Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1734-1747.doi: 10.3864/j.issn.0578-1752.2024.09.009

• PLANT PROTECTION • Previous Articles     Next Articles

Screening, Compounding and Safety Evaluation of Herbicides Suitable for Peach Nursery

GUO Lei(), HUANG ChenYan(), SONG HongFeng, SHEN ZhiJun, ZHANG BinBin, MA RuiJuan, SUN Meng, HE Xin, YU MingLiang()   

  1. Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014
  • Received:2023-12-12 Accepted:2024-01-04 Online:2024-05-01 Published:2024-05-09
  • Contact: YU MingLiang

Abstract:

【Objective】Weed control is an important step for fruit tree production. To investigate the safety of different herbicides, suitable herbicides for peach nurseries and orchards were screened in peach production, which can provide theoretical basis for the application of chemical herbicides in the peach industry.【Method】To preliminarily screen the safety of 13 herbicides, the peach seedlings combined with Lolium perenne, Cynodon dactylon, Alternanthera philoxeroides, Trifolium repens and Medicago falcata were evaluated in pot. Based on the results of the phytotoxicity index of each herbicide, 10% quizalofop-p-ethyl and 60% quinclorac were mixed. According to the effective doses of 25, 50, and 75 mL·hm-2 of quizalofop-p-ethyl and 150, 300, 450 g·hm-2 of quinclorac, a total of 9 herbicide mixtures were established. After 7, 14, and 21 d of stem and leaf spraying treatment, the weed inhibition rate was investigated. After 30 d of the treatment, the plant height, stem diameter, aboveground and underground biomass, electrolyte permeability of the leaf and root tip cells, total root length, total root surface area, root volume and root tip number of peach seedlings were also measured. Based on principal component analysis, the safety of different treatments was comprehensively evaluated.【Result】After spraying on the stems and leaves of peach seedlings, 11 herbicides caused phytotoxicity in peach seedlings, resulting in varying degrees of symptoms such as chlorosis, wilting, and withering. However, quizalofop-p-ethyl and quinclorac had no significant effect on the growth of peach seedlings. After spraying weeds with a single agent of quizalofop-p-ethyl for 21 d, the inhibition rate of quizalofop-p-ethyl on gramineous weeds was 100%. However, it had no effect on broad-leaved weeds. On the contrary, the inhibition rate of spraying quinclorac on gramineous weeds was 0, and the inhibition rate range of M. falcata, T. repens and A. philoxeroides was 80% to 100%. After being mixed with quizalofop-p-ethyl and quinclorac, the total weed inhibition rate under 9 compound preparations could reach over 90% after 21 d. Meanwhile, each formulation had no significant effect on the height of peach seedlings, aboveground and underground biomass, electrolyte permeability of the leaf and root tip cells. The comprehensive analysis showed that the effective dose of quizalofop-p-ethyl had a significant impact on the comprehensive evaluation D value of the mixed formulation. When the effective dose of quizalofop-p-ethyl increased to 75 mL·hm-2, the comprehensive evaluation D value of the mixed formulation exceeded 0.563, but there was no trend between the increasing D value and the increase of the effective dose of quinclorac.【Conclusion】Peach seedlings are sensitive to most herbicides, and mixing is an effective measure to improve the comprehensive weed inhibition rate of quizalofop-p-ethyl and quinclorac. After mixing an effective dose of 75 mL·hm-2 quizalofop-p-ethyl with 300 g·hm-2 quinclorac, the comprehensive evaluation D value of the formulation is the highest, which can achieve the best weed inhibition rate while ensuring the safety of peach seedlings.

Key words: quizalofop-p-ethyl, quinclorac, peach seeding, herbicide, comprehensive evaluation

Fig. 1

Aboveground morphology of peach seedlings after application with different herbicides"

Table 1

Phytotoxicity grades of peach seedlings after application with different herbicides"

除草剂种类
Herbicide type
试验浓度
Application rate
药害等级Phytotoxicity grade
5 d 10 d 20 d 30 d
清水对照Water control
草甘膦异丙胺盐N-(phosphonomethyl)glycine 4.50 L·hm-2 I II III III
草铵膦Glufosinate-ammonium 6.00 L·hm-2 I II III IV
精喹禾灵Quizalofop-p-ethyl 0.50 L·hm-2 0 0 0 0
二氯喹啉酸Quinclorac 0.50 kg·hm-2 0 0 0 0
苄嘧磺隆Bensulfuron-methyl 0.34 kg·hm-2 II II III III
乙草胺Acetochlor 2.70 L·hm-2 I II III III
氯氟吡氧乙酸异辛酯Starane 0.90 L·hm-2 III IV
二甲四氯钠MCPA-Na 1.80 L·hm-2 II III IV
硝磺·莠去津Mesotrione·atrazine 2.00 L·hm-2 I II II III
精喹·乙羧氟Quizalofop-p·fluoroglycofen 0.75 L·hm-2 II III III III
二甲·灭草松MCPA-Na·bentazone 2.55 L·hm-2 II IV
苄·二氯Bensulfuron-methyl·quinclorac 0.60 kg·hm-2 I III IV
苄·乙Bensulfuron-methyl-acetochlor 0.45 kg·hm-2 II IV

Table 2

Effects of mixture of quizalofop-p-ethyl and quinclorac on weed inhibition rate (%)"

调查时间
Research time
处理
Treatment
黑麦草
L. perenne
狗牙根
C. dactylon
黄花苜蓿
M. falcata
白三叶草
T. repens
空心莲子草
A. philoxeroides
总抑制率
Total weed inhibition rate
7 d T1 18.33d 25.00d 0f 0f 0e 8.67e
T2 0e 0g 25.00e 13.33de 10.00d 9.67e
T3 18.33d 30.00d 8.33f 5.00ef 0e 12.33e
T4 5.00e 13.33ef 55.00ab 51.67ab 0e 25.00c
T5 5.00e 15.00ef 61.67a 56.67a 0e 27.67c
T6 16.67d 21.67de 30.00de 20.00cd 0e 17.67d
T7 33.33c 38.33c 31.67de 23.33cd 20.00bc 29.33c
T8 48.33b 55.00b 56.67a 48.33ab 8.33d 46.67b
T9 10.00de 8.33f 38.33cd 25.00c 18.33c 20.00d
T10 55.00ab 66.67a 30.00de 43.33b 26.67b 44.33b
T11 60.00a 70.00a 45.00bc 48.33ab 35.00a 51.67a
14 d T1 100.00a 100.00a 0d 0d 0f 40.00g
T2 0f 0d 93.33ab 85.00bc 66.67d 49.00f
T3 100.00a 100.00a 86.66b 80.00c 91.67b 91.67b
T4 48.33d 86.67b 73.33c 95.00a 36.67e 68.00e
T5 28.33e 88.33b 100.00a 100.00a 80.00c 79.33d
T6 81.67b 100.00a 76.66c 100.00a 73.33d 86.33c
T7 71.67b 100.00a 93.33ab 100.00a 81.67c 89.33b
T8 100.00a 100.00a 100.00a 100.00a 88.33b 97.67a
T9 76.67b 83.33b 75.00c 88.33b 100.00a 84.67c
T10 61.67c 71.67c 91.67ab 95.00a 68.33d 77.67d
T11 100.00a 100.00a 100.00a 100.00a 100.00a 100.00a
21 d T1 100.00a 100.00a 0c 0c 0d 40.00e
T2 0c 0b 100.00a 100.00a 80.00c 56.00d
T3 100.00a 100.00a 100.00a 91.67b 100.00a 98.33b
T4 83.33b 100.00a 93.33b 95.00ab 88.33b 92.00c
T5 100.00a 100.00a 100.00a 100.00a 100.00a 100.00a
T6 100.00a 100.00a 100.00a 100.00a 100.00a 100.00a
T7 100.00a 100.00a 100.00a 100.00a 100.00a 100.00a
T8 100.00a 100.00a 100.00a 100.00a 100.00a 100.00a
T9 100.00a 100.00a 100.00a 100.00a 100.00a 100.00a
T10 100.00a 100.00a 100.00a 100.00a 100.00a 100.00a
T11 100.00a 100.00a 100.00a 100.00a 100.00a 100.00a

Fig. 2

Inhibitory effect of weeds after spraying with different proportions of quizalofop-p-ethyl and quinclorac (14 d)"

Table 3

Effects of mixture of quizalofop-p-ethyl and quinclorac on phenotype index and cell electrolyte permeability of peach seedlings"

处理
Treatment
株高
Plant height
(cm)
茎粗
Stem diameter (mm)
地上部生物量
Aboveground biomass (g)
地下部生物量
Underground biomass (g)
叶片电解质渗透率
Electrolyte permeability
in leaves cell (%)
根尖电解质渗透率
Electrolyte permeability in root tips cell (%)
CK 44.55±5.64a 3.57±0.44a 1.93±0.35abc 0.97±0.22a 6.24±0.41a 14.36±2.07ab
T1 42.95±3.28a 3.25±0.22ab 1.81±0.32abc 1.00±0.24a 6.23±0.10a 15.67±0.58ab
T2 41.40±4.17a 3.30±0.22ab 1.83±0.36abc 1.00±0.17a 6.32±0.28a 15.81±1.31ab
T3 44.20±3.63a 3.41±0.31ab 1.82±0.31abc 0.92±0.20a 6.20±0.27a 13.91±0.76b
T4 42.60±4.88a 3.33±0.17ab 1.76±0.30bc 1.00±0.14a 6.22±0.36a 15.94±1.70ab
T5 42.55±3.95a 3.45±0.30ab 1.82±0.19abc 0.97±0.16a 6.44±0.45a 15.90±0.92ab
T6 42.40±3.75a 3.28±0.31ab 2.07±0.31a 0.98±0.15a 6.26±0.63a 15.49±1.34ab
T7 44.05±3.04a 3.42±0.30ab 1.95±0.20abc 1.05±0.22a 6.39±0.14a 16.14±0.39ab
T8 42.80±3.43a 3.16±0.27b 2.05±0.23ab 0.88±0.12a 6.73±0.23a 16.48±1.11a
T9 42.60±1.96a 3.20±0.25b 1.91±0.25abc 1.04±0.19a 6.43±0.50a 15.96±0.30ab
T10 43.70±3.98a 3.12±0.30b 1.99±0.20abc 0.93±0.14a 6.40±0.40a 15.76±1.38ab
T11 40.75±2.84a 3.17±0.33b 1.69±0.16c 0.95±0.10a 6.79±0.09a 16.78±1.24a

Table 4

Effects of mixture of quizalofop-p-ethyl and quinclorac on root morphology of peach seedlings"

处理
Treatment
总根长
Total root length (cm)
总根表面积
Total root surface area (cm2)
总根体积
Total root volume (cm3)
根尖数
Number of root tips
CK 937.40±140.48cde 201.82±43.59bc 10.28±3.21b 2119±619bcde
T1 1027.28±137.18bc 211.16±44.79bc 10.24±3.28b 2689±684abcd
T2 984.01±159.94bcd 231.29±45.47abc 11.70±3.60ab 2547±771abcde
T3 949.95±152.59bcde 204.06±71.50bc 10.30±4.68b 2290±1004bcde
T4 946.72±122.93bcde 196.40±64.19bc 10.05±5.17b 2000±692cde
T5 810.80±143.54e 181.07±26.77c 9.05±1.84b 1651±508e
T6 843.10±132.76de 191.04±42.12bc 9.72±2.96b 1779±527de
T7 846.24±65.67de 195.38±32.24bc 10.66±2.60b 2705±1562abcd
T8 1015.06±165.59bc 233.61±42.02ab 11.51±2.71ab 2573±837abcde
T9 1183.10±138.36a 229.77±41.37abc 10.53±3.21b 2901±1436abc
T10 1219.30±166.54a 227.00±39.67abc 9.38±1.92b 3097±1071ab
T11 1094.34±121.64ab 273.50±43.80a 14.31±3.82a 3538±1072a

Table 5

Principal component analysis of different treatments"

统计参数Statistical parameter Z1 Z2 Z3 Z4
特征值Eigen value 6.072 2.237 1.589 1.094
方差贡献率Contribution rate (%) 46.710 17.206 12.223 8.413
累计贡献率Cumulative contribution rate (%) 46.710 63.916 76.139 84.551
生长指标Growth index 特征向量Eigenvector
株高Seedling height -0.260 0.123 0.442 0.007
茎粗Stem diameter -0.334 -0.050 -0.213 -0.303
地上部生物量Aboveground biomass -0.060 0.348 0.427 0.146
地下部生物量Underground biomass -0.111 -0.153 -0.414 0.680
总根长Total root length 0.239 -0.240 0.443 0.338
总根表面积Total root surface area 0.347 -0.306 0.132 -0.091
根体积Total root volume 0.287 -0.310 -0.177 -0.316
根尖数Number of root tips 0.310 -0.273 0.209 0.193
叶片电解质渗透率Electrolyte permeability in leaves cell 0.350 0.062 -0.026 -0.288
根尖电解质渗透率Electrolyte permeability in root tips cell 0.308 0.081 -0.291 0.227
7 d总杂草抑制率Total weed inhibition rate after 7 d 0.342 0.261 0.043 -0.107
14 d总杂草抑制率Total weed inhibition rate after 14 d 0.258 0.440 -0.114 0.013
21 d总杂草抑制率Total weed inhibition rate after 21 d 0.218 0.493 -0.129 0.136

Fig. 3

Principal component subordinate function value and comprehensive evaluation D value of different treatments a, b, c and d represent the subordinate function values of Z1, Z2, Z3 and Z4, respectively, and e represents the comprehensive evaluation value D"

Fig. 4

Effects of T10 treatment (mixture of quizalofop-p-ethyl and quinclorac) on weed inhibition and seedlings safety"

[1]
黄晨艳, 郭磊, 宋宏峰, 沈志军, 张斌斌, 马瑞娟, 俞明亮. 不同除草剂对桃砧木幼苗的安全性评价. 应用生态学报, 2023, 34(6): 1583-1591.

doi: 10.13287/j.1001-9332.202306.010
HUANG C Y, GUO L, SONG H F, SHEN Z J, ZHANG B B, MA R J, YU M L. Safety profile evaluation of different herbicides used on peach rootstock seedlings. Chinese Journal of Applied Ecology, 2023, 34(6): 1583-1591. (in Chinese)

doi: 10.13287/j.1001-9332.202306.010
[2]
邹宝玲, 刘佛良, 张震邦, 洪添胜, 吴伟斌, 赖少雄. 山地果园机械化: 发展瓶颈与国外经验借鉴. 农机化研究, 2019, 41(9): 254-260.
ZOU B L, LIU F L, ZHANG Z B, HONG T S, WU W B, LAI S X. Mechanization of mountain orchards: Development bottleneck and foreign experiences. Journal of Agricultural Mechanization Research, 2019, 41(9): 254-260. (in Chinese)
[3]
赵映, 肖宏儒, 梅松, 宋志禹, 丁文芹, 金月, 韩余, 夏先飞, 杨光. 我国果园机械化生产现状与发展策略. 中国农业大学学报, 2017, 22(6): 116-127.
ZHAO Y, XIAO H R, MEI S, SONG Z Y, DING W Q, JIN Y, HAN Y, XIA X F, YANG G. Current status and development strategies of orchard mechanization production in China. Journal of China Agricultural University, 2017, 22(6): 116-127. (in Chinese)
[4]
盛玲玲, 宋淑然, 洪添胜, 李震, 代秋芳. 广东省山地果园机械化现状与发展思考. 农机化研究, 2017, 39(11): 257-262.
SHENG L L, SONG S R, HONG T S, LI Z, DAI Q F. The present situation and development of mountainous orchard mechanization in Guangdong Province. Journal of Agricultural Mechanization Research, 2017, 39(11): 257-262. (in Chinese)
[5]
郑永军, 江世界, 陈炳太, 吕昊暾, 万畅, 康峰. 丘陵山区果园机械化技术与装备研究进展. 农业机械学报, 2020, 51(11): 1-20.
ZHENG Y J, JIANG S J, CHEN B T, H T, WAN C, KANG F. Review on technology and equipment of mechanization in hilly orchard. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 1-20. (in Chinese)
[6]
郭美俊, 白亚青, 高鹏, 申洁, 董淑琦, 原向阳, 郭平毅. 二甲四氯胁迫对谷子幼苗叶片衰老特性和内源激素含量的影响. 中国农业科学, 2020, 53(3): 513-526. doi: 10.3864/j.issn.0578-1752.2020.03.005.
GUO M J, BAI Y Q, GAO P, SHEN J, DONG S Q, YUAN X Y, GUO P Y. Effect of MCPA on leaf senescence and endogenous hormones content in leaves of foxtail millet seedlings. Scientia Agricultura Sinica, 2020, 53(3): 513-526. doi: 10.3864/j.issn.0578-1752.2020.03.005. (in Chinese)
[7]
张泰劼, 程保平, 田兴山. 基于叶绿素荧光比较草铵膦和草甘膦对柑橘的安全性. 杂草学报, 2019, 37(2): 51-56.
ZHANG T J, CHENG B P, TIAN X S. Toxicity of glufosinate and glyphosate to citrus assessed by chlorophyll a fluorescence. Journal of Weed Science, 2019, 37(2): 51-56. (in Chinese)
[8]
谭伟, 王慧, 翟衡. 除草剂对葡萄叶片光合作用及贮藏营养的影响. 应用生态学报, 2011, 22(9): 2355-2362.
TAN W, WANG H, ZHAI H. Effects of herbicide on grape leaf photosynthesis and nutrient storage. Chinese Journal of Applied Ecology, 2011, 22(9): 2355-2362. (in Chinese)
[9]
马小焕, 彭良志, 曹立, 张雯雯. 不同除草剂对清家脐橙夏梢的毒害作用. 果树学报, 2011, 28(1): 92-96.
MA X H, PENG L Z, CAO L, ZHANG W W. Toxic effects of herbicides on young summer shoots of Seike navel orange (Citrus sinensis). Journal of Fruit Science, 2011, 28(1): 92-96. (in Chinese)
[10]
MAGNÉ C, SALADIN G, CLÉMENT C. Transient effect of the herbicide flazasulfuron on carbohydrate physiology in Vitis vinifera L. Chemosphere, 2006, 62(4): 650-657.

doi: 10.1016/j.chemosphere.2005.04.119
[11]
谭伟, 梁婷, 翟衡. 乙草胺对葡萄叶片光合和叶绿素荧光特性及叶绿体结构的影响. 应用生态学报, 2012, 23(8): 2185-2190.
TAN W, LIANG T, ZHAI H. Effects of acetochlor on the photosynthetic and fluorescence characteristics and chloroplast structure of grape leaves. Chinese Journal of Applied Ecology, 2012, 23(8): 2185-2190. (in Chinese)
[12]
郭磊, 张斌斌, 周懋, 宋宏峰. 除草剂对桃生理特性和流胶的影响. 西北植物学报, 2017, 37(1): 81-87.
GUO L, ZHANG B B, ZHOU M, SONG H F. Effects of herbicides on physiological characteristics and gummosis of Prunus persica. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(1): 81-87. (in Chinese)
[13]
郭磊, 张斌斌, 沈江海, 何鑫, 宋宏峰. 草甘膦和百草枯对毛桃幼苗根系形态及地上部生长的影响. 应用生态学报, 2020, 31(2): 524-532.

doi: 10.13287/j.1001-9332.202002.036
GUO L, ZHANG B B, SHEN J H, HE X, SONG H F. Effects of glyphosate and paraquat on root morphology and aboveground growth of Prunus persica seedlings. Chinese Journal of Applied Ecology, 2020, 31(2): 524-532. (in Chinese)
[14]
宋雪, 王辉, 孙延军, 昝启杰. 5种化学除草剂对薇甘菊防治效果及对其他植物的影响. 植物保护, 2021, 47(4): 269-275.
SONG X, WANG H, SUN Y J, ZAN Q J. Control effect of five chemical herbicides on Mikania micrantha and safety to other plants. Plant Protection, 2021, 47(4): 269-275. (in Chinese)
[15]
赵颖楠, 字雪靖, 王婉, 冯煜, 杨璞, 高金锋, 王鹏科, 高小丽. 不同除草剂的田间杂草防治效果及对糜子生长发育的影响. 应用生态学报, 2020, 31(7): 2415-2421.

doi: 10.13287/j.1001-9332.202007.027
ZHAO Y N, ZI X J, WANG W, FENG Y, YANG P, GAO J F, WANG P K, GAO X L. Control effects of different herbicides on weeds as well as their effects on growth and development of broomcorn millet. Chinese Journal of Applied Ecology, 2020, 31(7): 2415-2421. (in Chinese)
[16]
王义生, 贾娇, 张伟, 孟玲敏, 常雪, 苏前富. 14种除草剂对野稷的活性测定及田间防治效果. 植物保护, 2023, 49(3): 317-322.
WANG Y S, JIA J, ZHANG W, MENG L M, CHANG X, SU Q F. Activity tests and field control effects of 14 herbicides to wild broomcorn millet. Plant Protection, 2023, 49(3): 317-322. (in Chinese)
[17]
何义川, 汤智辉, 李光新, 杨怀君, 孟祥金, 郑炫. 葡萄园除草技术研究现状与发展趋势. 中国农机化学报, 2018, 39(9): 34-37.
HE Y C, TANG Z H, LI G X, YANG H J, MENG X J, ZHENG X. Research on current status and developing tendency of the vineyard weeding. Journal of Chinese Agricultural Mechanization, 2018, 39(9): 34-37. (in Chinese)
[18]
QUAN L Z, JIANG W, LI H L, LI H D, WANG Q, CHEN L Q. Intelligent intra-row robotic weeding system combining deep learning technology with a targeted weeding mode. Biosystems Engineering, 2022, 216: 13-31.

doi: 10.1016/j.biosystemseng.2022.01.019
[19]
赵智宇, 朱立成, 周利明, 吕程序, 李沐桐, 董鑫. 丘陵果园除草机器人底盘系统设计与试验. 农业机械学报, 2022, 53(增刊1): 48-57.
ZHAO Z Y, ZHU L C, ZHOU L M, C X, LI M T, DONG X. Design and experiment of chassis control system for weeding robot in hilly orchard. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(Suppl. 1): 48-57. (in Chinese)
[20]
吴元龙, 惠凤娇, 潘振远, 尤春源, 林海荣, 李志博, 金双侠, 聂新辉. 后基因组时代发展抗除草剂作物的机遇及挑战. 中国农业科学, 2023, 56(17): 3285-3301. doi: 10.3864/j.issn.0578-1752.2023.17.005.
WU Y L, HUI F J, PAN Z Y, YOU C Y, LIN H R, LI Z B, JIN S X, NIE X H. Opportunities and challenges for developing herbicide- resistance crops in the post-genomic era. Scientia Agricultura Sinica, 2023, 56(17): 3285-3301. doi: 10.3864/j.issn.0578-1752.2023.17.005. (in Chinese)
[21]
邱龙, 马崇烈, 刘博林, 章旺根. 耐除草剂转基因作物研究现状及发展前景. 中国农业科学, 2012, 45(12): 2357-2363. doi: 10.3864/j.issn.0578-1752.2012.12.003.
QIU L, MA C L, LIU B L, ZHANG W G. Current situation of research on transgenic crops with herbicide tolerance and development prospect. Scientia Agricultura Sinica, 2012, 45(12): 2357-2363. doi: 10.3864/j.issn.0578-1752.2012.12.003. (in Chinese)
[22]
张玉聚, 孙化田, 张德胜, 王文夕, 潘同霞, 李菊梅. 除草剂药害症状的诊断. 农药, 2001, 40(10): 44-45.
ZHANG Y J, SUN H T, ZHANG D S, WANG W X, PAN T X, LI J M. Diagnosis of symptoms of herbicide damage. Pesticides, 2001, 40(10): 44-45. (in Chinese)
[23]
唐婷, 陈东雨, 张子叶, 杨文超. 除草剂分子靶标研究进展. 农药学学报, 2023, 25(4): 755-768.
TANG T, CHEN D Y, ZHANG Z Y, YANG W C. Research progress on the molecular targets of herbicides. Chinese Journal of Pesticide Science, 2023, 25(4): 755-768. (in Chinese)
[24]
王淑燕, 郭永春, 周鹏, 林宏政, 林伯纬, 赵峰, 叶乃兴. 草铵膦对茶树生长及品质成分的影响. 食品安全质量检测学报, 2021, 12(20): 8084-8092.
WANG S Y, GUO Y C, ZHOU P, LIN H Z, LIN B W, ZHAO F, YE N X. Effects of glufosinate on growth and quality components of Camellia sinensis. Journal of Food Safety and Quality, 2021, 12(20): 8084-8092. (in Chinese)
[25]
侯颖, 李静泉, 尤晓颜, 王维宇, 裴韬, 孙军杰. 精喹禾灵降解菌株Bacillus subtilis H的分离鉴定及降解特性. 中国环境科学, 2018, 38(4): 1466-1472.
HOU Y, LI J Q, YOU X Y, WANG W Y, PEI T, SUN J J. Isolation and identification of quizalofop-p-ethyl-degrading strain Bacillus subtilis H and its degradation characteristics. China Environmental Science, 2018, 38(4): 1466-1472. (in Chinese)
[26]
GROSSMANN K, SCHELTRUP F. Selective induction of 1- aminocyclopropane-1-carboxylic acid (ACC) synthase activity is involved in the selectivity of the auxin herbicide quinclorac between barnyard grass and rice. Pesticide Biochemistry and Physiology, 1997, 58(2): 145-153.

doi: 10.1006/pest.1997.2290
[27]
SUNOHARA Y, MATSUMOTO H. Quinclorac-induced cell death is accompanied by generation of reactive oxygen species in maize root tissue. Phytochemistry, 2008, 69(12): 2312-2319.

doi: 10.1016/j.phytochem.2008.06.012 pmid: 18674787
[28]
NAVROT N, ROUHIER N, GELHAYE E, JACQUOT J P. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiologia Plantarum, 2007, 129(1): 185-195.

doi: 10.1111/ppl.2007.129.issue-1
[29]
苑学霞, 郭栋梁, 赵善仓, 毛江胜, 郭长英, 邓立刚, 张勇. 二氯喹啉酸在水稻、土壤和田水中消解动态及残留. 生态环境学报, 2011, 20(6/7): 1138-1142.
YUAN X X, GUO D L, ZHAO S C, MAO J S, GUO C Y, DENG L G, ZHANG Y. Residues and degradation dynamics of quinclorac in paddy plant, soil and paddy water. Ecology and Environmental Sciences, 2011, 20(6/7): 1138-1142. (in Chinese)
[30]
贺亚旭, 蒋思捷, 舒小情, 童功松, 钟美娥. 二氯喹啉酸的残留现状及治理对策研究进展. 农药学学报, 2021, 23(1): 31-41.
HE Y X, JIANG S J, SHU X Q, TONG G S, ZHONG M E. Research progress on environmental residual status and remediation strategies of quinclorac herbicide. Chinese Journal of Pesticide Science, 2021, 23(1): 31-41. (in Chinese)
[31]
林长福, 杨玉廷. 除草剂混用、混剂及其药效评价. 农药, 2002, 41(8): 5-7.
LIN C F, YANG Y T. Methods for efficacy evaluation of herbicide mixtures or herbicide prepackage mixtures. Pesticides, 2002, 41(8): 5-7. (in Chinese)
[32]
孙亚林, 朱文达, 陈文勇, 袁友明, 王明锐. 精喹禾灵对夏大豆田间的控草效果和光照及养分的影响. 华中农业大学学报, 2009, 28(2): 161-163.
SUN Y L, ZHU W D, CHEN W Y, YUAN Y M, WANG M R. The weed control effects of quizalofop-p-ethyl and its influence on light and nutrition in summer soybean field. Journal of Huazhong Agricultural University, 2009, 28(2): 161-163. (in Chinese)
[33]
李鑫, 安艳, 李慧, 晋小军. 10%精喹禾灵乳油对甘草田杂草防除效果及安全性. 植物保护, 2018, 44(6): 219-223.
LI X, AN Y, LI H, JIN X J. Weed control and safety of quizalofop- p-ethyl 10% EC for licorice farmland. Plant Protection, 2018, 44(6): 219-223. (in Chinese)
[34]
王红春, 李小艳, 孙宇, 贺建荣, 张伟星, 娄远来, 詹福康. 新型除草剂二氯喹啉草酮的除草活性及对水稻的安全性评价. 江苏农业学报, 2016, 32(1): 67-72.
WANG H C, LI X Y, SUN Y, HE J R, ZHANG W X, LOU Y L, ZHAN F K. Herbicidal activity of quintrione and its safety to rice. Jiangsu Journal of Agricultural Sciences, 2016, 32(1): 67-72. (in Chinese)
[35]
MALIK M S, BURGOS N R, TALBERT R E. Confirmation and control of propanil-resistant and quinclorac-resistant barnyardgrass (Echinochloa crus-galli) in rice. Weed Technology, 2010, 24(3): 226-233.

doi: 10.1614/WT-09-053.1
[36]
PENG Q, HAN H P, YANG X, BAI L Y, YU Q, POWLES S B. Quinclorac resistance in Echinochloa crus-galli from China. Rice Science, 2019, 26(5): 300-308.

doi: 10.1016/j.rsci.2019.08.004
[37]
ABDALLAH I, FISCHER A J, ELMORE C L, SALTVEIT M E, ZAKI M. Mechanism of resistance to quinclorac in smooth crabgrass (Digitaria ischaemum). Pesticide Biochemistry and Physiology, 2006, 84(1): 38-48.

doi: 10.1016/j.pestbp.2005.05.003
[38]
王恒智, 谭金妮, 吕学深, 赵孔平, 刘伟堂, 王金信. 丙炔氟草胺与二甲戊灵复配的联合除草作用及对棉花的安全性. 农药学学报, 2018, 20(3): 309-315.
WANG H Z, TAN J N, X S, ZHAO K P, LIU W T, WANG J X. Evaluation of herbicidal activity and safety to cotton of the combination of flumioxazin and pendimethalin. Chinese Journal of Pesticide Science, 2018, 20(3): 309-315. (in Chinese)
[39]
FIPKE M V, VIDAL R A. Integrative theory of the mode of action of quinclorac: Literature review. Planta Daninha, 2016, 34(2): 393-402.

doi: 10.1590/S0100-83582016340200020
[40]
李宏辉, 曹丽玲, 韦邦清, 莫连庆, 廖秀娟. 二氯喹啉酸控制沙糖橘夏梢田间试验初报. 南方园艺, 2020, 31(3): 28-31.
LI H H, CAO L L, WEI B Q, MO L Q, LIAO X J. Preliminary report on the field experiment of controlling summer shoots of sugar orange with quinclorac. Southern Horticulture, 2020, 31(3): 28-31. (in Chinese)
[1] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[2] WANG XiaoJun, WANG JinLan, JU ZeLiang, LIANG GuoLing, JIA ZhiFeng, LIU WenHui, MA Xiang, MA JinXiu, LI Wen. Comprehensive Evaluation on Production Performance and Nutritional Quality of Different Varieties of Forage Oat in the Qinghai Lake Area [J]. Scientia Agricultura Sinica, 2024, 57(19): 3730-3742.
[3] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[4] ZHAI CaiJiao, GE LiJiao, CHENG YuJing, QIU Liang, WANG XiaoQiu, LIU ShuiDong. Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers [J]. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457.
[5] SONG Xiang, WANG ZhongMan, ZHANG QiuLing, WEI YuanYuan, ZHAO XiaoGang, LIU Bo, DAI SiLan. Comprehensive Evaluation and Selection of Hybrid Offsprings of Early Flowering Spray Outdoor Chrysanthemum [J]. Scientia Agricultura Sinica, 2024, 57(1): 173-189.
[6] HOU ZhaoYu, GONG YiZhao, QIAN Yi, CHENG ZhuoYa, TAO Jun, ZHAO DaQiu. Evaluation of Heat Tolerance of Herbaceous Peony and Screening of Its Identification Indices [J]. Scientia Agricultura Sinica, 2023, 56(23): 4742-4756.
[7] KAYOUMU MiReZhaTiJiang, WUMAIERJIANG XiErAiLi, LI XiaoTong, WANG XiangRu, GUI HuiPing, ZHANG HengHeng, ZHANG XiLing, DONG Qiang, SONG MeiZhen. Screening of Low Phosphorus Tolerant Germplasm in Cotton at Seedling Stage and Comprehensive Evaluation of Low Phosphorus Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(21): 4150-4162.
[8] HAN XiaoWen, HAN Shuo, HU YiFeng, WANG MengRu, CHEN ZhongYi, ZHU YongXing, YIN JunLiang. Genome-Wide Identification of AP2/ERF Gene Family in Alternanthera philoxeroides and Its Expression Patterns Under Herbicide Stresses [J]. Scientia Agricultura Sinica, 2023, 56(20): 4021-4034.
[9] WU YuanLong, HUI FengJiao, PAN ZhenYuan, YOU ChunYuan, LIN HaiRong, LI ZhiBo, JIN ShuangXia, NIE XinHui. Opportunities and Challenges for Developing Herbicide-Resistance Crops in the Post-Genomic Era [J]. Scientia Agricultura Sinica, 2023, 56(17): 3285-3301.
[10] LIANG ChengZhen, ZANG YouYi, MENG ZhiGang, WANG Yuan, MUBASHIR Abbas, HE HaiYan, ZHOU Qi, WEI YunXiao, ZHANG Rui, GUO SanDui. Identification of Target Traits and Genetic Stability of Transgenic Cotton GGK2 [J]. Scientia Agricultura Sinica, 2023, 56(17): 3251-3260.
[11] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[12] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[13] CHEN ZhiMin, CHEN XiaoLin, TAN ZhenHua, CHEN ZhaoXing, SHEN DanDan, MA YanYan, ZHENG YongQiang, YI ShiLai, LÜ Qiang, XIE RangJin. Comprehensive Fruit Quality Evaluation and Suitable Areas Selection of Newhall Navel Orange in China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1949-1965.
[14] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[15] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!