4): 810-819.
[2] QIAN YanHong, SONG Shuai, WEN XiaoHui, NIU RuiHui, YANG YanQiu, ZHENG BoBin, YUAN ZiGuo, LUO ShengJun. Establishment and Application of a Tube-Based Chemiluminescence Immunoassay Method for Detecting Antibodies Against Trichinella spiralis in Pigs [J]. Scientia Agricultura Sinica, 2024, 57(22): 4578-4588.
[3] QI Wen-bao, LI Fang, LI Hua-nan, HUANG Li-hong, HE Jun, MU Guang-hui, LUO Kai-jian, LIAO Ming. Electrochemical Luminescence Immunoassay for the Detection of H9 Subtype Avian Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3064-3070.
[4] WANG Zhan-Hui, MI Tie-Jun, SHEN Jian-Zhong. Advance in Fluorescence Polarization Immunoassay for the Determination of Mycotoxins in Cereals and Related Products [J]. Scientia Agricultura Sinica, 2012, 45(23): 4862-4872.
[5] LIU Yuan, Huovinen Tuomas, LIU Xian-Jin, LIANG Ying, ZHANG Cun-Zheng, XIE Ya-Jing, HE Jiang, WANG Yun, ZHANG Xiao. Screening and Identification of Single-Chain Antibodies Against Microcystin-LR by Magnetic Beads and Time Resolved Fluorescence Immunoassay [J]. Scientia Agricultura Sinica, 2012, 45(2): 330-337.
[6] . [J]. Scientia Agricultura Sinica, 2008, 41(11): 3651-3655 .
[7] ,. Development of an Enzyme Immunoassay for the Determination of the Cowpea Trypsin Inhibitor (CpTI) in Transgenic Crop [J]. Scientia Agricultura Sinica, 2004, 37(10): 1575-1579 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!