Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (1): 58-74.doi: 10.3864/j.issn.0578-1752.2025.01.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Regional Distribution of Raw Cotton Quality in Xinjiang Based on Notarized Inspection Data for Cotton

LI PeiSong1(), LU YongDi1, GUO Yu1, ZHANG QiPeng1, LIU TaoFen1, WANG TianHe1, YANG MingFeng2, XIANG Dao2, TIAN JingShan1,*(), ZHANG WangFeng1,*()   

  1. 1 College of Agronomy, Shihezi University/Key Laboratory of Oasis Eco-Agriculture, The Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang
    2 Wulanwusu Agro-Meteorological Experimental Station of Shihezi Meteorological Bureau, Shihezi 832003, Xinjiang
  • Received:2024-01-18 Accepted:2024-07-10 Online:2025-01-01 Published:2025-01-07
  • Contact: TIAN JingShan, ZHANG WangFeng

Abstract:

【Objective】 Xinjiang cotton-growing area has the resource conditions for the formation of different cotton fibers quality types, due to its large spanning range, diverse climate and ecological types. It can provide theoretical bases for cotton-using enterprises to select multi-type, multi-grade and high-quality special cotton and optimize the cotton dominant production area, by studying the regional differences and distribution patterns and clarifying the climatic factors which affect the distribution of raw cotton quality in Xinjiang. 【Method】 Based on the quality certification inspection data of Chinese cotton from 2016 to 2020, the dataset encompassed fiber length, strength, Micronaire, and uniformity. The weighted average method was employed for analyzing the raw cotton quality across different cotton planting regions in Xinjiang. The linear trend slope method was utilized to determine the interannual variation trend of raw cotton quality in each individual county or city involved in cotton cultivation. Subsequently, a comprehensive evaluation of Xinjiang’s raw cotton quality was conducted based on the respective weights assigned to each index.【Result】The fiber length and strength of the northern region were significantly higher than those of the southern and eastern regions by 0.24-0.31 mm and 0.62-1.17 cN/tex. The quality of raw cotton in the Xinjiang Production and Construction Corps was noticeably superior to that of the Xinjiang Uygur Autonomous Region, and the fiber length and strength of raw cotton increased by 0.22 mm and 0.44 cN/tex, respectively. The fiber length ranging from 28.9 to 29.0 mm was predominantly concentrated in Huyanghe City of the Seventh Division (Chepaizi Reclamation Area), Shihezi City of the Eighth Division (Xiayedi Reclamation Area), and Beitun City of the Tenth Division (184 Corp) within the cotton producing region of northern Xinjiang. The strength in the northern region exhibited superior performance, with the strength between 28.4 and 29.9 cN/tex, while it was comparatively lower in the southern region. Micronaire A showed significant concentration in Wujiaqu City of the Sixth Division (Wujiaqu Reclamation Area), Beitun City of the Tenth Division (184 Corp), and Changji City within the cotton producing area of northern Xinjiang. The high-quality regions exhibited a consistent year-on-year growth trend, with fiber length increasing by 0.01-0.07 mm annually. The regions demonstrating this upward trend included Turfan Gaochang District in the eastern region of Xinjiang, Xinhe County, Magaiti County, Wensu County, Shache County, Shule County in the southern region of Xinjiang, and the Third Division of Tulushuk city (Xiaohaizi Reclamation Area). An average annual increase of fracture-specific strength ranging from 0.21 to 0.40 cN/tex primarily concentrated in Xinhe County, Wensu County and Tumushuk City of the Third Division (Xiaohaizi Reclamation Area) within the cotton-producing zone of Southern Xinjiang. Regions with better overall raw cotton quality were primarily concentrated in Manas County in Northern Xinjiang, Wujiaqu City in the Sixth Division (Wujiaqu Reclamation Area), Shihezi City in the Eighth Division (Xiayedi Reclamation Area, Anjihai Reclamation Area, Shihezi Reclamation Area, Mosuowan Reclamation Area), and Wensu County and Awati County in Southern Xinjiang, with fiber lengths ranging from 28.6 to 29.0 mm and strength from 28.4 to 29.9 cN/tex.【Conclusion】The quality of raw cotton in Xinjiang exhibited regional variations, which were influenced by the duration of days with temperatures over 35 ℃. Variety renewal and simplified cultivation were important ways to improve cotton quality and ensure the effective supply of high-quality raw cotton.

Key words: fiber quality, ecological region, fine fiber, comprehensive evaluation, high temperature

Table 1

Basic statistics on cotton production in major cotton-growing counties (cities) of Xinjiang Uygur Autonomous Region (XUAR)"

区域
Region
县(市)
County (City)
经度
Longitude
(°)
纬度
Latitude
(°)
播种面积
Sown area
(×104 hm2)
公检原棉包数
Public inspection of raw cotton bales (×104)
公检原棉吨数
Tonnage of raw cotton for public inspection (×104 t)
北疆地方
Northern
XUAR
昌吉市 Changji City 87.27 44.01 2.47 27.57 6.20
玛纳斯县 Manas County 86.21 44.30 4.62 39.32 8.87
呼图壁县 Hutubi County 86.90 44.19 3.94 27.15 6.12
沙湾市 Shawan City 85.62 44.33 10.91 41.47 9.03
乌苏市 Wusu City 84.71 44.42 10.34 70.15 15.81
精河县 Jinghe County 82.89 44.60 6.29 44.29 10.03
博乐市 Bole City 82.05 44.85 3.12 19.49 4.41
南疆地方
Southern
XUAR
阿克苏市 Aksu City 80.26 41.17 6.40 89.24 20.29
阿瓦提县 Awati County 80.38 40.64 9.65 35.16 7.98
库车市 Kuche City 82.96 41.72 11.09 78.44 17.78
新和县 Xinhe Country 82.61 41.55 6.46 43.19 9.78
沙雅县 Shaya County 82.78 41.22 11.79 54.04 12.21
温宿县 Wunsu County 80.24 41.28 3.65 18.12 4.12
巴楚县 Bachu County 78.55 39.80 7.37 56.89 12.92
伽师县 Jiashi County 76.72 39.49 8.82 32.62 7.38
麦盖提县 Maigaiti County 77.61 38.90 4.69 26.76 6.03
莎车县 Shache County 77.25 38.41 6.09 21.82 4.93
疏勒县 Shule County 76.05 39.40 4.78 7.82 1.76
岳普湖县 Yuepuhu County 76.78 39.23 4.62 37.86 8.54
库尔勒市 Korla City 86.18 41.73 7.07 37.53 8.49
尉犁县 Yuli County 86.26 41.34 7.16 45.31 10.23
轮台县 Luntai County 84.25 41.78 5.79 39.62 8.95
东疆地方
Eastern XUAR
吐鲁番 Turpan City 89.19 42.94 0.17 25.13 0.57
哈密市 Hami City 93.51 42.83 3.10 19.67 4.42

Table 2

Basic statistics on cotton production in major cotton-growing division (cities) of Xinjiang Production and Construction Corps (XPCC)"

区域
Region
师市
Division cities
垦区
Reclamation area
经度
Longitude
(°)
纬度
Latitude
(°)
播种面积
Sown area
(×104 hm2)
公检原棉
包数(×104
Public inspection of raw cotton bales
公检原棉吨数
Tonnage of raw cotton for public inspection
(×104 t)
辖区内的主要植棉团场
The main cotton growing farms in the jurisdiction
北疆兵团
Northern
XPCC
第八师石河子市
Eighth Division Shihezi City
安集海垦区
Anjihai reclamation area
85.35 44.36 5.00 34.39 7.77 141团、142团、144团
141 Corp, 142 Corp, 144 Corp
莫索湾垦区
Mosuowan reclamation area
86.40 44.79 5.53 51.78 11.71 147团—150团
147—150 Corps
石河子垦区
Shihezi reclamation area
86.01 44.31 3.46 32.78 7.42 143团、145团、石河子市
143 Corp, 145 Corp, Shihezi city
下野地垦区
Xiayedi reclamation area
85.48 44.69 7.40 75.77 17.14 121团、132团—134团、136团
121 Corp, 132—134 Corps, 136 Corps
第七师胡杨河市
Seventh Division Huyanghe City
车排子垦区
Chepaizi reclamation area
84.50 44.98 9.55 74.19 16.69 123团、125团—130团
123 Corp, 125—130 Corps
第六师五家渠市
Sixth Division Wujiaqu City
芳新垦区
Fangxin reclamation area
86.67 44.55 9.25 43.19 9.74 105团、106团、芳草湖总场、新湖总场
105 Corp, 106 Corp, Fangcaohu Farm, Xinhu Farm
五家渠垦区
Wujiaqu reclamation area
87.53 44.17 3.81 12.08 2.67 102团、103团、五家渠市
102 Corp, 103 Corp, Wujiaqu City
第五师双河市
Fifth Division Shuanghe city
博乐垦区
Bole reclamation area
82.07 44.89 4.21 40.40 9.16 81团—86团、89团、90团
81—86 Corps, 89 Corp, 90 Corp
第十师北屯市
Tenth Division Beitun City
北屯市
Beitun City
86.35 46.28 0.65 3.55 0.80 184团
184 Corp
南疆兵团
Southern
XPCC
第一师阿拉尔市
First division Arar city
阿拉尔垦区
Arar reclamation area
81.29 40.54 7.15 81.71 18.48 6团—14团、16团
6—14 Corps, 16 Corp
沙井子垦区
Shajingzi reclamation area
79.89 40.68 3.03 32.58 7.52 1团—3团
1—3 Corps
第二师铁门关市
Second Division Tiemenguan City
库尔勒垦区
Korla reclamation area
85.69 41.87 2.00 15.12 3.44 28团—30团
28—30 Corps
塔里木垦区
Tarim reclamation area
87.19 40.83 2.57 37.01 8.31 31团、33团、34团
31 Corp, 33 Corp, 34 Corp
第三师图木舒克市
Third Division Tumusuke city
小海子垦区
Xiaohaizi reclamation area
79.51 39.93 4.00 34.59 7.57 44团、49团—53团
44 Corp, 49—53 Corps
东疆兵团
Eastern XPCC
第十三师新星市
Thirteenth Xinxing city
新星市
Xinxing city
92.51 42.89 1.40 0.19 0.43 黄山农场、红星二场、红星一场、红星三场、红星四场、火箭农场、红山农场
Huangshan Farm, the Hongxing Ⅱ Farm, the Hongxing Ⅰ Farm, the Hongxing Ⅲ Farm, the Hongxing Ⅳ Farm, Huojian Farm, Hongshan Farm

Fig. 1

Cotton planting area and distribution of cotton processing enterprises in XPCC and XUAR"

Fig. 2

Changes of main indexes of cotton fiber quality in different regions of Xinjiang The raw cotton quality data was obtained from the 2016 to 2020 raw cotton quality level data of more than 970 cotton processing enterprises in Xinjiang by the China Fiber Quality Inspection Center. The sample numbers for the quality of raw cotton in Northern XUAR, Northern XPCC, Eastern XUAR, Eastern XPCC, Southern XUAR and Southern XPCC are 35, 44, 10, 5, 75 and 25, respectively"

Fig. 3

Classification ratio of fiber length and distribution in counties (cities) of Xinjiang The bar chart shows the distribution of fiber length grades, the horizontal axis is the length grade, and the vertical axis is the proportion of the number of cotton processing enterprises in each grade to the total number of processing enterprises。The different colors marked on the map represent the average length of raw cotton in the counties (cities) and corps, divisions and cities in Xinjiang from 2016 to 2020 The sample number n is the number of cotton processing enterprises registered in XUAR and XPCC, which is 970。The same as below"

Fig. 4

Classification ratio of fiber strength and distribution in counties (cities) of Xinjiang"

Fig. 5

Classification ratio of fiber micronaire and distribution in counties (cities) of Xinjiang"

Fig. 6

Inter-annual variation of fiber length in various counties and cities of Xinjiang"

Fig. 7

Inter-annual variation of fiber strength in various counties (cities) of Xinjiang"

Fig. 8

Inter-annual variation of fiber micronaire in various counties (cities) of Xinjiang"

Fig. 9

Comprehensive scores of raw fiber quality in different cotton regions of Xinjiang"

Table 3

Distribution of cotton fiber quality in different ecological regions of Xinjiang"

生态区
Ecotope
纤维长度
Upper half mean length (mm)
断裂比强度
Strength (cN/tex)
马克隆值
Micronaire
长度整齐度
Length uniformity (%)
Q-score
28.8a 28.8a 4.41ab 82.7a 0.63—0.78
28.6b 28.3b 4.38b 82.5ab 0.47—0.62
28.3c 27.7c 4.48ab 82.3bc 0.31—0.46
28.1d 27.4c 4.54a 82.0c 0.14—0.30

Fig. 10

Changes of fiber quality of approved cotton varieties in Xinjiang over the years (2013—2022)"

Table 4

Meteorological factors on quality of raw cotton in xinjiang correlation analysis"

指标
Factor
纤维长度
Upper half mean length (mm)
断裂比强度
Strength (cN/tex)
马克隆值
Micronaire
长度整齐度
Length uniformlty (%)
最高气温 Maximum temperature 0.4270** 0.3589* -0.1379 0.02027
最低气温 Minimum temperature 0.4123** 0.1051 -0.3248* 0.07152
≥15 ℃有效积温 GDD15 0.4346** 0.2062 -0.2454 0.09004
>35 ℃天数 The number of days >35 ℃ 0.5753** 0.3958** -0.4133* 0.2929
日照时数 Sunshine duration 0.09198 0.1189 -0.08005 0.1434

Fig. 11

The difference between the maximum temperature and the number of days >35 ℃ in the cotton producing areas of northern and southern Xinjiang"

[1]
DAI J L, DONG H Z. Intensive cotton farming technologies in China: Achievements, challenges and countermeasures. Field Crops Research, 2014, 155: 99-110.
[2]
许乃银, 金石桥, 李健. 利用GGE双标图划分我国棉花纤维品质生态区. 应用生态学报, 2017, 28(1): 191-198.

doi: 10.13287/j.1001-9332.201701.017
XU N Y, JIN S Q, LI J. Ecological regionalization of national cotton fiber quality in China using GGE biplot analysis method. Chinese Journal of Applied Ecology, 2017, 28(1): 191-198. (in Chinese)

doi: 10.13287/j.1001-9332.201701.017
[3]
唐淑荣, 许乃银, 杨伟华, 魏守军, 周治国. 基于GGE分析的西北内陆棉区纤维品质生态区划分. 中国生态农业学报, 2016, 24(12): 1674-1682.
TANG S R, XU N Y, YANG W H, WEI S J, ZHOU Z G. Ecological regionalization of cotton fiber quality in the Northwest Inland Region using GGE analysis. Chinese Journal of Eco-Agriculture, 2016, 24(12): 1674-1682. (in Chinese)
[4]
柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价. 作物学报, 2024, 50(2): 280-293.

doi: 10.3724/SP.J.1006.2023.34075
KE H F, SU H M, SUN Z W, GU Q S, YANG J, WANG G N, XU D Y, WANG H Z, WU L Q, ZHANG Y, ZHANG Y, ZHANG G Y, MA Z Y, WANG S F. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties. Acta Agronomica Sinica, 2024, 50(2): 280-293. (in Chinese)
[5]
张小微, 王晓宇, 葛群, 龚举武, 李俊文, 刘爱英, 巩万奎, 商海红, 潘境涛, 邓晓英, 范森淼, 石玉真, 陈全家, 袁有禄. 优质棉中棉所127相关杂交分离群体纤维产量和品质性状遗传变异分析. 植物遗传资源学报, 2021, 22(4): 989-999.

doi: 10.13430/j.cnki.jpgr.20210204001
ZHANG X W, WANG X Y, GE Q, GONG J W, LI J W, LIU A Y, GONG W K, SHANG H H, PAN J T, DENG X Y, FAN S M, SHI Y Z, CHEN Q J, YUAN Y L. Genetic variation analysis of fiber yield and fiber quality traits in cotton variety CCRI127 with excellent fiber quality. Journal of Plant Genetic Resources, 2021, 22(4): 989-999. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20210204001
[6]
史春辉, 张爱, 马麒, 谢晓宇, 刘娟娟, 李美丽, 李朝周, 王彩香, 宿俊吉. 陆地棉纤维长度和强度的优异位点挖掘及其候选基因预测. 植物遗传资源学报, 2021, 22(4): 1133-1144.

doi: 10.13430/j.cnki.jpgr.20210118002
SHI C H, ZHANG A, MA Q, XIE X Y, LIU J J, LI M L, LI C Z, WANG C X, SU J J. Exploration of elite loci for fiber length and strength in upland cotton and prediction of their candidate genes. Journal of Plant Genetic Resources, 2021, 22(4): 1133-1144. (in Chinese)
[7]
韩春丽, 赵瑞海, 勾玲, 张旺锋. 新疆主要棉花品种纤维品质变化及与气象因子关系的研究. 石河子大学学报, 2005, 23(1): 48-52.
HAN C L, ZHAO R H, GOU L, ZHANG W F. Study on Fiber quality variation of main cotton varieties and its relationship with meteorological factors in Xinjiang. Journal of Shihezi University, 2005, 23(1): 48-52. (in Chinese)
[8]
熊宗伟, 王雪姣, 顾生浩, 张立祯, 周治国. 中国主产棉区气象因子和纤维品质的相关性研究. 棉花学报, 2014, 26(2): 95-104.

doi: 10.11963/cs140201
XIONG Z W, WANG X J, GU S H, ZHANG L Z, ZHOU Z G. Correlation between meteorological factors and cotton fiber quality in major cotton-producing regions of China. Cotton Science, 2014, 26(2): 95-104. (in Chinese)
[9]
赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关. 作物学报, 2021, 47(9): 1680-1689.

doi: 10.3724/SP.J.1006.2021.04220
ZHAO W Q, XU W Z, YANG L Y, LIU Y, ZHOU Z G, WANG Y H. Different response of cotton leaves to heat stress is closely related to the night starch degradation. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. (in Chinese)
[10]
贺新颖, 周治国, 戴艳娇, 强志英, 陈兵林, 王友华. 铃期增温对棉花产量、品质的影响及其生理机制. 应用生态学报, 2013, 24(12): 3501-3507.
HE X Y, ZHOU Z G, DAI Y J, QIANG Z Y, CHEN B L, WANG Y H. Effect of increased temperature in boll period on fiber yield and quality of cotton and its physiological mechanism. Chinese Journal of Applied Ecology, 2013, 24(12): 3501-3507. (in Chinese)
[11]
XU B, ZHOU Z G, GUO L T, XU W Z, ZHAO W Q, CHEN B L, MENG Y L, WANG Y H. Susceptible time window and endurable duration of cotton fiber development to high temperature stress. Journal of Integrative Agriculture, 2017, 16(9): 1936-1945.
[12]
毛树春, 马小艳, 程思贤, 王文魁, 张亚林, 黄群, 吴冬梅. 我国高品质棉花产需分析与发展建议. 中国棉花, 2020, 47(3): 1-5, 20.
MAO S C, MA X Y, CHENG S X, WANG W K, ZHANG Y L, HUANG Q, WU D M. Analysis and strategy for the production and demand of high quality cotton in China. China Cotton, 2020, 47(3): 1-5, 20. (in Chinese)

doi: 10.11963/1000-632X.mscmsc.20200309
[13]
TU Y, WU S B, CHEN B, WENG Q H, BAI Y Q, YANG J, YU L, XU B. A 30 m annual cropland dataset of China from 1986 to 2021. Earth System Science Data, 2024, 16(5): 2297-2316.
[14]
LI N, LIN H X, WANG T X, LI Y, LIU Y, CHEN X G, HU X T. Impact of climate change on cotton growth and yields in Xinjiang, China. Field Crops Research, 2020, 247: 107590.
[15]
BOURLAND F M, HOGAN R, JONES D C, BARNES E. Development and utility of Q-score for characterizing cotton fiber quality. Journal of Cotton Science, 2010, 14(2): 53-63.
[16]
LI H J, WANG J W, HUANG X L, ZHOU Z G, WANG S S, HU W. Novel intra-boll yield components and Q-score can further evaluate the effect of phosphorus fertilizer on cotton yield and fiber quality. Field Crops Research, 2022, 275: 108325.
[17]
唐淑荣, 王延琴, 付小琼, 韦京艳, 杨伟华, 魏守军, 周治国. 黄河流域棉区纤维品质区域分布特征与生态区划研究. 棉花学报, 2017, 29(3): 274-282.

doi: 10.11963/1002-7807.tsrzzg.20170320
TANG S R, WANG Y Q, FU X Q, WEI J Y, YANG W H, WEI S J, ZHOU Z G. Studies on regional distribution characteristics and ecological regionalization of cotton fiber quality in the Yellow River valley. Cotton Science, 2017, 29(3): 274-282. (in Chinese)
[18]
LUO Q Y, BANGE M, JOHNSTON D. Environment and cotton fibre quality. Climatic Change, 2016, 138(1): 207-221.
[19]
Australian Cotton Shippers Association. https://austcottonshippers.com.au/australian-cotton-quality?year=2020.
[20]
Cotton Incorporated. https://www.cottoninc.com/cotton-production/quality/us-cotton-fiber-chart/properties-of-the-growing-regions.
[21]
李雪源, 秦文斌, 孙国清, 艾仙涛, 吐逊江, 莫明. 新疆棉区纤维品质生态分布研究. 新疆农业大学学报, 2003, 26(4): 20-27.
LI X Y, QIN W B, SUN G Q, AI X T, TU X J, MO M. Study on ecological distribution of Xinjiang cotton fibre quality. Journal of Xinjiang Agricultural University, 2003, 26(4): 20-27. (in Chinese)
[22]
李雪源, 王俊铎, 郑巨云, 梁亚军, 龚照龙, 艾先涛, 莫明. 澳大利亚棉花产业考察报告. 中国棉花, 2016, 43(9): 1-9, 40.
LI X Y, WANG J D, ZHENG J Y, LIANG Y J, GONG Z L, AI X T, MO M. Investigation on cotton in Australia. China Cotton, 2016, 43(9): 1-9, 40. (in Chinese)

doi: 10.11963/issn.1000-632X.201609001
[23]
吴艳琴, 田景山, 张煦怡, 徐守振, 左文庆, 张旺锋, 勾玲, 张亚黎, 董恒义, 酒兴丽, 余永川, 赵湛. 清理加工工序对新疆机采棉品质的影响. 纺织学报, 2021, 42(11): 24-28.

doi: 10.13475/j.fzxb.20210104105
WU Y Q, TIAN J S, ZHANG X Y, XU S Z, ZUO W Q, ZHANG W F, GOU L, ZHANG Y L, DONG H Y, JIU X L, YU Y C, ZHAO Z. Effect of cotton cleaning on fiber quality of machine-harvested cotton in Xinjiang region. Journal of Textile Research, 2021, 42(11): 24-28. (in Chinese)

doi: 10.13475/j.fzxb.20210104105
[24]
陈民志, 杨延龙, 王宇轩, 田景山, 徐守振, 刘宁宁, 党科, 张旺锋. 新疆早熟陆地棉品种更替过程中的株型特征及主要经济性状的演变. 中国农业科学, 2019, 52(19): 3279-3290. doi: 10.3864/j.issn.0578-1752.2019.19.001.
CHEN M Z, YANG Y L, WANG Y X, TIAN J S, XU S Z, LIU N N, DANG K, ZHANG W F. Plant type characteristics and evolution of main economic characters in early maturing upland cotton cultivar replacement in Xinjiang. Scientia Agricultura Sinica, 2019, 52(19): 3279-3290. doi: 10.3864/j.issn.0578-1752.2019.19.001. (in Chinese)
[25]
WANG Y X, CHEN M Z, LIANG F B, TIAN J S, ZHANG Y L, JIANG C D, ZHANG W F. Photosynthates competition within the boll-leaf system is alleviated with the improvement of photosynthetic performance during the succession of Xinjiang cotton cultivars. Industrial Crops and Products, 2021, 160: 113121.
[26]
TEODORO P E, FARIAS F J C, DE CARVALHO L P, RIBEIRO L P, NASCIMENTO M, AZEVEDO C F, CRUZ C D, BHERING L L. Adaptability and stability of cotton genotypes regarding fiber yield and quality traits. Crop Science, 2019, 59(2): 518-524.
[27]
WU F Q, GUO S M, HUANG W B, HAN Y C, WANG Z B, FENG L, WANG G P, LI X F, LEI Y P, YANG B F, XIONG S W, ZHI X Y, CHEN J L, XIN M H, WANG Y R, LI Y B. Adaptation of cotton production to climate change by sowing date optimization and precision resource management. Industrial Crops and Products, 2023, 203: 117167.
[28]
许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价. 作物学报, 2021, 47(4): 660-671.

doi: 10.3724/SP.J.1006.2021.04135
XU N Y, ZHAO S Q, ZHANG F, FU X Q, YANG X N, QIAO Y T, SUN S X. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis. Acta Agronomica Sinica, 2021, 47(4): 660-671. (in Chinese)
[29]
唐淑荣, 郭瑞林, 韦京艳, 孟俊婷, 魏守军, 杨伟华, 周治国. 国家棉花品种区域试验纤维品质时空分布与发展趋势. 应用生态学报, 2017, 28(2): 589-602.

doi: 10.13287/j.1001-9332.201702.027
TANG S R, GUO R L, WEI J Y, MENG J T, WEI S J, YANG W H, ZHOU Z G. Trends and temporal-spatial distribution of fiber quality in the national cotton variety regional trials. Chinese Journal of Applied Ecology, 2017, 28(2): 589-602. (in Chinese)
[30]
白岩, 彭军, 赵素琴, 付小琼, 许乃银. 我国棉花大品种的历史沿革与发展趋势分析. 棉花学报, 2022, 34(4): 325-337.

doi: 10.11963/cs20220011
BAI Y, PENG J, ZHAO S Q, FU X Q, XU N Y. A retrospective analysis of the historical evolution and developing trend of mega cotton varieties in China. Cotton Science, 2022, 34(4): 325-337. (in Chinese)
[31]
SAINI D K, IMPA S M, MCCALLISTER D, PATIL G B, ABIDI N, RITCHIE G, JACONIS S Y, JAGADISH K S V. High day and night temperatures impact on cotton yield and quality-Current status and future research direction. Journal of Cotton Research, 2023, 6(1): 16.
[32]
董合忠, 杨国正, 李亚兵, 田立文, 代建龙, 孔祥强. 棉花轻简化栽培关键技术及其生理生态学机制. 作物学报, 2017, 43(5): 631-639.
DONG H Z, YANG G Z, LI Y B, TIAN L W, DAI J L, KONG X Q. Key technologies for light and simplified cultivation of cotton and their eco-physiological mechanisms. Acta Agronomica Sinica, 2017, 43(5): 631-639. (in Chinese)
[33]
白岩, 毛树春, 田立文, 李莉, 董合忠. 新疆棉花高产简化栽培技术评述与展望. 中国农业科学, 2017, 50(1): 38-50. doi: 10.3864/j.issn.0578-1752.2017.01.004.
BAI Y, MAO S C, TIAN L W, LI L, DONG H Z. Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang cotton-growing area. Scientia Agricultura Sinica, 2017, 50(1): 38-50. doi: 10.3864/j.issn.0578-1752.2017.01.004. (in Chinese)
[34]
娄善伟, 田立文, 罗宏海, 杜明伟, 林涛, 杨涛, 张鹏忠. 新疆棉花优质高产关键生产技术分析. 中国农业科学, 2023, 56(14): 2673-2685. doi: 10.3864/j.issn.0578-1752.2023.14.004.
LOU S W, TIAN L W, LUO H H, DU M W, LIN T, YANG T, ZHANG P Z. Analysis on key production techniques of cotton with good quality and high yield in Xinjiang. Scientia Agricultura Sinica, 2023, 56(14): 2673-2685. doi: 10.3864/j.issn.0578-1752.2023.14.004. (in Chinese)
[35]
武建设, 陈学庚. 新疆兵团棉花生产机械化发展现状问题及对策. 农业工程学报, 2015, 31(18): 5-10.
WU J S, CHEN X G. Current situation problems and countermeasures of cotton production mechanization development in Xinjiang Corps. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(18): 5-10. (in Chinese)
[36]
FENG L, DAI J L, TIAN L W, ZHANG H J, LI W J, DONG H Z. Review of the technology for high-yielding and efficient cotton cultivation in the northwest inland cotton-growing region of China. Field Crops Research, 2017, 208: 18-26.
[37]
DAI J L, LI W J, TANG W, ZHANG D M, LI Z H, LU H Q, ENEJI A E, DONG H Z. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crops Research, 2015, 180: 207-215.
[38]
ZUO W Q, WU B J, WANG Y X, XU S Z, CHEN M Z, LIANG F B, TIAN J S, ZHANG W F. Optimal row spacing configuration to improve cotton yield or quality is regulated by plant density and irrigation rate. Field Crops Research, 2024, 305: 109187.
[39]
董合忠, 毛树春, 张旺锋, 陈德华. 棉花优化成铃栽培理论及其新发展. 中国农业科学, 2014, 47(3): 441-451. doi: 10.3864/j.issn.0578-1752.2014.03.004.
DONG H Z, MAO S C, ZHANG W F, CHEN D H. On boll-setting optimization theory for cotton cultivation and its new development. Scientia Agricultura Sinica, 2014, 47(3): 441-451. doi: 10.3864/j.issn.0578-1752.2014.03.004. (in Chinese)
[40]
RAPER T B, SNIDER J L, DODDS D M, JONES A, ROBERTSON B, FROMME D, SANDLIN T, CUTTS T, BLAIR R. Genetic and environmental contributions to cotton yield and fiber quality in the mid-south. Crop Science, 2019, 59(1): 307-317.
[41]
LOISON R, AUDEBERT A, DEBAEKE P, HOOGENBOOM G, LEROUX L, OUMAROU P, GÉRARDEAUX E. Designing cotton ideotypes for the future: Reducing risk of crop failure for low input rainfed conditions in Northern Cameroon. European Journal of Agronomy, 2017, 90: 162-173.
[42]
GÉRARDEAUX E, LOISON R, PALAÏ O, SULTAN B. Adaptation strategies to climate change using cotton (Gossypium hirsutum L.)ideotypes in rainfed tropical cropping systems in Sub-Saharan Africa. A modeling approach. Field Crops Research, 2018, 226: 38-47.
[43]
杨扬, 常伟, 张兴东. 新疆极端气候时空变化及其与棉花生产关联研究. 中国农业资源与区划, 2024. http://kns.cnki.net/kcms/detail/11.3513.S.20240229.1413.014.html.
YANG Y, CHANG W, ZHANG X D. Spatiotemporal variation of extreme climate and its correlation with cotton production in Xinjiang. Chinese Journal of Agricultural Resources and Regional Planning, 2024. (in Chinese) http://kns.cnki.net/kcms/detail/11.3513.S.20240229.1413.014.html.
[44]
HU W, GAO M, XU B J, WANG S S, WANG Y H, ZHOU Z G. Co-occurring elevated temperature and drought stresses during cotton fiber thickening stage inhibit fiber biomass accumulation and cellulose synthesis. Industrial Crops and Products, 2022, 187: 115348.
[45]
ZAHID K R, ALI F, SHAH F, YOUNAS M, SHAH T, SHAHWAR D, HASSAN W, AHMAD Z, QI C, LU Y L, IQBAL A, WU W. Response and tolerance mechanism of cotton Gossypium hirsutum L.to elevated temperature stress: A review. Frontiers in Plant Science, 2016, 7: 937.
[46]
KAUR N, SNIDER J L, PARKASH V, PATERSON A H, GREY T L, TISHCHENKO V. Genotypic variation in growth, single leaf physiology, and acclimation potential of thylakoid processes in cotton exposed to high temperature extremes. Environmental and Experimental Botany, 2023, 215: 105512.
[47]
WU F Q, QIU Y R, HUANG W B, GUO S M, HAN Y C, WANG G P, LI X F, LEI Y P, YANG B F, XIONG S W, XIN M H, CHEN J, WANG Z B, FENG L, LI Y B. Water and heat resource utilization of cotton under different cropping patterns and their effects on crop biomass and yield formation. Agricultural and Forest Meteorology, 2022, 323: 109091.
[1] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[2] TANG GuiMei, LI WeiDong, ZHOU YuXia, KONG YouHan, XIAO XiaoLing, PENG YingShu, ZHANG Li, FU HongYan, LIU Yang, HUANG GuoLin. Genetic Diversity Analysis of Cymbidium faberi Germplasm Resources Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2025, 58(2): 339-354.
[3] QIAO ZhengYan, YU Miao, TANG YuJie, SHI GuiShan, LIU XinYu, LIU XiaoHan, WANG XinDing, LI Yang, WANG Nai, CHEN BingRu. Comprehensive Evaluation for Soda Salinity and Alkalinity in Sorghum Seedling Stage and Selection of Indicators [J]. Scientia Agricultura Sinica, 2025, 58(1): 30-42.
[4] GUO Lei, HUANG ChenYan, SONG HongFeng, SHEN ZhiJun, ZHANG BinBin, MA RuiJuan, SUN Meng, HE Xin, YU MingLiang. Screening, Compounding and Safety Evaluation of Herbicides Suitable for Peach Nursery [J]. Scientia Agricultura Sinica, 2024, 57(9): 1734-1747.
[5] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[6] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[7] LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101.
[8] SU XiaoYu, TAN ZhengWei, LI ChunMing, LI Lei, LU DanDan, YU YongLiang, DONG Wei, AN SuFang, YANG Qing, SUN Yao, XU LanJie, YANG HongQi, LIANG HuiZhen. Analysis of Genome-Wide Methylation Differences and Associated Gene Expression of Sesame Varieties Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(24): 4825-4838.
[9] PAN Jing, MENG ZhiHao, WANG Sen, WANG HaiBo, HE Ping, CHANG YuanSheng, ZHENG WenYan, LI LinGuang, WANG Chen, WANG Ping, HE XiaoWen. Diversity Analysis and Comprehensive Evaluation of Fruit Quality Traits in Reciprocal Cross Progenies of Apple Golden Delicious and Fuji Nagafu No.2 [J]. Scientia Agricultura Sinica, 2024, 57(24): 4945-4963.
[10] GUO Ya, REN Hao, WANG HongZhang, ZHANG JiWang, ZHAO Bin, REN BaiZhao, LIU Peng. High Temperature and Drought Combined Stress Inhibited Photosystem Ⅱ Performance and Decreased Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4205-4220.
[11] RONG YaSi, LI Feng, ZHANG PengYu, WANG DongYong, SU XiaoYu, TIAN Yuan, GAO TongMei. Evaluation of High Temperature Tolerance and Selection of Sesame (Sesamum indicum L.) Cultivars at Full Flowering Stage Based on Principal Components-Cluster Analysis [J]. Scientia Agricultura Sinica, 2024, 57(20): 3957-3973.
[12] XU TianJun, LÜ TianFang, LI ZiHao, ZHANG Yong, LIU HongWei, LIU YueE, CAI WanTao, ZHANG RuYang, SONG Wei, XING JinFeng, ZHAO JiuRan, WANG RongHuan. Comparison of Heat Tolerance of Maize Hybrids and Their Parental Inbreds with Different Genotypes [J]. Scientia Agricultura Sinica, 2024, 57(2): 403-415.
[13] WANG XiaoJun, WANG JinLan, JU ZeLiang, LIANG GuoLing, JIA ZhiFeng, LIU WenHui, MA Xiang, MA JinXiu, LI Wen. Comprehensive Evaluation on Production Performance and Nutritional Quality of Different Varieties of Forage Oat in the Qinghai Lake Area [J]. Scientia Agricultura Sinica, 2024, 57(19): 3730-3742.
[14] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[15] ZHAI CaiJiao, GE LiJiao, CHENG YuJing, QIU Liang, WANG XiaoQiu, LIU ShuiDong. Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers [J]. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!