Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4742-4756.doi: 10.3864/j.issn.0578-1752.2023.23.015

• HORTICULTURE • Previous Articles     Next Articles

Evaluation of Heat Tolerance of Herbaceous Peony and Screening of Its Identification Indices

HOU ZhaoYu(), GONG YiZhao, QIAN Yi, CHENG ZhuoYa, TAO Jun(), ZHAO DaQiu()   

  1. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2023-04-12 Accepted:2023-06-14 Online:2023-12-04 Published:2023-12-04
  • Contact: TAO Jun, ZHAO DaQiu

Abstract:

【Objective】 The multivariate statistical analysis method was used to evaluate the heat-tolerance of different herbaceous peony (Paeonia lactiflora Pall.) varieties, to screen the heat-tolerance identification indexes of peony, and finally to establish a more comprehensive and reliable heat-tolerance evaluation system of peony. 【Method】 In this study, 140 peony varieties were used as materials, and field experiments were used to measure 8 morphological and structural indexes, including heat damage index, plant height, crown width, and SPAD value; at the same time, 13 physiological indexes, such as malondialdehyde and relative electrical conductivity, were measured in August after high-temperature stress in summer. Correlation analysis, subordination function method, principal component analysis, cluster analysis and stepwise regression analysis were used to comprehensively evaluate the peony heat-tolerance and to screen the identification indexes of heat-tolerance. 【Result】 There were different degrees of variation among the 21 indicators, and the variation coefficient ranged from 6.66% to 78.02%. The variation coefficient was shown as follows: Catalase (CAT)>POD>Pn>qN>SOD>stomatal density>barrier tissue thickness/sponge tissue thickness>SSC>SPC>heat damage index>SPAD>Y(Ⅱ)>b>MDA>Y(NO)>crown width>leaf thickness>plant height>REC>Fv/Fm>Hue angle (H), among which, CATwas the largest coefficient of variation, and H was the smallest coefficient of variation; through the correlation analysis of each index, it was found that X1 (heat damage index) and X2 (plant height), X3 (crown width), X4 (SPAD), X7 (Fv/Fm), X12 (leaf thickness), X17 (SSC ) were extremely significantly negatively correlated, which were significantly negatively correlated with X6 (Pn), X8 [Y(Ⅱ)], X13 (stomatal density), X20 (CAT), while they were extremely significantly positively correlated with X5 (REC), X9 [Y(NO)], X16 (MDA) and X18 (SPC). There were different degrees of correlation among the indicators, which was relatively complicated; 21 indicators were extracted into 7 principal component factors through the principal component analysis method, and the contribution rates were 20.50%, 11.66%, 8.24%, 7.24%, 7.06%, 5.31%, and 4.85%, respectively, while the cumulative contribution rate reached 64.87%; the comprehensive score (W) of 140 peony varieties were calculated by the membership function analysis method. On this basis, cluster analysis was used to classify the peony cultivars into four types of heat resistance: “excellent” “good” “medium” and “poor”. The “excellent” type accounted for 14.3%, “good” type accounted for 26.4%, “medium” type accounted for 46.4%, and “poor” type accounted for 12.9%; the stepwise regression analysis was further used to establish the optimal linear regression equation: W=0.228-0.166X1+0.002X4+0.325X7-0.257X9+0.112X10+0.00028X13+0.002X17+0.00015X19+0.001X20, and 9 indicators were selected from 21 indicators (heat damage index), including X1(heat damage index), X4 (SPAD), X7 (Fv/Fm), X9 [Y(NO)], X10 (qN), X13 (pore density), X17 (SSC), X19 (SOD), and X20 (CAT), which were used as identification peony indicators of heat-resistance. 【Conclusion】 By using multivariate statistical analysis method to evaluate the heat resistance of peony, 140 peony varieties were divided into 4 categories (excellent, good, medium, and poor). 9 indexes including heat damage index and SPAD value were screened as identification indexes of heat-resistance of peony, to quickly evaluate the heat-resistant ability of peony, thereby significantly improving the efficiency of heat-resistant identification of peony.

Key words: herbaceous peony, heat-tolerance, principal component analysis, subordination function methods, comprehensive evaluation system

Table 1

Number of herbaceous peony cultivars for test"

编号
Number
品种
Cultivar
编号
Number
品种
Cultivar
编号
Number
品种
Variety
编号
Number
品种
Cultivar
编号
Number
品种
Cultivar
SY1 胜桃花
Sheng Taohua
SY29 雨润奇花
Yurun Qihua
SY57 红玫瑰
Hong Meigui
SY85 玛瑙绣球
Manao Xiuqiu
SY113 粉绫娇艳
Fenling Jiaoyan
SY2 种生粉
Zhongsheng Fen
SY30 玉楼红星
Yulou Hongxing
SY58 红盘彩球 Hongpan Caiqiu SY86 墨楼金辉
Molou Jinhui
SY114 粉楼
Fen Lou
SY3 紫兰系金
Zilan Xijin
SY31 赵园粉 Zhaoyuan Fen SY59 红线绣玉 Hongxian Xiuyu SY87 墨蕴
Mo Yun
SY115 粉楼插翠
Fenlou Chacui
SY4 墨紫含金
Mozi Hanjin
SY32 赵园红 Zhaoyuan Hong SY60 红绣针
Hong Xiuzhen
SY88 墨紫冠芳
Mozi Guanfang
SY116 粉楼殿春
Fenlou Dianchun
SY5 杨妃出浴
Yangfei Chuyu
SY33 朱砂点玉 Zhusha Dianyu SY61 红艳遇霜
Hongyan Yushuang
SY89 墨紫含金
Mozi Hanjin
SY117 粉盘金辉
Fenpan Jinhui
SY6 粉珠盘
Fenzhu Pan
SY34 珠光
Zhu Guang
SY62 红银针
Hong Yinzhen
SY90 墨紫绫
Mozi Ling
SY118 粉盘盛宴
Fenpan Shengyan
SY7 向阳奇花
Xiangyang Qihua
SY35 烛光粉玉 Zhuguang Fenyu SY63 红羽球
Hong Yuqiu
SY91 鸟巢
Niao Chao
SY119 粉银针
Fen Yinzhen
SY8 红峰
Hong Feng
SY36 紫光霞佩 Ziguangxiapei SY64 湖水荡霞
Hushui Dangyang
SY92 盘托金沙
Pantuo Jinsha
SY120 粉银妆
Fen Yinzhuang
SY9 巧玲
Qiao Ling
SY37 紫红剪绒 Zihong Jianrong SY65 皇冠粉 Huangguan Fen SY93 奇花落羽
Qihua Luoyu
SY121 粉羽球
Fen Yuqiu
SY10 双红楼
Shuanghong Lou
SY38 紫红争辉Zihong Zhenghui SY66 黄金丝
Huangjin Si
SY94 奇丽
Qi Li
SY122 粉玉珑
Fen Yulong
SY11 桃花飞雪
Taohua Feixue
SY39 紫兰魁
Zilan Kui
SY67 黄玉簪
Huang Yuzan
SY95 珊瑚多姿
Shanhu Duozi
SY123 粉玉楼
Fenyu Lou
SY12 桃花系金
Taohua Xijin
SY40 紫莲望月
Zilian Wangyue
SY68 江山如画 Jiangshan Ruhua SY96 少女装
Shaonü Zhuang
SY124 粉云仙
Fenyun Xian
SY13 桃花争春
Taohua Zhengchun
SY41 紫绫藏金
Ziling Cangjin
SY69 金凤羽
Jinfeng Yu
SY97 胜美菊
Sheng Meiju
SY125 粉紫露金
Fenzi Lujin
SY14 桃李艳妆
Taoli Yanzhuang
SY42 紫绫金星
Ziling Jinxing
SY70 金辉
Jin Hui
SY98 胜桃花
Sheng Taohua
SY126 佛光珠影
Foguang Zhuying
SY15 晚妆粉
Wanzhuang Fen
SY43 紫楼
Zi Lou
SY71 金莲献羽
Jinlian Xianyu
SY99 奇花露霜
Qihua Lushaung
SY127 高杆红
Gaogan Hong
SY16 万代生色
Wandai Shengse
SY44 紫楼显金
Zilou Xiangjin
SY72 金星灿烂
Jinxing Canlan
SY100 莲台
Lian Tai
SY128 高莲台
Gao Liantai
SY17 乌龙集盛
Wulong Jisheng
SY45 紫盘托金
Zipan Tuojin
SY73 金玉兰盘
Jinyu Lanpan
SY101 碧天晴空
Bitian Qingkong
SY129 海棠系金
Haitang Xijin
SY18 乌龙探海
Wulong Tanhai
SY46 紫袍
Zi Pao
SY74 金簪刺红绫 Jinzan Cihongling SY102 长凤羽
Chang Fengyu
SY130 红凤羽
Hong Fengyu
SY19 夕霞映雪
Xixia Yingxue
SY47 紫袍金带
Zipao Jindai
SY75 锦红缎
Jinhong Duan
SY103 迟粉
Chi Fen
SY131 红绫
Hong Ling
SY20 西施粉
Xishi Fen
SY48 紫绒系腰 Zirong Xiyao SY76 锦玲飘香
Jinling Piaoxiang
SY104 大地露霜
Dadi Lushaung
SY132 红绫翠玉
Hongling Cuiyu
SY21 雪峰
Xue Feng
SY49 紫檀镶玉
Zitan Xiangyu
SY77 兰翠球
Lan Cuiqiu
SY105 大红楼
Da Honglou
SY133 红楼
Hong Lou
SY22 雪山红梅
Xueshan Hongmei
SY50 紫托绒花
Zituo Ronghua
SY78 兰玉环翠
Lanyu Huancui
SY106 东海朝阳
Donghai Chaoyang
SY134 红楼锦菊
Honglou Jinju
SY23 雪山紫玉
Xueshan Ziyu
SY51 紫艳
Zi Yan
SY79 兰玉交辉
Lanyu Jiaohui
SY107 多叶紫
Duoye Zi
SY135 红楼飘香
Honglou Piaoxiang
SY24 雪原红花
Xueyuan Honghua
SY52 紫艳飞霜
Ziyan Feishuang
SY80 兰重楼
Lan Chonglou
SY108 粉池滴脂
Fenchi Dizhi
SY136 红楼显贵
Honglou Xiangui
SY25 艳紫向阳
Yanzi Xiangyang
SY53 紫羽球
Ziyu Qiu
SY81 蓝玉藏金
Lanyu Cangjin
SY109 粉翠楼
Fen Cuilou
SY137 粉绫红花
Fenling Honghua
SY26 银边红阁
Yinbian Hongge
SY54 凌花晨浴 Linghua Chenyu SY82 恋蝶
Lian Die
SY110 粉兰楼
Fen Lanlou
SY138 红茶花
Hong Chahua
SY27 英雄花
Yingxiong Hua
SY55 冰山
Bing Shan
SY83 玲珑玉
Linglong Yu
SY111 粉兰绣球 FenlanXiuqiu SY139 晴雯
Qing Wen
SY28 永生红
Yongsheng Hong
SY56 艳阳天 Yanyang Tian SY84 凌花露霜
Linghua Lushuang
SY112 粉蓝魁
Fenlan Kui
SY140 烈火金刚
Liehuo Jingang

Table 2

Variation analysis of different indices of herbaceous peony"

编号
Number
指标
Index
最大值
Max
最小值
Min
均值
Mean±SD
变异系数
CV (%)
X1 热害指数 Heat damage index 0.84 0.20 0.45±0.13 28.12
X2 株高 Plant height (cm) 100.30 37.00 70.87±10.70 15.08
X3 冠幅 Crown breadth (cm) 129.10 41.90 86.80±15.03 17.31
X4 叶绿素相对含量 SPAD 44.50 11.30 29.03±6.69 23.06
X5 相对电导率 REC (%) 58.39 27.73 41.06±5.91 14.39
X6 净光合速率 Pn (μmol CO2·m-2·s-1) 36.20 0.33 9.38±6.49 69.18
X7 有效光化学量子产量 Fv/Fm 0.84 0.27 0.73±0.07 9.76
X8 实际光合效率 Y(Ⅱ) 0.73 0.18 0.54±0.12 22.48
X9 非调节性能量耗散 Y(NO) 0.65 0.25 0.33±0.07 20.01
X10 非光化学猝灭系数 qN 0.69 0.12 0.33±0.04 42.81
X11 栅栏/海绵组织 Barrier tissue thickness/sponge tissue thickness 1.43 0.24 0.72±0.23 32.12
X12 叶片厚度 Leaf thickness (μm) 402.41 190.54 293.72±47.03 16.01
X13 气孔密度 Stomatal density (pcs∙mm-2) 333.87 64.72 166.80±52.56 31.51
X14 色相 b 44.00 11.40 28.08±5.80 20.4
X15 色度角 H 124.70 58.80 105.59±7.03 6.66
X16 丙二醛含量 MDA (nmol∙g-1) 78.95 23.44 54.41±11.19 20.56
X17 可溶性糖含量 SSC (mg∙g-1) 33.33 3.03 18.41±5.82 31.60
X18 可溶性蛋白含量 SPC (mg∙g-1) 12.86 2.49 7.01±2.08 29.73
X19 超氧化物歧化酶活性 SOD (U∙g-1) 422.97 39.56 245.00±80.17 32.72
X20 过氧化氢酶活性 CAT (nmol∙min-1∙g-1) 207.41 4.57 41.33±32.24 78.02
X21 过氧化物酶活性 POD (U∙g-1) 571.79 37.26 129.15±91.05 70.50

Fig. 1

Correlation analysis of different indices of herbaceous peony *: P<0.05; **: P<0.01 Different colors indicate the intensity of the significant, and the closer to red (plus) or blue (minus), the higher for the significant, the larger the circular diameter, the greater the correlation coefficient"

Table 3

Power vector, eigenvalue and contribution rate of principal component of each character"

编号
Number
特征向量 Power vector
C1 C2 C3 C4 C5 C6 C7
X1 -0.682 -0.492 0.012 0.165 0.048 -0.066 0.121
X2 0.281 0.253 -0.565 0.241 0.490 0.017 -0.087
X3 0.563 0.194 -0.241 0.218 0.252 0.152 -0.198
X4 0.633 0.378 -0.163 0.058 -0.276 0.046 0.106
X5 -0.475 -0.035 -0.368 0.193 0.361 0.035 0.295
X6 0.421 -0.151 0.019 0.145 -0.350 -0.327 -0.346
X7 0.706 -0.179 0.287 0.077 0.238 0.218 0.300
X8 0.670 -0.612 0.151 -0.105 0.239 -0.105 0.026
X9 -0.707 0.246 -0.356 -0.163 -0.169 -0.147 -0.244
X10 -0.276 0.678 0.089 0.264 -0.227 0.244 0.145
X11 0.167 -0.276 0.143 0.298 -0.112 0.047 0.218
X12 0.279 0.231 0.072 -0.441 -0.053 -0.076 0.447
X13 -0.115 0.654 0.137 0.221 0.077 0.045 0.209
X14 -0.394 0.240 0.547 -0.243 0.420 0.080 -0.137
X15 0.455 -0.069 -0.281 0.398 -0.387 -0.118 0.143
X16 -0.533 -0.469 -0.126 0.330 0.059 0.209 -0.062
X17 0.331 0.023 -0.108 -0.303 0.028 0.550 -0.341
X18 -0.405 -0.203 0.254 0.367 -0.176 0.286 0.064
X19 0.023 0.075 0.467 0.146 -0.346 0.213 -0.197
X20 0.278 0.150 0.288 0.508 0.307 -0.015 -0.262
X21 -0.032 0.318 0.369 0.220 0.234 -0.577 -0.069
特征值 Eigenvectors 4.31 2.45 1.73 1.52 1.48 1.12 1.02
贡献率 Contribution rate 20.50 11.66 8.24 7.24 7.06 5.31 4.85
累计贡献
Accumulative contribution rate
20.50 32.16 40.41 47.65 54.71 60.02 64.87

Table 4

Comprehensive scores of different herbaceous peony cultivars"

编号 Number W 编号 Number W 编号 Number W 编号 Number W 编号 Number W
SY1 0.65 SY29 0.54 SY57 0.59 SY85 0.49 SY113 0.50
SY2 0.68 SY30 0.52 SY58 0.58 SY86 0.65 SY114 0.62
SY3 0.63 SY31 0.40 SY59 0.59 SY87 0.68 SY115 0.50
SY4 0.65 SY32 0.41 SY60 0.61 SY88 0.54 SY116 0.40
SY5 0.71 SY33 0.60 SY61 0.55 SY89 0.58 SY117 0.45
SY6 0.72 SY34 0.55 SY62 0.59 SY90 0.55 SY118 0.56
SY7 0.71 SY35 0.67 SY63 0.55 SY91 0.56 SY119 0.59
SY8 0.66 SY36 0.54 SY64 0.30 SY92 0.49 SY120 0.53
SY9 0.63 SY37 0.59 SY65 0.64 SY93 0.62 SY121 0.48
SY10 0.59 SY38 0.53 SY66 0.61 SY94 0.57 SY122 0.45
SY11 0.64 SY39 0.59 SY67 0.54 SY95 0.52 SY123 0.50
SY12 0.72 SY40 0.54 SY68 0.57 SY96 0.62 SY124 0.56
SY13 0.65 SY41 0.52 SY69 0.60 SY97 0.46 SY125 0.42
SY14 0.55 SY42 0.50 SY70 0.61 SY98 0.58 SY126 0.63
SY15 0.58 SY43 0.47 SY71 0.57 SY99 0.48 SY127 0.55
SY16 0.52 SY44 0.53 SY72 0.57 SY100 0.63 SY128 0.59
SY17 0.56 SY45 0.55 SY73 0.56 SY101 0.77 SY129 0.35
SY18 0.54 SY46 0.58 SY74 0.56 SY102 0.50 SY130 0.67
SY19 0.52 SY47 0.56 SY75 0.59 SY103 0.58 SY131 0.32
SY20 0.57 SY48 0.54 SY76 0.55 SY104 0.58 SY132 0.53
SY21 0.54 SY49 0.53 SY77 0.55 SY105 0.55 SY133 0.68
SY22 0.55 SY50 0.52 SY78 0.52 SY106 0.54 SY134 0.52
SY23 0.61 SY51 0.63 SY79 0.52 SY107 0.44 SY135 0.40
SY24 0.63 SY52 0.58 SY80 0.50 SY108 0.67 SY136 0.31
SY25 0.59 SY53 0.63 SY81 0.64 SY109 0.62 SY137 0.56
SY26 0.47 SY54 0.51 SY82 0.67 SY110 0.62 SY138 0.48
SY27 0.60 SY55 0.59 SY83 0.61 SY111 0.53 SY139 0.54
SY28 0.54 SY56 0.57 SY84 0.55 SY112 0.54 SY140 0.55

Fig. 2

Systematic clustering of heat resistance of herbaceous peony based on W value"

Table 5

Predicted value scores of different herbaceous peony cultivars"

编号
Number
预测值
PV
编号
Number
预测值
PV
编号
Number
预测值
PV
编号
Number
预测值
PV
编号
Number
预测值
PV
SY1 0.63 SY29 0.57 SY57 0.61 SY85 0.46 SY113 0.52
SY2 0.61 SY30 0.47 SY58 0.54 SY86 0.60 SY114 0.58
SY3 0.57 SY31 0.37 SY59 0.54 SY87 0.62 SY115 0.53
SY4 0.69 SY32 0.43 SY60 0.52 SY88 0.52 SY116 0.41
SY5 0.74 SY33 0.57 SY61 0.56 SY89 0.55 SY117 0.51
SY6 0.72 SY34 0.57 SY62 0.63 SY90 0.54 SY118 0.52
SY7 0.73 SY35 0.67 SY63 0.55 SY91 0.56 SY119 0.63
SY8 0.62 SY36 0.56 SY64 0.28 SY92 0.51 SY120 0.56
SY9 0.69 SY37 0.55 SY65 0.63 SY93 0.59 SY121 0.53
SY10 0.57 SY38 0.51 SY66 0.60 SY94 0.54 SY122 0.45
SY11 0.62 SY39 0.58 SY67 0.53 SY95 0.50 SY123 0.52
SY12 0.76 SY40 0.57 SY68 0.54 SY96 0.61 SY124 0.60
SY13 0.68 SY41 0.54 SY69 0.59 SY97 0.49 SY125 0.46
SY14 0.59 SY42 0.54 SY70 0.63 SY98 0.55 SY126 0.59
SY15 0.60 SY43 0.49 SY71 0.55 SY99 0.45 SY127 0.56
SY16 0.56 SY44 0.58 SY72 0.59 SY100 0.64 SY128 0.62
SY17 0.61 SY45 0.58 SY73 0.55 SY101 0.79 SY129 0.34
SY18 0.57 SY46 0.61 SY74 0.59 SY102 0.48 SY130 0.75
SY19 0.51 SY47 0.58 SY75 0.61 SY103 0.59 SY131 0.31
SY20 0.60 SY48 0.53 SY76 0.56 SY104 0.61 SY132 0.51
SY21 0.51 SY49 0.52 SY77 0.53 SY105 0.54 SY133 0.70
SY22 0.57 SY50 0.52 SY78 0.49 SY106 0.57 SY134 0.53
SY23 0.65 SY51 0.62 SY79 0.50 SY107 0.48 SY135 0.41
SY24 0.57 SY52 0.53 SY80 0.50 SY108 0.65 SY136 0.30
SY25 0.61 SY53 0.65 SY81 0.61 SY109 0.65 SY137 0.63
SY26 0.51 SY54 0.50 SY82 0.64 SY110 0.61 SY138 0.48
SY27 0.61 SY55 0.60 SY83 0.65 SY111 0.52 SY139 0.52
SY28 0.56 SY56 0.60 SY84 0.52 SY112 0.50 SY140 0.57

Table 6

Correlation analysis between W and PV value"

评价值 W 预测值 PV
评价值 W 1 0.925**
预测值 PV 0.925** 1

Fig. 3

Morphological and structural, physiological characteristics of different heat-resistant types of herbaceous peony in clustering results"

Fig. 4

Relationship between heat resistance types and identification indices of herbaceous peony cultivars (A), principal component analysis of heat-resistance indices (B)"

[1]
吕长平, 刘林艳. 高温胁迫对芍药部分生理生化指标的影响. 湖南农业大学学报(自然科学版), 2008, 34(6): 664-667.
C P, LIU L Y. Effects of high temperature on physiological and biochemical characteristics of Paeonia lactiflora. Journal of Hunan Agricultural University (Natural Sciences), 2008, 34(6): 664-667. (in Chinese)
[2]
于莎莎, 张楠. 中国观赏园艺产业现状与发展趋势. 现代农业科技 2020(17): 112-113.
YU S S, ZHANG N. Present situation and development trend of ornamental horticulture industry in China. Modern Agricultural Science and Technology, 2020(17): 112-113. (in Chinese)
[3]
刘林艳. 几个芍药品种的耐湿热生理生化特性研究[D]. 长沙: 湖南农业大学, 2008.
LIU L Y. Study on physiological and biochemical characteristics of several Paeonia lactiflora varieties in humid heat tolerance[D]. Changsha: Hunan Agricultural University, 2008. (in Chinese)
[4]
赵大球, 韩晨霞, 陶俊. 不同芍药品种耐热性鉴定. 扬州大学学报(农业与生命科学版), 2015, 36(4): 105-109.
ZHAO D Q, HAN C X, TAO J. Heat tolerance identification of different herbaceous peony (Paeonia lactiflora Pall.) cultivars. Journal of Yangzhou University (Agricultural and Life Science Edition), 2015, 36(4): 105-109. (in Chinese)
[5]
张佳平, 李丹青, 聂晶晶, 夏宜平. 高温胁迫下芍药的生理生化响应和耐热性评价. 核农学报, 2016, 30(9): 1848-1856.

doi: 10.11869/j.issn.100-8551.2016.09.1848
ZHANG J P, LI D Q, NIE J J, XIA Y P. Physiological and biochemical responses to the high temperature stress and heat resistance evaluation of Paeonia lactiflora pall. cultivars. Journal of Nuclear Agricultural Sciences, 2016, 30(9): 1848-1856. (in Chinese)
[6]
张方静, 罗峰, 谭殷殷, 张旻桓, 邢文, 金晓玲. 高温胁迫对月季生理特性和叶绿素荧光参数的影响. 河南农业科学, 2019, 48(4): 108-115.
ZHANG F J, LUO F, TAN Y Y, ZHANG M H, XING W, JIN X L. Effects of high temperature stress on the physiological characteristics and chlorophyll fluorescence parameters of Chinese rose. Journal of Henan Agricultural Sciences, 2019, 48(4): 108-115. (in Chinese)
[7]
余炳伟, 董日月, 雷建军, 陈长明, 周火燕, 曹必好. 黄瓜耐热材料的筛选与鉴定. 分子植物育种, 2017, 15(11): 4695-4705.
YU B W, DONG R Y, LEI J J, CHEN C M, ZHOU H Y, CAO B H. Screening and identification of heat resistance cucumber. Molecular Plant Breeding, 2017, 15(11): 4695-4705. (in Chinese)
[8]
毛静, 董艳芳, 周媛, 童俊, 徐冬云, 方林川. 十六个德国鸢尾品种的耐热性评价. 北方园艺, 2019(3): 94-100.
MAO J, DONG Y F, ZHOU Y, TONG J, XU D Y, FANG L C. Physiological characteristics of different iris germanica cultivars to high temperature stress and evaluation of their heat tolerance. Northern Horticulture, 2019(3): 94-100. (in Chinese)
[9]
韩晨霞. 芍药耐热生理机制的初步研究[D]. 扬州: 扬州大学, 2005.
HAN C X. Preliminary study on physiological mechanism of heat tolerance of Paeonia lactiflora[D]. Yangzhou: Yangzhou University, 2005. (in Chinese)
[10]
楼柏丹, 姚岚. 几种观察植物表皮气孔方法的比较. 生物学教学, 2015(9): 42-43.
LOU B D, YAO L. Comparison of several methods for observing stomata in plant epidermis. Biology Teaching, 2015(9): 42-43. (in Chinese)
[11]
邓绮雯, 刘志霞, 张强, 高云, 江奕君, 郑奕雄, 胡巍. 水稻叶片徒手切片的荧光显微镜观察. 仲恺农业工程学院学报, 2020, 33(1): 24-27.
DENG Q W, LIU Z X, ZHANG Q, GAO Y, JIANG Y J, ZHENG Y X, HU W. Fluorescence microscopic observation and free-hand section techniques for rice leaves. Journal of ZhongKai University of Agriculture and Technology, 2020, 33(1): 24-27. (in Chinese)
[12]
武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰. 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015, 48(13): 2497-2507. doi: 10.3864/j.issn.0578-1752.2015.13.002.
WU X L, LIANG H Y, YANG F, LIU W G, SHE Y H, YANG W Y. Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean. Scientia Agricultura Sinica, 2015, 48(13): 2497-2507. doi: 10.3864/j.issn.0578-1752.2015.13.002. (in Chinese)
[13]
李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014, 47(15): 2927-2939. doi: 10.3864/j.issn.0578-1752.2014.15.003.
LI C H, YAO X D, JU B T, ZHU M Y, WANG H Y, ZHANG H J, AO X, YU C M, XIE F T, SONG S H. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes. Scientia Agricultura Sinica, 2014, 47(15): 2927-2939. doi: 10.3864/j.issn.0578-1752.2014.15.003. (in Chinese)
[14]
GUPTA S K, VERMA K, KUMAR R, SARKAR B, MANTHA A K, KUMAR S. Priming alleviates high temperature induced oxidative DNA damage and repair using Apurinic/apyrimidinic endonuclease (Ape1L) homologue in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 2020, 156: 304-313.

doi: 10.1016/j.plaphy.2020.08.050
[15]
LOKA D A, OOSTERHUIS D M, BAXEVANOS D, NOULAS C, HU W. Single and combined effects of heat and water stress and recovery on cotton (Gossypium hirsutum L.) leaf physiology and sucrose metabolism. Plant Physiology and Biochemistry, 2020, 148: 166-179.

doi: 10.1016/j.plaphy.2020.01.015
[16]
HASANUZZAMAN M, NAHAR K, ALAM M, ROYCHOWDHURY R, FUJITA M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684.

doi: 10.3390/ijms14059643 pmid: 23644891
[17]
DUTTA S, MOHANTY S, TRIPATHY B C. Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiology, 2009, 150(2): 1050-1061.

doi: 10.1104/pp.109.137265 pmid: 19403728
[18]
ASHRAF M, HARRIS P J C. Photosynthesis under stressful environments: An overview. Photosynthetica, 2013, 51(2): 163-190.

doi: 10.1007/s11099-013-0021-6
[19]
INZÉ D, VAN MONTAGU M. Oxidative stress in plants. Current Opinion in Biotechnology, 1995, 6(2): 153-158.

doi: 10.1016/0958-1669(95)80024-7
[20]
NADEEM M, LI J J, WANG M H, SHAH L, LU S Q, WANG X B, MA C X. Unraveling field crops sensitivity to heat stress: Mechanisms, approaches, and future prospects. Agronomy, 2018, 8(7): 128.

doi: 10.3390/agronomy8070128
[21]
ZHANG J P, WANG X B, ZHANG D, QIU S, WEI J F, GUO J, LI D Q, XIA Y P. Evaluating the comprehensive performance of herbaceous peonies at low latitudes by the integration of long-running quantitative observation and multi-criteria decision making approach. Scientific Reports, 2019, 9(1): 15079.

doi: 10.1038/s41598-019-51425-0 pmid: 31636314
[22]
WU Y Q, ZHAO D Q, HAN C X, TAO J. Biochemical and molecular responses of herbaceous peony to high temperature stress. Canadian Journal of Plant Science, 2016, 96(3): 474-484.

doi: 10.1139/cjps-2015-0255
[23]
李璇, 岳红, 王升, 黄璐琦, 马炯, 郭兰萍. 影响植物抗氧化酶活性的因素及其研究热点和现状. 中国中药杂志, 2013, 38(7): 973-978.
LI X, YUE H, WANG S, HUANG L Q, MA J, GUO L P. Research Of different effects on activity of plant antioxidant enzymes. China Journal of Chinese Materia Medica, 2013, 38(7): 973-978. (in Chinese)
[24]
徐如强, 孙其信, 张树榛. 春小麦耐热性的筛选方法与指标. 华北农学报, 1997, 12(3): 22-29.
XU R Q, SUN Q X, ZHANG S Z. Screening methods and indices of heat tolerance in spring wheat. Acta Agriculturae Boreall-Sinica, 1997, 12(3): 22-29. (in Chinese)
[25]
陈希勇, 孙其信, 孙长征. 春小麦耐热性表现及其评价. 中国农业大学学报, 2000, 5(1): 43-49.
CHEN X Y, SUN Q X, SUN C Z. Performance and evaluation of spring wheat heat tolerance. Journal of China Agricultural University, 2000, 5(1): 43-49. (in Chinese)
[26]
BHUSAL N, SHARMA P, SAREEN S, SARIAL A K. Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress. Biologia Plantarum, 2018, 62(4): 721-731.

doi: 10.1007/s10535-018-0811-6
[27]
DIAS A S, LIDON F C. Evaluation of grain filling rate and duration in bread and durum wheat under heat stress after anthesis. Journal of Agronomy and Crop Science, 2009, 195(2): 137-147.

doi: 10.1111/jac.2009.195.issue-2
[28]
X K, HAN J, LIAO Y C, LIU Y. Effect of phosphorus and potassium foliage application post-anthesis on grain filling and hormonal changes of wheat. Field Crops Research, 2017, 214: 83-93.

doi: 10.1016/j.fcr.2017.09.001
[29]
KUMAR R R, GOSWAMI S, GUPTA R, VERMA P, SINGH K, SINGH J P, KUMAR M, SHARMA S K, PATHAK H, RAI R D. The stress of suicide: Temporal and spatial expression of putative heat shock protein 70 protect the cells from heat injury in wheat (Triticum aestivum). Journal of Plant Growth Regulation, 2016, 35(1): 65-82.

doi: 10.1007/s00344-015-9508-7
[30]
VAN INGHELANDT D, FREY F P, RIES D, STICH B. QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize. Scientific Reports, 2019, 9: 14418.

doi: 10.1038/s41598-019-50853-2 pmid: 31594984
[31]
李敏, 苏慧, 李阳阳, 李金鹏, 李金才, 朱玉磊, 宋有洪. 黄淮海麦区小麦耐热性分析及其鉴定指标的筛选. 中国农业科学, 2021, 54(16): 3381-3392. doi: 10.3864/j.issn.0578-1752.2021.16.002.
LI M, SU H, LI Y Y, LI J P, LI J C, ZHU Y L, SONG Y H. Analysis of heat tolerance of wheat with different genotypes and screening of identification indexes in Huang-Huai-Hai region. Scientia Agricultura Sinica, 2021, 54(16): 3381-3392. doi: 10.3864/j.issn.0578-1752.2021.16.002. (in Chinese)
[32]
蔡继鸿, 陈远华, 赖金莉, 郑薇, 胡江涛, 刘淑媛, 罗素梅, 刘小平, 郭荣生. 18个杜鹃品种耐热性评价. 现代园艺, 2022, 45(17): 6-9, 26.
CAI J H, CHEN Y H, LAI J L, ZHENG W, HU J T, LIU S Y, LUO S M, LIU X P, GUO R S. Evaluation on heat tolerance of 18 Rhododendron varieties. Xiandai Horticulture, 2022, 45(17): 6-9, 26. (in Chinese)
[33]
凌瑞, 戴中武, 代晓雨, 吴春梅, 翟俊文, 郑泽新, 吴沙沙. 8个绣球品种耐热性综合评价与耐热指标筛选. 热带作物学报, 2021, 42(8): 2209-2218.
LING R, DAI Z W, DAI X Y, WU C M, ZHAI J W, ZHENG Z X, WU S S. Evaluation of heat tolerance and screening the index for the assessment of heat tolerance in cultivars of Hydrangea. Chinese Journal of Tropical Crops, 2021, 42(8): 2209-2218. (in Chinese)
[34]
付丽军, 李聪晓, 苏胜宇, 李玉华, 周禹. 黄瓜苗期耐热种质筛选与耐热性评价体系构建. 植物生理学报, 2020, 56(7): 1593-1604.
FU L J, LI C X, SU S Y, LI Y H, ZHOU Y. Screening of cucumber germplasms in seedling stage and the construction of evaluation system for heat tolerance. Plant Physiology Journal, 2020, 56(7): 1593-1604. (in Chinese)
[35]
胡江龙, 郭林涛, 王友华, 周治国. 棉花渍害恢复的生理指示指标探讨. 中国农业科学, 2013, 46(21): 4446-4453. doi: 10.3864/j.issn.0578-1752.2013.21.006.
HU J L, GUO L T, WANG Y H, ZHOU Z G. Physiological indicator of cotton plant in recovery from waterlogging damage. Scientia Agricultura Sinica, 2013, 46(21): 4446-4453. doi: 10.3864/j.issn.0578-1752.2013.21.006. (in Chinese)
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[3] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[4] WANG ShanShan,ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai,SONG HongWei. Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486.
[5] ZHU LingXiao,LIU LianTao,ZHANG YongJiang,SUN HongChun,ZHANG Ke,BAI ZhiYing,DONG HeZhong,LI CunDong. The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture [J]. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163.
[6] SONG ChuJun,FAN FangYuan,GONG ShuYing,GUO HaoWei,LI ChunLin,ZONG BangZheng. Taste Characteristic and Main Contributing Compounds of Different Origin Black tea [J]. Scientia Agricultura Sinica, 2020, 53(2): 383-394.
[7] WANG YuanPeng,HUANG Jing,SUN YuXiang,LIU KaiLou,ZHOU Hu,HAN TianFu,DU JiangXue,JIANG XianJun,CHEN Jin,ZHANG HuiMin. Spatiotemporal Variability Characteristics of Soil Fertility in Red Soil Paddy Region in the Past 35 Years—A Case Study of Jinxian County [J]. Scientia Agricultura Sinica, 2020, 53(16): 3294-3306.
[8] ZHU Yan,CAI HuanJie,SONG LiBing,SHANG ZiHui,CHEN Hui. Comprehensive Evaluation of Different Oxygation Treatments Based on Fruit Yield and Quality of Greenhouse Tomato [J]. Scientia Agricultura Sinica, 2020, 53(11): 2241-2252.
[9] ZHAO LiLi,LI LuSheng,CAI HuanJie,SHI XiaoHu,XUE ShaoPing. Comprehensive Effects of Organic Materials Incorporation on Soil Hydraulic Conductivity and Air Permeability [J]. Scientia Agricultura Sinica, 2019, 52(6): 1045-1057.
[10] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
[11] WANG XiaoBo,GUAN PanFeng,XIN MingMing,WANG YongFa,CHEN XiYong,ZHAO AiJu,LIU ManShuang,LI HongXia,ZHANG MingYi,LU LaHu,WEI YiQin,LIU WangQing,ZHANG JinBo,NI ZhongFu,YAO YingYin,HU ZhaoRong,PENG HuiRu,SUN QiXin. Evaluation of Heat Tolerance in Wheat Germplasm Resources [J]. Scientia Agricultura Sinica, 2019, 52(23): 4191-4200.
[12] SHI TianTian, HE JieLi, GAO ZhiJun, CHEN Ling, WANG HaiGang, QIAO ZhiJun, WANG RuiYun. Genetic Diversity of Common Millet Resources Assessed with EST-SSR Markers [J]. Scientia Agricultura Sinica, 2019, 52(22): 4100-4109.
[13] CHEN ErYing, QIN Ling, YANG YanBing, LI FeiFei, WANG RunFeng, ZHANG HuaWen, WANG HaiLian, LIU Bin, KONG QingHua, GUAN YanAn. Variation and Comprehensive Evaluation of Salt and Alkali Tolerance of Different Foxtail Millet Cultivars Under Production Conditions [J]. Scientia Agricultura Sinica, 2019, 52(22): 4050-4065.
[14] BAI YiXiong,YAO XiaoHua,YAO YouHua,WU KunLun. Difference of Traits Relating to Lodging Resistance in Hulless Barley Genotypes [J]. Scientia Agricultura Sinica, 2019, 52(2): 228-238.
[15] SHI FangFang, ZHANG QingAn. Effects of Different Citric Acid Solutions on the Quality of Apricot Kernels During Debitterizing Mediated by Ultrasound Irradiation [J]. Scientia Agricultura Sinica, 2019, 52(17): 3034-3048.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!