[1] |
SIVELLE C, SIEROCKI R, FERREIRA-PINTO K, SIMON S, MAILLERE B, NOZACH H. Fab is the most efficient format to express functional antibodies by yeast surface display. mAbs, 2018, 10(5): 720-729.
doi: 10.1080/19420862.2018.1468952
pmid: 29708852
|
[2] |
LI L, WU S M, SI Y, LI H M, YIN X Y, PENG D P. Single-chain fragment variable produced by phage display technology: construction, selection, mutation, expression, and recent applications in food safety. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(5): 4354-4377.
doi: 10.1111/1541-4337.13018
pmid: 35904244
|
[3] |
XU C X, YU M Z, XIE Y J, ZHONG J F, CHEN W, LIN M M, HU X D, SHEN Y. Screening and identification of vancomycin anti-idiotypic antibodies for against Staphylococcus aureus from a human phage display domain antibody library. Immunology Letters, 2022, 246: 1-9.
|
[4] |
WANG Y Z, FAN Z, SHAO L, KONG X W, HOU X J, TIAN D R, SUN Y, XIAO Y Z, YU L. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. International Journal of Nanomedicine, 2016, 11: 3287-3303.
doi: 10.2147/IJN.S107194
pmid: 27499623
|
[5] |
XU C X, HE D, ZU Y, HONG S J, HAO J, LI J H. Microcystin-LR heterologous genetically engineered antibody recombinant and its binding activity improvement and application in immunoassay. Journal of Hazardous Materials, 2021, 406: 124596.
|
[6] |
XIE Y J, XU C X, GAO M J, ZHANG X, LU L N, HU X D, CHEN W, JURAT-FUENTES J L, ZHU Q, LIU Y, LIN M M, ZHONG J F, LIU X J. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth (Plutella xylostella). Pest Management Science, 2021, 77(10): 4593-4606.
|
[7] |
陈遥, 舒星富, 赵钰, 张博文, 马忠仁, 张海霞. 单链抗体展示系统研究进展. 生物工程学报, 2023, 39(9): 3681-3694.
|
|
CHEN Y, SHU X F, ZHAO Y, ZHANG B W, MA Z R, ZHANG H X. Single chain antibody fragment display systems: a review. Chinese Journal of Biotechnology, 2023, 39(9): 3681-3694. (in Chinese)
|
[8] |
刘媛, 林曼曼, 张霄, 徐重新, 焦凌霞, 仲建锋, 武爱华, 刘贤金. 基因突变技术在抗体亲和力体外成熟中的应用. 浙江大学学报(农业与生命科学版), 2016, 42(1): 1-7.
|
|
LIU Y, LIN M M, ZHANG X, XU C X, JIAO L X, ZHONG J F, WU A H, LIU X J. Applications of mutagenesis methods on affinity maturation of antibodies in vitro. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 1-7. (in Chinese)
|
[9] |
RANGNOI K, JARUSERANEE N, O’KENNEDY R, PANSRI P, YAMABHAI M. One-step detection of aflatoxin-B(1) using scFv-alkaline phosphatase-fusion selected from human phage display antibody library. Molecular Biotechnology, 2011, 49(3): 240-249.
doi: 10.1007/s12033-011-9398-2
pmid: 21465334
|
[10] |
JÄRVILUOMA A, STRANDIN T, LÜLF S, BOUCHET J, MÄKELÄ A R, GEYER M, BENICHOU S, SAKSELA K. High-affinity target binding engineered via fusion of a single-domain antibody fragment with a ligand-tailored SH3 domain. PLoS One, 2012, 7(7): e40331.
|
[11] |
YOSHIKAWA M, SENDA M, NAKAMURA H, ODA-UEDA N, UEDA T, SENDA T, OHKURI T. Stabilization of adalimumab Fab through the introduction of disulfide bonds between the variable and constant domains. Biochemical and Biophysical Research Communications, 2024, 700: 149592.
|
[12] |
CNUDDE T, LAKHRIF Z, BOURGOIN J, BOURSIN F, HORIOT C, HENRIQUET C, DI TOMMASO A, JUSTE M O, JIACOMINI I G, DIMIER-POISSON I, PUGNIÈRE M, MÉVÉLEC M N, AUBREY N. Exploration and modulation of antibody fragment biophysical properties by replacing the framework region sequences. Antibodies, 2020, 9(2): 9.
|
[13] |
LUO M Y, ZHAO M Q, CAGLIERO C, JIANG H, XIE Y Q, ZHU J W, YANG H, ZHANG M X, ZHENG Y, YUAN Y S, DU Z X, LU H L. A general platform for efficient extracellular expression and purification of Fab from Escherichia coli. Applied Microbiology and Biotechnology, 2019, 103(8): 3341-3353.
|
[14] |
WANG Y, SHAN Y M, GAO X Y, GONG R, ZHENG J, ZHANG X D, ZHAO Q. Screening and expressing HIV-1 specific antibody fragments in Saccharomyces cerevisiae. Molecular Immunology, 2018, 103: 279-285.
|
[15] |
LEBOZEC K, JANDROT-PERRUS M, AVENARD G, FAVRE- BULLE O, BILLIALD P. Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: A case study prior to pharmaceutical development. New Biotechnology, 2018, 44: 31-40.
doi: S1871-6784(18)30052-9
pmid: 29689305
|
[16] |
GOMES M, ALVAREZ M A, QUELLIS L R, BECHER M L, DE ANDRADE CASTRO J M, GAMEIRO J, CAPORRINO M C, MOURA-DA-SILVA A M, DE OLIVEIRA SANTOS M. Expression of an scFv antibody fragment in Nicotiana benthamiana and in vitro assessment of its neutralizing potential against the snake venom metalloproteinase BaP1 from Bothrops asper. Toxicon, 2019, 160: 38-46.
|
[17] |
MATSUDA Y, ITAYA H, KITAHARA Y, THERESIA N M, KUTUKOVA E A, YOMANTAS Y A V, DATE M, KIKUCHI Y, WACHI M. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum. Microbial Cell Factories, 2014, 13(1): 56.
|
[18] |
SHKOPOROV A N, KHOKHLOVA E V, SAVOCHKIN K A, KAFARSKAIA L I, EFIMOV B A. Production of biologically active scFv and VHH antibody fragments in Bifidobacterium longum. FEMS Microbiology Letters, 2015, 362(12): fnv083.
|
[19] |
ZHU X X, KRIEGEL A M, BOUSTANY C A, BLAKE D A. Single-chain variable fragment (scFv) antibodies optimized for environmental analysis of uranium. Analytical Chemistry, 2011, 83(10): 3717-3724.
doi: 10.1021/ac200159x
pmid: 21473651
|
[20] |
ZHAO F C, TIAN Y, WANG H M, LIU J Y, HAN X, YANG Z Y. Development of a biotinylated broad-specificity single-chain variable fragment antibody and a sensitive immunoassay for detection of organophosphorus pesticides. Analytical and Bioanalytical Chemistry, 2016, 408(23): 6423-6430.
doi: 10.1007/s00216-016-9760-0
pmid: 27411546
|
[21] |
DU X J, ZHOU X N, LI P, SHENG W, DUCANCEL F, WANG S. Development of an immunoassay for chloramphenicol based on the preparation of a specific single-chain variable fragment antibody. Journal of Agricultural and Food Chemistry, 2016, 64(14): 2971-2979.
|
[22] |
ZHANG C X, ZHANG Q, TANG X Q, ZHANG W, LI P W. Development of an anti-idiotypic VHH antibody and toxin-free enzyme immunoassay for ochratoxin A in cereals. Toxins, 2019, 11(5): 280.
|
[23] |
HU Y Z, SUN Y, GU J X, YANG F E, WU S H, ZHANG C, JI X M, LV H, MUYLDERMANS S, WANG S. Selection of specific nanobodies to develop an immuno-assay detecting Staphylococcus aureus in milk. Food Chemistry, 2021, 353: 129481.
|
[24] |
CUI Y, WANG X T, WU H F, ZHANG X L, XU Y J, YU G G, LIU X J, YAO Q, WANG J L, JI Y W. A “one to two” novel sandwich immunoassay based on nanobodies for detection of staphylococcal enterotoxin A in food samples. Food Control, 2024, 160: 110313.
|
[25] |
WANG R Z, GU X S, ZHUANG Z H, ZHONG Y F, YANG H, WANG S H. Screening and molecular evolution of a single chain variable fragment antibody (scFv) against citreoviridin toxin. Journal of Agricultural and Food Chemistry, 2016, 64(40): 7640-7648.
pmid: 27622814
|
[26] |
ZHANG X Y, HE K, ZHAO R P, FENG T T, WEI D. Development of a single chain variable fragment antibody and application as amatoxin recognition molecule in surface plasmon resonance sensors. Food Analytical Methods, 2016, 9(12): 3278-3286.
|
[27] |
LIU S, LIN M M, HU X D, SHEN C, ZHANG X, XU C X, ZHU Q, XIE Y J, LU H Y, WANG Y, LÜ P, POOE O J, LIU Y, SUN A D, LIU X J. Improved sensitivity of the anti-microcystin-LR ELISA using phage-displayed alpha-type anti-idiotypic nanobody. Analytical Biochemistry, 2023, 664: 115030.
|
[28] |
HU Y Z, LIN J, PENG L J, WANG Y, WU S H, JI X M, LV H, WU J, ZHANG Y, WANG S. Nanobody-based electrochemical immunoassay for sensitive detection of peanut allergen Ara h 1. Journal of Agricultural and Food Chemistry, 2023, 71(19): 7535-7545.
|
[29] |
REN W J, XU Y, HUANG Z B, LI Y P, TU Z, ZOU L, HE Q H, FU J H, LIU S W, HAMMOCK B D. Single-chain variable fragment antibody-based immunochromatographic strip for rapid detection of fumonisin B1 in maize samples. Food Chemistry, 2020, 319: 126546.
|
[30] |
XU C X, LIU X Q, ZHANG C Z, ZHANG X, ZHONG J F, LIU Y, HU X D, LIN M M, LIU X J. Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library. Analytical Biochemistry, 2017, 518: 53-59.
|
[31] |
QIU Y L, LI P, DONG S, ZHANG X S, YANG Q R, WANG Y L, GE J, HAMMOCK B D, ZHANG C Z, LIU X J. Phage-mediated competitive chemiluminescent immunoassay for detecting Cry1Ab toxin by using an anti-idiotypic camel nanobody. Journal of Agricultural and Food Chemistry, 2018, 66(4): 950-956.
doi: 10.1021/acs.jafc.7b04923
pmid: 29293334
|
[32] |
LIANG Y F, LI J D, FANG R Y, XU Z L, LUO L, CHEN Z J, YANG J Y, SHEN Y D, UEDA H, HAMMOCK B, WANG H. Design of an antigen-triggered nanobody-based fluorescence probe for PET immunoassay to detect quinalphos in food samples. Analytical Chemistry, 2023, 95(33): 12321-12328.
|
[33] |
LIU Y Y, JIANG D J, LU X, WANG W, XU Y, HE Q H. Phage-mediated immuno-PCR for ultrasensitive detection of Cry1Ac protein based on nanobody. Journal of Agricultural and Food Chemistry, 2016, 64(41): 7882-7889.
doi: 10.1021/acs.jafc.6b02978
pmid: 27684201
|
[34] |
徐重新, 刘媛, 张霄, 刘贤金. Bt Cry毒素抗虫模拟物靶向创新设计. 生物工程学报, 2023, 39(2): 446-458.
|
|
XU C X, LIU Y, ZHANG X, LIU X J. Targeted innovative design of Bt Cry toxin insecticidal mimics. Chinese Journal of Biotechnology, 2023, 39(2): 446-458. (in Chinese)
|
[35] |
HUANG W L, CHUANG S C, YANG C D. Anti-idiotype vaccine provides protective immunity against Vibrio harveyi in grouper (Epinephelus coioides). Vaccines, 2019, 7(4): 210.
|
[36] |
NIAN S J, WU T, YE Y C, WANG X, XU W F, YUAN Q. Development and identification of fully human scFv-Fcs against Staphylococcus aureus. BMC Immunology, 2016, 17(1): 8.
|
[37] |
GUPTA S K, SHUKLA P. Microbial platform technology for recombinant antibody fragment production: A review. Critical Reviews in Microbiology, 2017, 43(1): 31-42.
doi: 10.3109/1040841X.2016.1150959
pmid: 27387055
|
[38] |
SUN Z H, LI W, MELLORS J W, ORENTAS R, DIMITROV D S. Construction of a large size human immunoglobulin heavy chain variable (VH) domain library, isolation and characterization of novel human antibody VH domains targeting PD-L1 and CD22. Frontiers in Immunology, 2022, 13: 869825.
|
[39] |
BARDERAS R, BENITO-PEÑA E. The 2018 Nobel prize in chemistry: Phage display of peptides and antibodies. Analytical and Bioanalytical Chemistry, 2019, 411(12): 2475-2479.
|
[40] |
KIM H Y, WANG X L, WAHLBERG B, EDWARDS W B. Discovery of hapten-specific scFv from a phage display library and applications for HER2-positive tumor imaging. Bioconjugate Chemistry, 2014, 25(7): 1311-1322.
|
[41] |
XU C X, LIU X Q, LIU Y, ZHANG X, ZHANG C Z, LI J H, LIU X J. High sensitive single chain variable fragment screening from a microcystin-LR immunized mouse phage antibody library and its application in immunoassay. Talanta, 2019, 197: 397-405.
doi: S0039-9140(19)30066-9
pmid: 30771953
|
[42] |
XU C X, ZHANG C Z, ZHONG J F, HU H, LUO S M, LIU X Q, ZHANG X, LIU Y, LIU X J. Construction of an immunized rabbit phage display library for selecting high activity against Bacillus thuringiensis Cry1F toxin single-chain antibodies. Journal of Agricultural and Food Chemistry, 2017, 65(29): 6016-6022.
|
[43] |
LI J Q, XU Y P, WANG X T, LI Y, WANG L L, LI X Y. Construction and characterization of a highly reactive chicken-derived single-chain variable fragment (scFv) antibody against Staphylococcus aureus developed with the T7 phage display system. International Immunopharmacology, 2016, 35: 149-154.
|
[44] |
JIAO S J, CHEN X C, HE Z Y, WU L, XIE X X, SUN Z C, ZHANG S H, CAO H M, HAMMOCK B D, LIU X. Colorimetric and surface-enhanced Raman scattering dual-mode lateral flow immunosensor using phage-displayed shark nanobody for the detection of crustacean allergen tropomyosin. Journal of Hazardous Materials, 2024, 468: 133821.
|
[45] |
CHAO G, LAU W L, HACKEL B J, SAZINSKY S L, LIPPOW S M, WITTRUP K D. Isolating and engineering human antibodies using yeast surface display. Nature Protocols, 2006, 1(2): 755-768.
pmid: 17406305
|
[46] |
BODER E T, RAEESZADEH-SARMAZDEH M, PRICE J V. Engineering antibodies by yeast display. Archives of Biochemistry and Biophysics, 2012, 526(2): 99-106.
doi: 10.1016/j.abb.2012.03.009
pmid: 22450168
|
[47] |
SALEMA V, FERNÁNDEZ L Á. Escherichia coli surface display for the selection of nanobodies. Microbial Biotechnology, 2017, 10(6): 1468-1484.
|
[48] |
FLEETWOOD F, DEVOOGDT N, PELLIS M, WERNERY U, MUYLDERMANS S, STÅHL S, LÖFBLOM J. Surface display of a single-domain antibody library on Gram-positive bacteria. Cellular and Molecular Life Sciences, 2013, 70(6): 1081-1093.
doi: 10.1007/s00018-012-1179-y
pmid: 23064703
|
[49] |
KIM D, KIM W, KIM J. New bacterial surface display system development and application based on Bacillus subtilis YuaB biofilm component as an anchoring motif. Biotechnology and Bioprocess Engineering, 2021, 26(1): 39-46.
|
[50] |
ZHANG J, ZHANG X A, LIU Q, LI M Y, GAO L C, GAO X, XIANG S S, WU L L, FU J, SONG H F. Mammalian cell display for rapid screening scFv antibody therapy. Acta Biochimica et Biophysica Sinica, 2014, 46(10): 859-866.
|
[51] |
ZHOU C, JACOBSEN F W, CAI L, CHEN Q, SHEN W D. Development of a novel mammalian cell surface antibody display platform. mAbs, 2010, 2(5): 508-518.
doi: 10.4161/mabs.2.5.12970
pmid: 20716968
|
[52] |
KUNAMNENI A, OGAUGWU C, BRADFUTE S, DURVASULA R. Ribosome display technology: applications in disease diagnosis and control. Antibodies, 2020, 9(3): 28.
|
[53] |
TABATA N, SAKUMA Y, HONDA Y, DOI N, TAKASHIMA H, MIYAMOTO-SATO E, YANAGAWA H. Rapid antibody selection by mRNA display on a microfluidic chip. Nucleic Acids Research, 2009, 37(8): e64.
|
[54] |
LI L, HOU R, SHEN W, CHEN Y S, WU S M, WANG Y L, WANG X Q, YUAN Z H, PENG D P. Development of a monoclonal-based ic-ELISA for the determination of kitasamycin in animal tissues and simulation studying its molecular recognition mechanism. Food Chemistry, 2021, 363: 129465.
|
[55] |
JIAO L X, LIU Y, ZHANG X, LIU B B, ZHANG C Z, LIU X J. Site-saturation mutagenesis library construction and screening for specific broad-spectrum single-domain antibodies against multiple Cry1 toxins. Applied Microbiology and Biotechnology, 2017, 101(15): 6071-6082.
doi: 10.1007/s00253-017-8347-9
pmid: 28601895
|
[56] |
XIE S L, WANG J Y, YU X Z, PENG T, YAO K, WANG S H, LIANG D M, KE Y B, WANG Z H, JIANG H Y. Site-directed mutations of anti-amantadine scFv antibody by molecular dynamics simulation: prediction and validation. Journal of Molecular Modeling, 2020, 26(3): 49.
doi: 10.1007/s00894-020-4286-y
pmid: 32020367
|
[57] |
MURPHY C, STACK E, KRIVELO S, BREHENY M, MA H, O’KENNEDY R. Enhancing recombinant antibody performance by optimally engineering its format. Journal of Immunological Methods, 2018, 463: 127-133.
doi: S0022-1759(18)30332-6
pmid: 30321550
|
[58] |
YANG Z, DU M J, WANG W, XIN X, MA P X, ZHANG H K, LERNER R A. Affinity maturation of an TpoR targeting antibody in full-length IgG form for enhanced agonist activity. Protein Engineering, Design & Selection, 2018, 31(7/8): 233-241.
|
[59] |
CEMBROLA B, RUZZA V, TROISE F, ESPOSITO M L, SASSO E, CAFARO V, PASSARIELLO M, VISCONTE F, RAIA M, DEL VECCHIO L, D’ALISE A M, CORTESE R, SCARSELLI E, ZAMBRANO N, DE LORENZO C, NICOSIA A. Rapid affinity maturation of novel anti-PD-L1 antibodies by a fast drop of the antigen concentration and FACS selection of yeast libraries. BioMed Research International, 2019, 2019: 6051870.
|
[60] |
QIU Y L, HE Q H, XU Y, WANG W, LIU Y Y. Modification of a deoxynivalenol-antigen-mimicking nanobody to improve immunoassay sensitivity by site-saturation mutagenesis. Analytical and Bioanalytical Chemistry, 2016, 408(3): 895-903.
|
[61] |
WANG F Y, LI N, ZHANG Y S, SUN X F, HU M, ZHAO Y L, FAN J M. Preparation and directed evolution of anti-ciprofloxacin ScFv for immunoassay in animal-derived food. Foods, 2021, 10(8): 1933.
|
[62] |
KOBAYASHI N, OYAMA H, KATO Y, GOTO J, SÖDERLIND E, BORREBAECK C A K. Two-step in vitro antibody affinity maturation enables estradiol-17beta assays with more than 10-fold higher sensitivity. Analytical Chemistry, 2010, 82(3): 1027-1038.
|
[63] |
BROCKMANN E C, PYYKKÖ M, HANNULA H, KHAN K, LAMMINMÄKI U, HUOVINEN T. Combinatorial mutagenesis with alternative CDR-L1 and-H2 loop lengths contributes to affinity maturation of antibodies. New Biotechnology, 2021, 60: 173-182.
|
[64] |
HE X, DUAN C F, QI Y H, DONG J, WANG G N, ZHAO G X, WANG J P, LIU J. Virtual mutation and directional evolution of anti-amoxicillin ScFv antibody for immunoassay of penicillins in milk. Analytical Biochemistry, 2017, 517: 9-17.
doi: S0003-2697(16)30356-6
pmid: 27780696
|
[65] |
WANG X R, CHEN Q, SUN Z C, WANG Y D, SU B C, ZHANG C H, CAO H M, LIU X. Nanobody affinity improvement: Directed evolution of the anti-ochratoxin A single domain antibody. International Journal of Biological Macromolecules, 2020, 151: 312-321.
doi: S0141-8130(20)30424-4
pmid: 32084462
|
[66] |
KIGUCHI Y, OYAMA H, MORITA I, NAGATA Y, UMEZAWA N, KOBAYASHI N. The V(H) framework region 1 as a target of efficient mutagenesis for generating a variety of affinity-matured scFv mutants. Scientific Reports, 2021, 11(1): 8201.
|
[67] |
MAHAJAN S P, MEKSIRIPORN B, WARAHO-ZHMAYEV D, WEYANT K B, KOCER I, BUTLER D C, MESSER A, ESCOBEDO F A, DELISA M P. Computational affinity maturation of camelid single-domain intrabodies against the nonamyloid component of alpha-synuclein. Scientific Reports, 2018, 8(1): 17611.
doi: 10.1038/s41598-018-35464-7
pmid: 30514850
|
[68] |
WEN J X, YUAN K P. Research progress of phage display system. Advances in Microbiology, 2021, 11: 181-189.
|
[69] |
RANGNOI K, CHOOWONGKOMON K, O’KENNEDY R, RÜKER F, YAMABHAI M. Enhancement and analysis of human antiaflatoxin B1 (AFB1) scFv antibody-ligand interaction using chain shuffling. Journal of Agricultural and Food Chemistry, 2018, 66(22): 5713-5722.
doi: 10.1021/acs.jafc.8b01141
pmid: 29781609
|
[70] |
FITZGERALD J, LEONARD P, DARCY E, DANAHER M, O’KENNEDY R. Light-chain shuffling from an antigen-biased phage pool allows 185-fold improvement of an anti-halofuginone single-chain variable fragment. Analytical Biochemistry, 2011, 410(1): 27-33.
doi: 10.1016/j.ab.2010.11.009
pmid: 21078281
|
[71] |
SIMONS J F, LIM Y W, CARTER K P, WAGNER E K, WAYHAM N, ADLER A S, JOHNSON D S. Affinity maturation of antibodies by combinatorial Codon mutagenesis versus error-prone PCR. mAbs, 2020, 12(1): 1803646.
|
[72] |
秦秀林, 钱江潮, 储炬. 优化易错PCR条件以提高毕赤酵母GAP启动子文库突变效率. 生物技术通报, 2014, 30(6): 211-217.
|
|
QIN X L, QIAN J C, CHU J. High-error-rate random mutagenesis of GAP promoter in Pichia pastoris using an optimited error prone PCR. Biotechnology Bulletin, 2014, 30(6): 211-217. (in Chinese)
|
[73] |
VAN DEN BEUCKEN T, PIETERS H, STEUKERS M, VAN DER VAART M, LADNER R C, HOOGENBOOM H R, HUFTON S E. Affinity maturation of Fab antibody fragments by fluorescent- activated cell sorting of yeast-displayed libraries. FEBS Letters, 2003, 546(2/3): 288-294.
|
[74] |
HU S, YANG G B, CHEN Z, LI Q Y, LIU B, LIU M, ZHANG D W, CHANG S, KONG R. Docking guided phase display to develop fusion protein with novel scFv and alkaline phosphatase for one-step ELISA salbutamol detection. Frontiers in Microbiology, 2023, 14: 1190793.
|
[75] |
ZHAO Q, AHMED M, TASSEV D V, HASAN A, KUO T Y, GUO H F, O’REILLY R J, CHEUNG N K V. Affinity maturation of T-cell receptor-like antibodies for Wilms tumor 1 peptide greatly enhances therapeutic potential. Leukemia, 2015, 29(11): 2238-2247.
doi: 10.1038/leu.2015.125
pmid: 25987253
|
[76] |
MIN W K, KIM S G, SEO J H. Affinity maturation of single-chain variable fragment specific for aflatoxin B(1) using yeast surface display. Food Chemistry, 2015, 188: 604-611.
|
[77] |
KIGUCHI Y, OYAMA H, MORITA I, MORIKAWA M, NAKANO A, FUJIHARA W, INOUE Y, SASAKI M, SAIJO Y, KANEMOTO Y, MURAYAMA K, BABA Y, TAKEUCHI A, KOBAYASHI N. Clonal array profiling of scFv-displaying phages for high-throughput discovery of affinity-matured antibody mutants. Scientific Reports, 2020, 10(1): 14103.
doi: 10.1038/s41598-020-71037-3
pmid: 32839506
|
[78] |
BODER E T, MIDELFORT K S, WITTRUP K D. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(20): 10701-10705.
|
[79] |
FERMÉR C, ANDERSSON I, NILSSON K, NILSSON O. Specificity rescue and affinity maturation of a low-affinity IgM antibody against pro-gastrin-releasing peptide using phage display and DNA shuffling. Tumour Biology, 2004, 25(1/2): 7-13.
|
[80] |
RANI M, BOLLES M, DONALDSON E F, VAN BLARCOM T, BARIC R, IVERSON B, GEORGIOU G. Increased antibody affinity confers broad in vitro protection against escape mutants of severe acute respiratory syndrome coronavirus. Journal of Virology, 2012, 86(17): 9113-9121.
|
[81] |
LIAO X R, ZHANG Y, LIANG Y F, ZHANG L J, WANG P, WEI J, YIN X C, WANG J L, WANG H, WANG Y R. Enhanced sandwich immunoassay based on bivalent nanobody as an efficient immobilization approach for foodborne pathogens detection. Analytica Chimica Acta, 2024, 1289: 342209.
|
[82] |
ALAM M K, BRABANT M, VISWAS R S, BARRETO K, FONGE H, RONALD GEYER C. A novel synthetic trivalent single chain variable fragment (tri-scFv) construction platform based on the SpyTag/SpyCatcher protein ligase system. BMC Biotechnology, 2018, 18(1): 55.
doi: 10.1186/s12896-018-0466-6
pmid: 30200951
|
[83] |
ZHAO J X, YANG L, GU Z N, CHEN H Q, TIAN F W, CHEN Y Q, ZHANG H, CHEN W. Stabilization of the single-chain fragment variable by an interdomain disulfide bond and its effect on antibody affinity. International Journal of Molecular Sciences, 2010, 12(1): 1-11.
|
[84] |
LEHMANN A, WIXTED J H F, SHAPOVALOV M V, RODER H, DUNBRACK R L Jr, ROBINSON M K. Stability engineering of anti-EGFR scFv antibodies by rational design of a lambda-to-kappa swap of the VL framework using a structure-guided approach. mAbs, 2015, 7(6): 1058-1071.
doi: 10.1080/19420862.2015.1088618
pmid: 26337947
|
[85] |
LIU M L, CHEN Z J, HUANG X Q, WANG H, ZHAO J L, SHEN Y D, LUO L, WEN X W, HAMMOCK B, XU Z L. A bispecific nanobody with high sensitivity/efficiency for simultaneous determination of carbaryl and its metabolite 1-naphthol in the soil and rice samples. Environmental Pollution, 2023, 335: 122265.
|
[86] |
AKAZAWA-OGAWA Y, TAKASHIMA M, LEE Y H, IKEGAMI T, GOTO Y, UEGAKI K, HAGIHARA Y. Heat-induced irreversible denaturation of the camelid single domain VHH antibody is governed by chemical modifications. The Journal of Biological Chemistry, 2014, 289(22): 15666-15679.
|
[87] |
BAI Z X, WANG J W, LI J Q, YUAN H B, WANG P, ZHANG M, FENG Y H, CAO X T, CAO X G, KANG G B, DE MARCO A, HUANG H. Design of nanobody-based bispecific constructs by in silico affinity maturation and umbrella sampling simulations. Computational and Structural Biotechnology Journal, 2023, 21: 601-613.
|
[88] |
CHENG X, WANG J W, KANG G B, HU M, YUAN B, ZHANG Y T, HUANG H. Homology modeling-based in silico affinity maturation improves the affinity of a nanobody. International Journal of Molecular Sciences, 2019, 20(17): 4187.
|
[89] |
TILLER K E, CHOWDHURY R, LI T, LUDWIG S D, SEN S, MARANAS C D, TESSIER P M. Facile affinity maturation of antibody variable domains using natural diversity mutagenesis. Frontiers in Immunology, 2017, 8: 986.
doi: 10.3389/fimmu.2017.00986
pmid: 28928732
|
[90] |
RAFIQUE A, SATAKE K, KISHIMOTO S, KHAN K H, KATO D I, ITO Y. Efficient screening and design of variable domain of heavy chain antibody ligands through high throughput sequencing for affinity chromatography to purify fab fragments. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38(5): 190-200.
doi: 10.1089/mab.2019.0027
pmid: 31411543
|
[91] |
DING G P, CHEN X M, ZHU J, DUESBERY N S, CHENG X J, CAO B. A human/murine chimeric fab antibody neutralizes Anthrax lethal toxin in vitro. Clinical & Developmental Immunology, 2013, 2013: 475809.
|
[92] |
ZHANG Y F, SUN Y P, HONG J, HO M. Humanization of the shark V(NAR) single domain antibody using CDR grafting. Current Protocols, 2023, 3(1): e630.
|
[93] |
SKRLJ N, VRANAC T, POPOVIĆ M, CURIN ŠERBEC V, DOLINAR M. Specific binding of the pathogenic prion isoform: development and characterization of a humanized single-chain variable antibody fragment. PLoS ONE, 2011, 6(1): e15783.
|
[94] |
LU Z P, KAMAT K, JOHNSON B P, YIN C C, SCHOLLER N, ABBOTT K L. Generation of a Fully Human scFv that binds Tumor-Specific Glycoforms. Scientific Reports, 2019, 9(1): 5101.
doi: 10.1038/s41598-019-41567-6
pmid: 30911061
|
[95] |
WANG J P, DONG J, DUAN C F, ZHANG H C, HE X, WANG G N, ZHAO G X, LIU J. Production and directional evolution of antisarafloxacin ScFv antibody for immunoassay of fluoroquinolones in milk. Journal of Agricultural and Food Chemistry, 2016, 64(42): 7957-7965.
doi: 10.1021/acs.jafc.6b03356
pmid: 27718569
|
[96] |
SARKER A, RATHORE A S, KHALID M F, GUPTA R D. Structure- guided affinity maturation of a single-chain variable fragment antibody against the Fu-bc epitope of the dengue virus envelope protein. Journal of Biological Chemistry, 2022, 298(4): 101772.
|
[97] |
WANG Z H, LI Y, LIANG W B, ZHENG J S, LI S H, HU C M, CHEN A. A highly sensitive detection system based on proximity- dependent hybridization with computer-aided affinity maturation of a scFv antibody. Scientific Reports, 2018, 8(1): 3837.
|
[98] |
HE T, NIE Y, YAN T T, ZHU J, HE X L, LI Y, ZHANG Q, TANG X Q, HU R, YANG Y H, LIU M L. Enhancing the detection sensitivity of nanobody against aflatoxin B1 through structure-guided modification. International Journal of Biological Macromolecules, 2022, 194: 188-197.
|
[99] |
PARK S G, LEE J S, JE E Y, KIM I J, CHUNG J H, CHOI I H. Affinity maturation of natural antibody using a chain shuffling technique and the expression of recombinant antibodies in Escherichia coli. Biochemical and Biophysical Research Communications, 2000, 275(2): 553-557.
|
[100] |
LOU J, GEREN I, GARCIA-RODRIGUEZ C, FORSYTH C M, WEN W, KNOPP K, BROWN J, SMITH T, SMITH L A, MARKS J D. Affinity maturation of human botulinum neurotoxin antibodies by light chain shuffling via yeast mating. Protein Engineering, Design & Selection, 2010, 23(4): 311-319.
|
[101] |
DONG S, GAO M J, GUAN L J, ZHANG H, WANG Y L, LIU B B, LI P, QIAO K, LIU X J, ZHANG C Z. Construction, expression, and identification of double light chain (VL-VL) antibody from a unique bt Cry1-specific monoclonal antibody. Food Analytical Methods, 2020, 13(8): 1570-1582.
|
[102] |
KAWA S, ONDA M, HO M, KREITMAN R J, BERA T K, PASTAN I. The improvement of an anti-CD22 immunotoxin: conversion to single-chain and disulfide stabilized form and affinity maturation by alanine scan. mAbs, 2011, 3(5): 479-486.
doi: 10.4161/mabs.3.5.17228
pmid: 22048691
|
[103] |
OYAMA H, YAMAGUCHI S, NAKATA S, NIWA T, KOBAYASHI N. “Breeding” diagnostic antibodies for higher assay performance: A 250-fold affinity-matured antibody mutant targeting a small biomarker. Analytical Chemistry, 2013, 85(10): 4930-4937.
|
[104] |
HOSEINPOOR R, MOUSAVI GARGARI S L, RASOOLI I, RAJABIBAZL M, SHAHI B. Functional mutations in and characterization of VHH against Helicobacter pylori urease. Applied Biochemistry and Biotechnology, 2014, 172(6): 3079-3091.
|
[105] |
MEI M, LU M Q, LI S Q, REN X Y, XING B B, HU Y, WU Y Q, CHEN H, WANG L H, YI L, MING K, WEI Z G. Development of nanobodies specific to clumping factors A of Staphylococcus aureus by yeast surface display. International Journal of Biological Macromolecules, 2024, 259: 129208.
|
[106] |
LIU J L, HU Z Q, XING S, XUE S, LI H P, ZHANG J B, LIAO Y C. Attainment of 15-fold higher affinity of a Fusarium-specific single- chain antibody by directed molecular evolution coupled to phage display. Molecular Biotechnology, 2012, 52(2): 111-122.
|
[107] |
XIAO Y M, DONG H J, WU C C, ZHANG K D, JIANG X Q, CHEN J Y, WANG H W, XU S J, ZHANG F Y, GU L C. Nanobody in a double “Y” -shaped assembly: A promising candidate for lateral flow immunoassays. Analytical Chemistry, 2024, 96(18): 7130-7137.
|
[108] |
KUMADA Y, KANG B, YAMAKAWA K, KISHIMOTO M, HORIUCHI J I. Efficient preparation and site-directed immobilization of VHH antibodies by genetic fusion of poly(methylmethacrylate)- binding peptide (PMMA-Tag). Biotechnology Progress, 2015, 31(6): 1563-1570.
|
[109] |
MCCONNELL A D, SPASOJEVICH V, MACOMBER J L, KRAPF I P, CHEN A, SHEFFER J C, BERKEBILE A, HORLICK R A, NEBEN S, KING D J, BOWERS P M. An integrated approach to extreme thermostabilization and affinity maturation of an antibody. Protein Engineering, Design & Selection, 2013, 26(2): 151-164.
|
[110] |
SUN W, YANG Z N, LIN H, LIU M, ZHAO C X, HOU X Y, HU Z W, CUI B. Improvement in affinity and thermostability of a fully human antibody against interleukin-17A by yeast-display technology and CDR grafting. Acta Pharmaceutica Sinica B, 2019, 9(5): 960-972.
doi: 10.1016/j.apsb.2019.02.007
pmid: 31649846
|
[111] |
TU C, TERRAUBE V, TAM A S P, STOCHAJ W, FENNELL B J, LIN L, STAHL M, LAVALLIE E R, SOMERS W, FINLAY W J J, MOSYAK L, BARD J, CUNNINGHAM O. A combination of structural and empirical analyses delineates the key contacts mediating stability and affinity increases in an optimized biotherapeutic single-chain fv (scFv). Journal of Biological Chemistry, 2016, 291(3): 1267-1276.
doi: 10.1074/jbc.M115.688010
pmid: 26515064
|
[112] |
MA H, Ó'FÁGÁIN C, O’KENNEDY R. Unravelling enhancement of antibody fragment stability-Role of format structure and cysteine modification. Journal of Immunological Methods, 2019, 464: 57-63.
|
[113] |
IKEUCHI E, KURODA D, NAKAKIDO M, MURAKAMI A, TSUMOTO K. Delicate balance among thermal stability, binding affinity, and conformational space explored by single-domain V(H)H antibodies. Scientific Reports, 2021, 11(1): 20624.
|
[114] |
TOMIMOTO Y, YAMAZAKI R, SHIRAI H. Increasing the melting temperature of VHH with the in silico free energy score. Scientific Reports, 2023, 13(1): 4922.
doi: 10.1038/s41598-023-32022-8
pmid: 36966210
|
[115] |
XU C X, YANG Y, LIU L W, LI J H, LIU X Q, ZHANG X, LIU Y, ZHANG C Z, LIU X J. Microcystin-LR nanobody screening from an alpaca phage display nanobody library and its expression and application. Ecotoxicology and Environmental Safety, 2018, 151: 220-227.
doi: S0147-6513(18)30005-8
pmid: 29353171
|
[116] |
KULMALA A, HUOVINEN T, LAMMINMÄKI U. Effect of DNA sequence of Fab fragment on yield characteristics and cell growth of E. coli. Scientific Reports, 2017, 7(1): 3796.
|
[117] |
VENTURI M, SEIFERT C, HUNTE C. High level production of functional antibody fab fragments in an oxidizing bacterial cytoplasm. Journal of Molecular Biology, 2002, 315(1): 1-8.
pmid: 11771962
|
[118] |
GACIARZ A, VEIJOLA J, UCHIDA Y, SAARANEN M J, WANG C G, HÖRKKÖ S, RUDDOCK L W. Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli. Microbial Cell Factories, 2016, 15: 22.
|
[119] |
WANG Z, ZHANG J, WANG X D, WEI D Z. High level expression and characterization of the recombinant immunotoxin DAB389-4D5 scFv targeting HER2/neu-positive ovarian carcinoma cells. Process Biochemistry, 2019, 80: 26-34.
|
[120] |
WANG Y, YUAN W J, GUO S Q, LI Q Q, CHEN X M, LI C, LIU Q Y, SUN L, CHEN Z G, YUAN Z H, LUO C, CHEN S J, TONG S P, NASSAL M, WEN Y M, WANG Y X. A 33-residue peptide tag increases solubility and stability of Escherichia coli produced single-chain antibody fragments. Nature Communications, 2022, 13(1): 4614.
|
[121] |
PETRUS M L C, KIEFER L A, PURI P, HEEMSKERK E, SEAMAN M S, BAROUCH D H, ARIAS S, VAN WEZEL G P, HAVENGA M. A microbial expression system for high-level production of scFv HIV-neutralizing antibody fragments in Escherichia coli. Applied Microbiology and Biotechnology, 2019, 103(21/22): 8875-8888.
|
[122] |
NGHIA N H, KUMADA Y, KISHIMOTO M, HORIUCHI J I. Effective production of single-chain variable fragment (scFv) antibody using recombinant Escherichia coli by DO-stat fed-batch culture. Journal of Bioscience and Bioengineering, 2021, 132(1): 56-63.
|
[123] |
FRENKEN L G J, VAN DER LINDEN R H J, HERMANS P W J J, BOS J W, RUULS R C, DE GEUS B, VERRIPS C T. Isolation of antigen specific Llama V HH antibody fragments and their high level secretion by Saccharomyces cerevisiae. Journal of Biotechnology, 2000, 78(1): 11-21.
|
[124] |
MOVAGHAR ASAREH S, SAVEI T, ARJMAND S, RANAEI SIADAT S O, FATEMI F, POURMADADI M, SHABANI SHAYEH J. Expression of functional eGFP-fused antigen-binding fragment of ranibizumab in Pichia pastoris. BioImpacts, 2022, 12(3): 203-210.
|
[125] |
GÓMEZ-RAMÍREZ I V, CORRALES-GARCÍA L L, POSSANI L D, RIAÑO-UMBARILA L, BECERRIL B. Expression in Pichia pastoris of human antibody fragments that neutralize venoms of Mexican scorpions. Toxicon, 2023, 223: 107012.
|
[126] |
ZAHRL R J, PRIELHOFER R, BURGARD J, MATTANOVICH D, GASSER B. Synthetic activation of yeast stress response improves secretion of recombinant proteins. New Biotechnology, 2023, 73: 19-28.
doi: 10.1016/j.nbt.2023.01.001
pmid: 36603701
|
[127] |
EBIHARA T, MASUDA A, TAKAHASHI D, HINO M, MON H, KAKINO K, FUJII T, FUJITA R, UEDA T, LEE J M, KUSAKABE T. Production of scFv fab, and IgG of CR3022 antibodies against SARS-CoV-2 using silkworm-baculovirus expression system. Molecular Biotechnology, 2021, 63(12): 1223-1234.
|
[128] |
YAO N, AI L, DONG Y Y, LIU X M, WANG D Z, WANG N, LI X W, WANG F W, LI X, LI H Y, JIANG C. Expression of recombinant human anti-TNF-α scFv-Fc in Arabidopsis thaliana seeds. Genetics and Molecular Research, 2016, 15(2): gmr7726.
|
[129] |
AI S S, YUKI Y, KUROKAWA S, SATO S, GODA Y, UCHIDA M, MATSUMOTO N, SAGARA H, WATANABE Y, KURODA M, SAKON N, SUGIURA K, NAKAHASHI-OUCHIDA R, USHIJIMA H, FUJIHASHI K, KIYONO H. Development of antibody- fragment-producing rice for neutralization of human norovirus. Frontiers in Plant Science, 2021, 12: 639953.
|
[130] |
BALAJI P, SATHEESHKUMAR P K, VENKATARAMAN K, VIJAYALAKSHMI M A. Expression of anti-tumor necrosis factor alpha (TNFα) single-chain variable fragment (scFv) in Spirodela punctata plants transformed with Agrobacterium tumefaciens. Biotechnology and Applied Biochemistry, 2016, 63(3): 354-361.
|
[131] |
MUNJAL N, GARZON-SANABRIA A, QUINONES K, GREGORY J, NIKOLOV Z. Light-induced production of an antibody fragment and malaria vaccine antigen from Chlamydomonas reinhardtii. Processes, 2014, 2(3): 625-638.
|
[132] |
LAKOWITZ A, KRULL R, BIEDENDIECK R. Recombinant production of the antibody fragment D1.3 scFv with different Bacillus strains. Microbial Cell Factories, 2017, 16(1): 14.
|
[133] |
HISADA H, TSUTSUMI H, ISHIDA H, HATA Y. High production of llama variable heavy-chain antibody fragment (VHH) fused to various reader proteins by Aspergillus oryzae. Applied Microbiology and Biotechnology, 2013, 97(2): 761-766.
|
[134] |
RODRIGUEZ C, NAM D H, KRUCHOWY E, GE X. Efficient antibody assembly in E. coli periplasm by disulfide bond folding factor co-expression and culture optimization. Applied Biochemistry and Biotechnology, 2017, 183(2): 520-529.
|
[135] |
RAHBARNIA L, FARAJNIA S, BABAEI H, MAJIDI J, DARIUSHNEJAD H, HOSSEINI M K. Isolation and characterization of a novel human scFv inhibiting EGFR vIII expressing cancers. Immunology Letters, 2016, 180: 31-38.
doi: S0165-2478(16)30229-2
pmid: 27984065
|
[136] |
LIU M, WANG B, WANG F, YANG Z, GAO D, ZHANG C Y, MA L X, YU X L. Soluble expression of single-chain variable fragment (scFv) in Escherichia coli using superfolder green fluorescent protein as fusion partner. Applied Microbiology and Biotechnology, 2019, 103(15): 6071-6079.
|
[137] |
QIU Y L, HE Q H, XU Y, BHUNIA A K, TU Z, CHEN B, LIU Y Y. Deoxynivalenol-mimic nanobody isolated from a naive phage display nanobody library and its application in immunoassay. Analytica Chimica Acta, 2015, 887: 201-208.
|
[138] |
MAGGI M, SCOTTI C. Enhanced expression and purification of camelid single domain VHH antibodies from classical inclusion bodies. Protein Expression and Purification, 2017, 136: 39-44.
doi: S1046-5928(17)30017-7
pmid: 28214589
|
[139] |
VALLET-COURBIN A, LARIVIÈRE M, HOCQUELLET A, HEMADOU A, PARIMALA S N, LAROCHE-TRAINEAU J, SANTARELLI X, CLOFENT-SANCHEZ G, JACOBIN-VALAT M J, NOUBHANI A. A recombinant human anti-platelet scfv antibody produced in Pichia pastoris for atheroma targeting. PLoS ONE, 2017, 12(1): e0170305.
|
[140] |
KOERBER J T, HORNSBY M J, WELLS J A. An improved single-chain fab platform for efficient display and recombinant expression. Journal of Molecular Biology, 2015, 427(2): 576-586.
doi: 10.1016/j.jmb.2014.11.017
pmid: 25481745
|
[141] |
FANG X T, SEHLIN D, LANNFELT L, SYVÄNEN S, HULTQVIST G. Efficient and inexpensive transient expression of multispecific multivalent antibodies in Expi293 cells. Biological Procedures Online, 2017, 19: 11.
|
[142] |
DOLGIKH V V, ZHURAVLYOV V S, SENDERSKIY I V, IGNATIEVA A N, TIMOFEEV S A, SELIVERSTOVA E V. Heterologous expression of scFv fragment against Vairimorpha (Nosema) ceranae hexokinase in Sf9 cell culture inhibits microsporidia intracellular growth. Journal of Invertebrate Pathology, 2022, 191: 107755.
|
[143] |
刘爱平, 李诚, 刘书亮, 王小红, 陈福生. 抗黄曲霉毒素B1单链抗体在Sf9昆虫细胞中的表达与性质分析. 中国生物工程杂志, 2016, 36(5): 40-45.
|
|
LIU A P, LI C, LIU S L, WANG X H, CHEN F S. Expression and characterization of anti-AFB1 scFv expressed in Sf9 cell. China Biotechnology, 2016, 36(5): 40-45. (in Chinese)
|
[144] |
刘蕊, 项丹丹, 刘鹏琰, 梁晓, 郭逸蓉, 朱国念. 抗对硫磷单链抗体在昆虫细胞中的表达及活性鉴定. 农药学学报, 2016, 18(2): 177-184.
|
|
LIU R, XIANG D D, LIU P Y, LIANG X, GUO Y R, ZHU G N. Expression and characterization of single-chain variable fragment (scFv) antibody against parathion-ethyl in insect cells. Chinese Journal of Pesticide Science, 2016, 18(2): 177-184. (in Chinese)
|
[145] |
MORI K, HAMADA H, OGAWA T, OHMURO-MATSUYAMA Y, KATSUDA T, YAMAJI H. Efficient production of antibody Fab fragment by transient gene expression in insect cells. Journal of Bioscience and Bioengineering, 2017, 124(2): 221-226.
doi: S1389-1723(17)30123-8
pmid: 28410897
|
[146] |
VILLANI M E, MORGUN B, BRUNETTI P, MARUSIC C, LOMBARDI R, PISONI I, BACCI C, DESIDERIO A, BENVENUTO E, DONINI M. Plant pharming of a full-sized, tumour-targeting antibody using different expression strategies. Plant Biotechnology Journal, 2009, 7(1): 59-72.
doi: 10.1111/j.1467-7652.2008.00371.x
pmid: 18793269
|
[147] |
PARK S R, LEE J H, KIM K, KIM T M, LEE S H, CHOO Y K, KIM K S, KO K. Expression and in vitro function of anti-breast cancer llama-based single domain antibody VHH expressed in tobacco plants. International Journal of Molecular Sciences, 2020, 21(4): 1354.
|
[148] |
DE MEYER T, LAUKENS B, NOLF J, VAN LERBERGE E, DE RYCKE R, DE BEUCKELAER A, DE BUCK S, CALLEWAERT N, DEPICKER A. Comparison of VHH-Fc antibody production in Arabidopsis thaliana, Nicotiana benthamiana and Pichia pastoris. Plant Biotechnology Journal, 2015, 13(7): 938-947.
|
[149] |
MIZUKAMI M, ONISHI H, HANAGATA H, MIYAUCHI A, ITO Y, TOKUNAGA H, ISHIBASHI M, ARAKAWA T, TOKUNAGA M. Efficient production of Trastuzumab Fab antibody fragments in Brevibacillus choshinensis expression system. Protein Expression and Purification, 2018, 150: 109-118.
|
[150] |
MIZUKAMI M, TOKUNAGA H, ONISHI H, UENO Y, HANAGATA H, MIYAZAKI N, KIYOSE N, ITO Y, ISHIBASHI M, HAGIHARA Y, ARAKAWA T, MIYAUCHI A, TOKUNAGA M. Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Protein Expression and Purification, 2015, 105: 23-32.
|
[151] |
MAGAÑA-ORTÍZ D, FERNÁNDEZ F, LOSKE A M, GÓMEZ-LIM M A. Extracellular Expression in Aspergillus niger of an Antibody Fused to Leishmania sp. Antigens. Current Microbiology, 2018, 75(1): 40-48.
|
[152] |
EDUPUGANTI S R, EDUPUGANTI O P, HEARTY S, O’KENNEDY R. A highly stable, sensitive, regenerable and rapid immunoassay for detecting aflatoxin B1 in corn incorporating covalent AFB1 immobilization and a recombinant Fab antibody. Talanta, 2013, 115: 329-335.
doi: 10.1016/j.talanta.2013.05.012
pmid: 24054599
|
[153] |
ESER E, EKIZ O Ö, EKIZ H İ. Utilizing fab fragment-conjugated surface plasmon resonance-based biosensor for detection of Salmonella Enteritidis. Journal of Molecular Recognition, 2024, 37(3): e3078.
|
[154] |
DE LA CRUZ S, CUBILLOS-ZAPATA C, LÓPEZ-CALLEJA I M, GHOSH S, ALCOCER M, GONZÁLEZ I, MARTÍN R, GARCÍA T. Isolation of recombinant antibody fragments (scFv) by phage display technology for detection of almond allergens in food products. Food Control, 2015, 54: 322-330.
|
[155] |
ARSALAN A, ZOFAIR S F F, KHAN M A, ZAKARIYA S M, KHAN R H, YOUNUS H. Modulation of alkaline phosphatase based ELISA in the presence of ions and citrate stabilized nanoparticles. Catalysis Letters, 2024, 154(7): 3839-3857.
|
[156] |
XIONG Y, PEI K, WU Y Q, XIONG Y H. Colorimetric ELISA based on glucose oxidase-regulated the color of acid-base indicator for sensitive detection of aflatoxin B1 in corn samples. Food Control, 2017, 78: 317-323.
|
[157] |
LIU Y, LIU D, SHEN C, DONG S, HU X D, LIN M M, ZHANG X, XU C X, ZHONG J F, XIE Y J, ZHANG C Z, WANG D L, LIU X J. Construction and characterization of a class-specific single-chain variable fragment against pyrethroid metabolites. Applied Microbiology and Biotechnology, 2020, 104(17): 7345-7354.
doi: 10.1007/s00253-020-10728-3
pmid: 32666189
|
[158] |
ZHANG X, XU C X, ZHANG C Z, LIU Y, XIE Y J, LIU X J. Established a new double antibodies sandwich enzyme-linked immunosorbent assay for detecting Bacillus thuringiensis (Bt) Cry1Ab toxin based single-chain variable fragments from a naive mouse phage displayed library. Toxicon, 2014, 81: 13-22.
|
[159] |
YANG Y Y, WANG Y, ZHANG Y F, WANG F, LIANG Y F, YANG J Y, XU Z L, SHEN Y D, WANG H. Nanobody-based indirect competitive ELISA for sensitive detection of 19-nortestosterone in animal urine. Biomolecules, 2021, 11(2): 167.
|
[160] |
YANG S L, SHANG Y J, YIN S H, WANG D, CAI J P, GONG Z L, SERGE M, LIU X T. A phage-displayed single domain antibody fused to alkaline phosphatase for detection of porcine circovirus type 2. Journal of Virological Methods, 2015, 213: 84-92.
|
[161] |
REN Y R, WEI J, WANG Y, WANG P, JI Y W, LIU B Y, WANG J L, GONZÁLEZ-SAPIENZA G, WANG Y R. Development of a streptavidin-bridged enhanced sandwich ELISA based on self-paired nanobodies for monitoring multiplex Salmonella serogroups. Analytica Chimica Acta, 2022, 1203: 339705.
|
[162] |
CHAN C E Z, CHAN A H Y, LIM A P C, HANSON B J. Comparison of the efficiency of antibody selection from semi-synthetic scFv and non-immune Fab phage display libraries against protein targets for rapid development of diagnostic immunoassays. Journal of Immunological Methods, 2011, 373(1/2): 79-88.
|
[163] |
WU P C, SONG J R, SUN C X, ZUO W C, DAI J J, JU Y M. Recent advances of lateral flow immunoassay for bacterial detection: capture-antibody-independent strategies and high-sensitivity detection technologies. TrAC Trends in Analytical Chemistry, 2023, 166: 117203.
|
[164] |
HE K, ZHANG X Y, ZHAO R P, WANG L X, FENG T T, WEI D. An enzyme-linked immunosorbent assay and a gold-nanoparticle based immunochromatographic test for amatoxins using recombinant antibody. Microchimica Acta, 2016, 183(7): 2211-2219.
|
[165] |
LIU M L, HE X T, XU Z L, DENG H, SHEN Y D, LUO L, SHEN X, CHEN Z J, HAMMOCK B, WANG H. Development of a biotinylated nanobody-based gold nanoparticle immunochromatographic assay for the detection of procymidone in crops. Journal of Agricultural and Food Chemistry, 2023, 71(35): 13137-13146.
|
[166] |
WU H F, LI Y H, LI Y C, CUI Y, JIA C H, WANG J L, PAN J C, YU G G, ZHANG X L, WANG X T, GUO P R, JI Y W. The “umbrella of tolerance”: Nanobodies-armed photothermal lateral flow immunoassay for the detection of staphylococcal enterotoxin B. Chemical Engineering Journal, 2023, 470: 144273.
|
[167] |
ZHANG C, HU J N, WU X X, SHI J Y, HAMMOCK B D. Development of the Au@Pt-labeled nanobody lateral-flow nanozyme immunoassay for visual detection of 3-phenoxybenzoic acid in milk and lake water. ACS Agricultural Science & Technology, 2022, 2(3): 573-579.
|
[168] |
WANG X Y, SUN T Q, SHEN W L, LIU M Z, LIU W T, ZUO H, ZHANG Y Y, GENG L, WANG W, SHAO C L, BAI J L. A lateral flow immunochromatographic assay based on nanobody-oriented coupling strategy for aflatoxin B1 detection. Sensors and Actuators B: Chemical, 2023, 394: 134419.
|
[169] |
XU J, SUN J D, LU X, WANG Y Y, ZHANG Y Z, SUN X L. A highly sensitive fluorescence immunochromatography strip for thiacloprid in fruits and vegetables using recombinant antibodies. Talanta, 2023, 256: 124258.
|
[170] |
ZHANG F Y, CHEN J J, ZHAO F K, LIU M X, PENG K G, PU Y H, SANG Y X, WANG S, WANG X H. Microfabrication of engineered Lactococcus lactis biocarriers with genetically programmed immunorecognition probes for sensitive lateral flow immunoassay of antibiotic in milk and lake water. Biosensors and Bioelectronics, 2024, 252: 116139.
|
[171] |
QIU Y L, YOU A J, FU X S, ZHANG M Z, CUI H F, ZHANG B, QIN W W, YE Z H, YU X P. Quantum-dot-bead-based fluorescence- linked immunosorbent assay for sensitive detection of Cry2A toxin in cereals using nanobodies. Foods, 2022, 11(18): 2780.
|
[172] |
ZHAO S T, DONG J H, JEONG H J, OKUMURA K, UEDA H. Rapid detection of the neonicotinoid insecticide imidacloprid using a quenchbody assay. Analytical and Bioanalytical Chemistry, 2018, 410(17): 4219-4226.
doi: 10.1007/s00216-018-1074-y
pmid: 29704031
|
[173] |
CHEN M, DING S Y, WEN K, XIE S L, WANG Q, PEI X Y, XIE J, WANG Z H, JIANG H Y. Development of a fluorescence-linked immunosorbent assay for detection of avermectins using a fluorescent single-domain antibody. Analytical Methods, 2015, 7(9): 3728-3734.
|
[174] |
WANG F, LI Z F, WAN D B, VASYLIEVA N, SHEN Y D, XU Z L, YANG J Y, GETTEMANS J, WANG H, HAMMOCK B D, SUN Y M. Enhanced non-toxic immunodetection of Alternaria mycotoxin tenuazonic acid based on ferritin-displayed anti-idiotypic nanobody- nanoluciferase multimers. Journal of Agricultural and Food Chemistry, 2021, 69(16): 4911-4917.
|
[175] |
ZHANG Y Q, XU Z L, WANG F, CAI J, DONG J X, ZHANG J R, SI R, WANG C L, WANG Y, SHEN Y D, SUN Y M, WANG H. Isolation of Bactrian camel single domain antibody for parathion and development of one-step dc-FEIA method using VHH-alkaline phosphatase fusion protein. Analytical Chemistry, 2018, 90(21): 12886-12892.
|
[176] |
DHEHIBI A, ALLAOUI A, RAOUAFI A, TERRAK M, BOUHAOUALA- ZAHAR B, HAMMADI M, RAOUAFI N, SALHI I. Nanobody-based sandwich immunoassay for pathogenic Escherichia coli F17 strain detection. Biosensors, 2023, 13(2): 299.
|
[177] |
TANG Z W, LIU X, WANG Y Y, CHEN Q, HAMMOCK B D, XU Y. Nanobody-based fluorescence resonance energy transfer immunoassay for noncompetitive and simultaneous detection of ochratoxin A and ochratoxin B. Environmental Pollution, 2019, 251: 238-245.
|
[178] |
ZHANG F Y, HAO D Y, LIU R B, WANG J T, SANG Y X, WANG S, WANG X H. Preparation and recognition mechanism study of an scFv targeting chloramphenicol for a hybridization chain reaction-CRISPR/ Cas12a amplified fluoroimmunoassay. Analytica Chimica Acta, 2024, 1293: 342283.
|
[179] |
DENG W J, WANG D, DAI P, HONG Y P, XIONG J H, DUAN L Y, LU R M, WAN J C, DU H Y, HAMMOCK B D, YANG W Y. Development of a sensitive direct competitive chemiluminescent enzyme immunoassay for gentamicin based on the construction of a specific single-chain variable fragment-alkaline phosphatase fusion protein. Microchemical Journal, 2024, 197: 109706.
|
[180] |
SHU M, XU Y, LIU X, LI Y P, HE Q H, TU Z, FU J H, GEE S J, HAMMOCK B D. Anti-idiotypic nanobody-alkaline phosphatase fusion proteins: development of a one-step competitive enzyme immunoassay for fumonisin B1 detection in cereal. Analytica Chimica Acta, 2016, 924: 53-59.
doi: S0003-2670(16)30403-2
pmid: 27181644
|
[181] |
GUO P Y, HUANG K Y, CHEN Z J, XU Z L, OU A F, YIN Q C, WANG H, SHEN X, ZHOU K. A chemiluminescence enzyme immunoassay based on biotinylated nanobody and streptavidin amplification for diazinon sensitive quantification. Biosensors, 2023, 13(6): 577.
|
[182] |
DONG J X, LI Z F, WANG Y, JIN M J, SHEN Y D, XU Z L, ABD EL-ATY A M, GEE S J, HAMMOCK B D, SUN Y M, WANG H. Generation of functional single-chain fragment variable from hybridoma and development of chemiluminescence enzyme immunoassay for determination of total malachite green in Tilapia fish. Food Chemistry, 2021, 337: 127780.
|
[183] |
ZHANG Y, LIAO X R, YU G G, WEI J, WANG P, WANG Y Q, JING Y N, WANG J M, CHEN P Y, WANG J L, WANG H, WANG Y R. Phage-displayed nanobody as a sensitive nanoprobe to enhance chemiluminescent immunoassay for Cronobacter sakazakii detection in dairy products. Analytical Chemistry, 2023, 95(36): 13698-13707.
|
[184] |
SUN T Q, ZHAO Z Q, LIU W T, XU Z H, HE H W, NING B A, JIANG Y Q, GAO Z X. Development of sandwich chemiluminescent immunoassay based on an anti-staphylococcal enterotoxin B Nanobody-Alkaline phosphatase fusion protein for detection of staphylococcal enterotoxin B. Analytica Chimica Acta, 2020, 1108: 28-36.
|
[185] |
YIN W J, ZHANG J X, WANG H, WANG Y, ZENG X, XU Z L, YANG J Y, XIAO Z L, HAMMOCK B D, WEN P. A highly sensitive electrochemical immunosensor based on electrospun nanocomposite for the detection of parathion. Food Chemistry, 2023, 404: 134371.
|
[186] |
ZHU M, LI M, LI G H, ZHOU Z K, LIU H, LEI H T, SHEN Y F, WAN Y K. Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline. Microchimica Acta, 2015, 182(15): 2451-2459.
|
[187] |
ROMANAZZO D, RICCI F, VOLPE G, ELLIOTT C T, VESCO S, KROEGER K, MOSCONE D, STROKA J, VAN EGMOND H, VEHNIÄINEN M, PALLESCHI G. Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples. Biosensors and Bioelectronics, 2010, 25(12): 2615-2621.
|
[188] |
ZHOU Q, LI G H, ZHANG Y J, ZHU M, WAN Y K, SHEN Y F. Highly selective and sensitive electrochemical immunoassay of Cry1C using nanobody and π-π stacked graphene oxide/thionine assembly. Analytical Chemistry, 2016, 88(19): 9830-9836.
pmid: 27617345
|
[189] |
WANG P, YU G G, WEI J, LIAO X R, ZHANG Y, REN Y R, ZHANG C, WANG Y Q, ZHANG D H, WANG J L, WANG Y R. A single thiolated-phage displayed nanobody-based biosensor for label-free detection of foodborne pathogen. Journal of Hazardous Materials, 2023, 443: 130157.
|
[190] |
WANG X X, HE Q H, XU Y, LIU X, SHU M, TU Z, LI Y P, WANG W, CAO D M. Anti-idiotypic VHH phage display-mediated immuno- PCR for ultrasensitive determination of mycotoxin Zearalenone in cereals. Talanta, 2016, 147: 410-415.
|
[191] |
JI Y W, HE Q H, XU Y, TU Z, YANG H W, QIU Y L, WANG X X, LIU Y Y. Phage displayed anti-idiotypic nanobody mediated immuno-PCR for sensitive and environmentally friendly detection of mycotoxin ochratoxin A. Analytical Methods, 2016, 8(43): 7824-7831.
|
[192] |
WANG R Z, FANG S, XIANG S S, LING S M, YUAN J, WANG S H. Generation and characterization of a scFv antibody against T3SS needle of Vibrio parahaemolyticus. Indian Journal of Microbiology, 2014, 54(2): 143-150.
|
[193] |
HEMMER C, DJENNANE S, ACKERER L, HLEIBIEH K, MARMONIER A, GERSCH S, GARCIA S, VIGNE E, KOMAR V, PERRIN M, GERTZ C, BELVAL L, BERTHOLD F, MONSION B, SCHMITT-KEICHINGER C, LEMAIRE O, LORBER B, GUTIÉRREZ C, MUYLDERMANS S, DEMANGEAT G, RITZENTHALER C. Nanobody-mediated resistance to Grapevine fanleaf virus in plants. Plant Biotechnology Journal, 2018, 16(2): 660-671.
doi: 10.1111/pbi.12819
pmid: 28796912
|
[194] |
GHANNAM A, KUMARI S, MUYLDERMANS S, ABBADY A Q. Camelid nanobodies with high affinity for broad bean mottle virus: A possible promising tool to immunomodulate plant resistance against viruses. Plant Molecular Biology, 2015, 87(4/5): 355-369.
|
[195] |
JERNE N K. Towards a network theory of the immune system. Annales D’immunologie, 1974, 125: 373-389.
|
[196] |
|
|
XU C X, JIN J F, SUN X M, SHEN C, ZHANG X, CHEN C Y, LIU X J, LIU Y. Rational design and innovative application strategy for the insecticidal protein based on bt toxin. Scientia Agricultura Sinica, 2024, 57(1): 96-125. doi: 10.3864/j.issn.0578-1752.2024.01.008. (in Chinese)
|
[197] |
QIN H, JIN X H, HUANG W Q, LIU Y L. Production of an anti-idiotypic antibody single chain variable fragment vaccine against Edwardsiella tarda. Acta Biochimica et Biophysica Sinica, 2010, 42(2): 129-136.
|
[198] |
KHAING K K, RANGNOI K, MICHLITS H, BOONKERD N, TEAUMROONG N, TITTABUTR P, YAMABHAI M. Application of recombinant human scFv antibody as a powerful tool to monitor nitrogen fixing biofertilizer in rice and legume. Microbiology Spectrum, 2021, 9(3): e0209421.
|
[199] |
GARCIA-CALVO E, GARCÍA-GARCÍA A, RODRÍGUEZ S, TAKKINEN K, MARTÍN R, GARCÍA T. Production and characterization of novel fabs generated from different phage display libraries as probes for immunoassays for gluten detection in food. Foods, 2023, 12(17): 3274.
|
[200] |
MUKHAMETOVA L I, EREMIN S A, ARUTYUNYAN D A, GORYAINOVA O S, IVANOVA T I, TILLIB S V. Fluorescence polarization immunoassay of human lactoferrin in milk using small single-domain antibodies. Biochemistry Biokhimiia, 2022, 87(12): 1679-1688.
|
[201] |
WANG H M, ZHAO F C, HAN X, YANG Z Y. Production and characterization of a biotinylated single-chain variable fragment antibody for detection of parathion-methyl. Protein Expression and Purification, 2016, 126: 1-8.
doi: S1046-5928(16)30083-3
pmid: 27181246
|
[202] |
ZHANG J R, WANG Y, DONG J X, YANG J Y, ZHANG Y Q, WANG F, SI R, XU Z L, WANG H, XIAO Z L, SHEN Y D. Development of a simple pretreatment immunoassay based on an organic solvent-tolerant nanobody for the detection of carbofuran in vegetable and fruit samples. Biomolecules, 2019, 9(10): 576.
|
[203] |
WANG Y S, ZHOU H, FU Y N, WANG Z Z, GAO Q Q, YANG D C, KANG J, CHEN L, AN Z X, HAMMOCK B D, ZHANG J L, HUO J Q. Establishment of an indirect competitive immunoassay for the detection of dicamba based on a highly specific nanobody. Science of the Total Environment, 2024, 917: 170567.
|
[204] |
LI C, HE J X, REN H, ZHANG X Y, DU E Q, LI X P. Preparation of a chicken scFv to analyze gentamicin residue in animal derived food products. Analytical Chemistry, 2016, 88(7): 4092-4098.
doi: 10.1021/acs.analchem.6b00426
pmid: 26980703
|
[205] |
LIU C, LIN H, CAO L M, WANG K Q, SUI J X. Characterization, specific recognition, and the performance in fish matrix of a shark-derived single-domain antibody against enrofloxacin. Talanta, 2023, 265: 124852.
|
[206] |
LI L, WANG X Q, HOU R, WANG Y L, WANG X, XIE C Q, CHEN Y S, WU S M, PENG D P. Single-chain variable fragment antibody-based ic-ELISA for rapid detection of macrolides in porcine muscle and computational simulation of its interaction mechanism. Food Control, 2022, 133: 108571.
|
[207] |
WANG Y R, LI P W, ZHANG Q, HU X F, ZHANG W. A toxin-free enzyme-linked immunosorbent assay for the analysis of aflatoxins based on a VHH surrogate standard. Analytical and Bioanalytical Chemistry, 2016, 408(22): 6019-6026.
doi: 10.1007/s00216-016-9370-x
pmid: 27002610
|
[208] |
LEIVO J, VEHNIÄINEN M, LAMMINMÄKI U. Phage display selection of an anti-idiotype-antibody with broad-specificity to deoxynivalenol mycotoxins. Toxins, 2020, 13(1): 18.
|
[209] |
WANG W X, GU G, YIN R Y, FU J J, JING M P, SHEN Z, LAI D W, WANG B M, ZHOU L G. A nanobody-based immunoassay for detection of ustilaginoidins in rice samples. Toxins, 2022, 14(10): 659.
|
[210] |
XU Y, XIONG L, LI Y P, XIONG Y H, TU Z, FU J H, CHEN B. Anti-idiotypic nanobody as citrinin mimotope from a naive alpaca heavy chain single domain antibody library. Analytical and Bioanalytical Chemistry, 2015, 407(18): 5333-5341.
doi: 10.1007/s00216-015-8693-3
pmid: 25910884
|
[211] |
HARA Y, DONG J H, UEDA H. Open-sandwich immunoassay for sensitive and broad-range detection of a shellfish toxin gonyautoxin. Analytica Chimica Acta, 2013, 793: 107-113.
doi: 10.1016/j.aca.2013.07.024
pmid: 23953213
|
[212] |
LI M, ZHU M, ZHANG C Z, LIU X J, WAN Y K. Uniform orientation of biotinylated nanobody as an affinity binder for detection of Bacillus thuringiensis (Bt) Cry1Ac toxin. Toxins, 2014, 6(12): 3208-3222.
|
[213] |
LIANG Y F, WANG Y, WANG F, LI J D, WANG C L, DONG J H, UEDA H, XIAO Z L, SHEN Y D, XU Z L, WANG H. An enhanced open sandwich immunoassay by molecular evolution for noncompetitive detection of Alternaria mycotoxin tenuazonic acid. Food Chemistry, 2021, 361: 130103.
|
[214] |
TU Z, CHEN Q, LI Y P, XIONG Y H, XU Y, HU N, TAO Y. Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk. Analytical Biochemistry, 2016, 493: 1-7.
|
[215] |
WANG T, LI P W, ZHANG Q, ZHANG W, ZHANG Z W, WANG T, HE T. Determination of Aspergillus pathogens in agricultural products by a specific nanobody-polyclonal antibody sandwich ELISA. Scientific Reports, 2017, 7(1): 4348.
|
[216] |
GONG X, ZHU M, LI G H, LU X L, WAN Y K. Specific determination of influenza H7N2 virus based on biotinylated single-domain antibody from a phage-displayed library. Analytical Biochemistry, 2016, 500: 66-72.
doi: 10.1016/j.ab.2015.09.020
pmid: 26450565
|
[217] |
SEO H, LUBIS A D M, CHOI T J, JUNG T S, LEE T K, LEE S. Development of an immunoassay detection system for koi herpesvirus using recombinant single-chain variable fragments. Fishes, 2022, 7(6): 370.
|
[218] |
RAEISI H, SAFARNEJAD M R, SADEGHKHANI F. A new single-chain variable fragment (scFv) antibody provides sensitive and specific detection of Citrus tristeza virus. Journal of Virological Methods, 2022, 300: 114412.
|
[219] |
CHEN L M, TAN R Y, ZHOU Y M, ZHANG L Q, ZHANG S S, LI X Y, CONG Y, LI H M, SUN P P, UEDA H, DONG J H. Development of an Open sandwich ELISA for the detection of microcystin-LR. Microchemical Journal, 2020, 158: 105325.
|
[220] |
SALVADOR J P, VASYLIEVA N, GONZALEZ-GARCIA I, JIN M J, CASTER R, SIEGEL J B, HAMMOCK B D. Nanobody-based lateral flow immunoassay for the rapid detection of aflatoxin B1 in almond milk. ACS Food Science & Technology, 2022, 2(8): 1276-1282.
|
[221] |
QIU Y L, YOU A J, ZHANG M Z, CUI H F, FU X S, WANG J P, HUANG H Z, SHENTU X P, YE Z H, YU X P. Phage-displayed nanobody-based fluorescence-linked immunosorbent assay for the detection of Cry3Bb toxin in corn. LWT, 2022, 171: 114094.
|
[222] |
YU G G, WANG J M, ZHANG Y, WU H F, WANG Y Q, CUI Y, YANG Y F, TANG X Q, ZHANG Q, WANG J L, SUN J, CHEN R, WANG Y R, LI P W. Anti-idiotypic nanobody alkaline phosphatase fusion protein-triggered on-off-on fluorescence immunosensor for aflatoxin in cereals. Journal of Agricultural and Food Chemistry, 2023, 45: 17391-17398.
|
[223] |
QIU Y L, LI P, LIU B B, LIU Y, WANG Y L, TAO T T, XU J L, HAMMOCK B D, LIU X J, GUAN R F, ZHANG C Z. Phage- displayed nanobody based double antibody sandwich chemiluminescent immunoassay for the detection of Cry2A toxin in cereals. Food and Agricultural Immunology, 2019, 30(1): 924-936.
|
[224] |
TAO X Q, CHEN M, JIANG H Y, SHEN J Z, WANG Z H, WANG X, WU X P, WEN K. Chemiluminescence competitive indirect enzyme immunoassay for 20 fluoroquinolone residues in fish and shrimp based on a single-chain variable fragment. Analytical and Bioanalytical Chemistry, 2013, 405(23): 7477-7484.
doi: 10.1007/s00216-013-7174-9
pmid: 23842902
|
[225] |
ZHANG C, LIU Z L, BAI M F, WANG Y, LIAO X R, ZHANG Y, WANG P, WEI J, ZHANG H Y, WANG J L, WANG H, WANG Y R. An ultrasensitive sandwich chemiluminescent enzyme immunoassay based on phage-mediated double-nanobody for detection of Salmonella typhimurium in food. Sensors and Actuators B: Chemical, 2022, 352: 131058.
|
[226] |
TANG X Q, CATANANTE G, HUANG X R, MARTY J L, WANG H, ZHANG Q, LI P W. Screen-printed electrochemical immunosensor based on a novel nanobody for analyzing aflatoxin M1 in milk. Food Chemistry, 2022, 383: 132598.
|
[227] |
LIANG Y F, ZENG Y Y, LUO L, XU Z L, SHEN Y D, WANG H, HAMMOCK B D. Detection of acrylamide in foodstuffs by nanobody-based immunoassays. Journal of Agricultural and Food Chemistry, 2022, 70(29): 9179-9186.
doi: 10.1021/acs.jafc.2c01872
pmid: 35819336
|
[228] |
EDUPUGANTI S R, EDUPUGANTI O P, O’KENNEDY R. Generation of anti-Zearalenone scFv and its incorporation into surface plasmon resonance-based assay for the detection of Zearalenone in Sorghum. Food Control, 2013, 34(2): 668-674.
|
[229] |
HUANG W P, TU Z, NING Z Q, HE Q H, LI Y P. Development of real-time immuno-PCR based on phage displayed an anti-idiotypic nanobody for quantitative determination of citrinin in Monascus. Toxins, 2019, 11(10): 572.
|
[230] |
YU X W, YANG Y P, DIKICI E, DEO S K, DAUNERT S. Beyond antibodies as binding partners: the role of antibody mimetics in bioanalysis. Annual Review of Analytical Chemistry, 2017, 10(1): 293-320.
|
[231] |
刘媛, Huovinen Tuomas, 刘贤金, 梁颖, 张存政, 谢雅晶, 贺江, 王耘, 张霄. 基于磁珠和时间分辨荧光免疫分析的微囊藻毒素LR单链抗体筛选与鉴定. 中国农业科学, 2012, 45(2): 330-337. doi: 10.3864/j.issn.0578-1752.2012.02.015.
|
|
LIU Y, TUOMAS H, LIU X J, LIANG Y, ZHANG C Z, XIE Y J, HE J, WANG Y, ZHANG X. Screening and identification of single-chain antibodies against microcystin-LR by magnetic beads and time resolved fluorescence immunoassay. Scientia Agricultura Sinica, 2012, 45(2): 330-337. doi: 10.3864/j.issn.0578-1752.2012.02.015. (in Chinese)
|
[232] |
ABRAMSON J, ADLER J, DUNGER J, EVANS R, GREEN T, PRITZEL A, RONNEBERGER O, WILLMORE L, BALLARD A J, BAMBRICK J, BODENSTEIN S W, EVANS D A, HUNG C C, O’NEILL M, REIMAN D, TUNYASUVUNAKOOL K, WU Z, ŽEMGULYTE A, KOHLI P, JADERBERG M, HASSABIS D, JUMPER J M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630: 493-500.
|
[233] |
CHIBA C H, KNIRSCH M C, AZZONI A R, MOREIRA A R, STEPHANO M A. Cell-free protein synthesis: Advances on production process for biopharmaceuticals and immunobiological products. BioTechniques, 2021, 70(2): 126-133.
doi: 10.2144/btn-2020-0155
pmid: 33467890
|
[234] |
林伟琦. 食品安全快速检测技术的应用研究进展. 食品安全质量检测学报, 2020, 11(3): 961-967.
|
|
LIN W Q. Research progress on application of rapid food safety detection technology. Journal of Food Safety & Quality, 2020, 11(3): 961-967. (in Chinese)
|