Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1646-1657.doi: 10.3864/j.issn.0578-1752.2024.09.003

• SPECIAL FOCUS: DROUGHT RESISTANCE IDENTIFICATION AND GENETIC RESOURCE MINING IN WHEAT • Previous Articles     Next Articles

Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage

ZHOU Quan1(), LU QiuMei1, ZHAO ZhangChen1, WU ChenRan1, FU XiaoGe1, ZHAO YuJiao1, HAN Yong2, LIN HuaiLong2, CHEN WeiLin2, MOU LiMing3, LI XingMao4, WANG ChangHai2, HU YinGang1, CHEN Liang1()   

  1. 1 College of Agronomy, Northwest A&F University/State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Yangling 712100, Shaanxi
    2 Jiushenghe Holding Group Limited, Changji 831100, Xinjiang
    3 Dingxi Academy of Agricultural Sciences, Dingxi 743000, Gansu
    4 Institute of Dryland Farming, Gansu Academy of Agricultural Sciences, Lanzhou 730070
  • Received:2023-07-23 Accepted:2023-09-26 Online:2024-05-01 Published:2024-05-09
  • Contact: CHEN Liang

Abstract:

【Objective】Drought is a major environmental factor limiting global wheat production, and breeding drought-tolerant varieties is a key challenge faced by wheat breeders worldwide. Spring wheat, which has a short growth period, plays a vital role for national food security and planting structure, therefore, it is of great importance to identify and select drought tolerance of spring wheat varieties for breeding of high-yielding and drought-tolerant wheat.【Method】In this study, 244 spring wheat varieties (lines) from 10 different regions were used to assess the drought tolerance of spring wheat varieties during the seedling stage, this study used the controlled water content method to impose drought stress during the seedling stage, 5 seedlings with uniform and consistent growth were selected during the trefoil stage. Thirteen seedling stage indicators including maximum root length (MRL), first leaf length (FLL), first leaf width (FLW), coleoptile length (CL), shoot fresh weight (SFW) and root fresh weight (RFW) were measured. Comprehensive evaluation of drought resistance of various spring wheat varieties (lines) was conducted through methods such as using descriptive statistics, membership function, principal component analysis, cluster analysis, and correlation analysis. 【Result】The drought tolerance of spring wheat varieties (lines) exhibits a large variation. The coefficient of variation of the measured traits under drought treatment conditions ranges from 2.1% to 32.9%, while the coefficient of variation of the control group ranges from 1.0% to 29.3%. Compared with the control, the coleoptile length, root dry weight, fresh weight root to shoot ratio, and dry weight root to shoot ratio under drought treatment were all greater than those under the control treatment. The original 13 indexes were summarized into 5 principal components, and the contribution rate reached 79.56%, and the D value of the comprehensive drought resistance coefficient was calculated according to the characteristic vector of each principal component and the drought resistance coefficient of each trait index, then the D value was clustered and analyzed, which could be divided into 5 subgroups. Therefore, the root biomass (underground fresh weight and dry weight) was screened as an effective comprehensive index for the identification of drought resistance at the seedling stage. We conducted correlation analysis between the seedling stage drought index and the agronomic traits of maturity stage showed that the coleoptile length, first leaf length was significantly positively correlated with flag length, plant height, spike length, the number of spike and grain length. Additionally, and the seedling biomass was significantly positively correlated with thousand-grain weight.【Conclusion】Twenty-two highly drought-tolerant varieties were screened, and root biomass (both fresh and dry weight of the underground part) was identified as an effective comprehensive indicator for evaluating seedling stage drought tolerance.

Key words: spring wheat, seedling stage, drought resistance, comprehensive drought resistance coefficient

Table 1

The origin and number of 244 spring wheat materials"

省份/组织
Province/Organization
数量
No.
省份/组织
Province/Organization
数量
No.
CIMMYT 97 中国陕西Shaanxi, China 1
中国甘肃Gansu, China 53 中国云南Yunnan, China 1
中国四川Sichuan, China 49 中国青海Qinghai, China 1
中国宁夏Ningxia, China 24 中国黑龙江Heilongjiang, China 1
中国河南Henan, China 3 国外Foreign 14

Fig. 1

Schematic map of rainfall in Dingxi and Yangling from February to July 2021 (A) and 2022 (B)"

Table 2

The description and statistics of 13 seedling indexes of 244 spring wheat germplasm resources"

处理
Treatment
指标
Index
最小值
Min
最大值
Max
均值
Mean
标准差
SD
变异系数
CV (%)
对照
Control
最大根长MRL (cm) 10.10 26.02 18.60 3.22 17.30
胚芽鞘长CL (cm) 5.23 12.07 7.90 1.52 19.22
第一叶长FLL (cm) 11.02 22.74 15.58 2.66 17.08
第一叶宽FLW (cm) 0.29 0.45 0.36 0.04 10.37
第一叶面积FLA (cm2) 2.58 6.47 4.30 0.87 20.24
地上部鲜重SFW (mg) 360.00 919.00 612.62 139.21 22.72
地上部干重SDW (mg) 37.50 76.40 55.06 8.59 15.60
地下部鲜重RFW (mg) 114.00 340.00 232.98 47.98 20.59
地下部干重RDW (mg) 9.00 27.00 18.44 3.97 21.51
鲜重根冠比RSFW 0.18 0.69 0.39 0.12 29.30
干重根冠比RSDW 0.18 0.57 0.34 0.10 29.23
苗失水率SWLR 0.89 0.93 0.91 0.01 1.05
根失水率RWLR 0.85 0.95 0.92 0.02 1.71
干旱
Drought
最大根长MRL (cm) 7.18 19.27 13.11 2.88 21.95
胚芽鞘长CL (cm) 5.98 12.34 8.22 1.28 15.52
第一叶长FLL (cm) 8.28 16.07 11.89 1.94 16.33
第一叶宽FLW (cm) 0.21 0.35 0.27 0.03 11.33
第一叶面积FLA (cm2) 1.41 3.74 2.50 0.54 21.58
地上部鲜重SFW (mg) 213.67 471.00 324.65 56.82 17.50
地上部干重SDW (mg) 31.00 70.00 49.85 9.30 18.65
地下部鲜重RFW (mg) 47.00 219.00 140.12 35.99 25.68
地下部干重RDW (mg) 10.00 30.33 20.77 4.44 21.37
鲜重根冠比RSFW 0.22 0.79 0.44 0.14 32.89
干重根冠比RSDW 0.15 0.79 0.44 0.14 30.61
苗失水率SWLR 0.77 0.88 0.85 0.02 2.10
根失水率RWLR 0.72 0.89 0.85 0.03 2.96

Table 3

Correlation analysis of 13 seedling indexes"

处理
Treatment
指标
Index
最大
根长
MRL
胚芽
鞘长
CL
第一
叶长
FLL
第一
叶宽
FLW
第一
叶面积
FLA
地上部
鲜重
SFW
地上部
干重
SDW
地下部鲜重
RFW
地下部
干重
RDW
鲜重根冠比
RSFW
干重根冠比
RSDW
苗失
水率
SWLR
对照 Control 胚芽鞘长CL -0.51**
第一叶长FLL -0.52** 0.75**
第一叶宽FLW -0.02 -0.19** 0.06
第一叶面积FLA -0.40** 0.50** 0.82** 0.56**
地上部鲜重SFW -0.52** 0.45** 0.57** 0.25** 0.62**
地上部干重SDW -0.36** 0.31** 0.51** 0.30** 0.61** 0.89**
地下部鲜重RFW 0.48** -0.21** -0.24** 0.01 -0.13* 0.14* 0.11
地下部干重RDW 0.79** -0.52** -0.40** 0.17** -0.19** -0.33** -0.17** 0.61**
鲜重根冠比RSFW 0.80** -0.58** -0.58** -0.03 -0.47** -0.72** -0.65** 0.43** 0.85**
干重根冠比RSDW 0.72** -0.47** -0.57** -0.20** -0.55** -0.62** -0.57** 0.55** 0.66** 0.83**
苗失水率SWLR -0.58** 0.53** 0.44** -0.01 0.36** 0.71** 0.37** 0.08 -0.52** -0.58** -0.49**
根失水率RWLR -0.38** 0.30** 0.16* -0.24** 0.002 0.48** 0.25** 0.28** -0.41** -0.44** -0.10 0.64**
胁迫
Stress
胚芽鞘长CL -0.61**
第一叶长FLL -0.48** 0.62**
第一叶宽FLW -0.24** 0.12 0.23**
第一叶面积FLA -0.47** 0.50** 0.83** 0.67**
地上部鲜重SFW -0.48** 0.48** 0.57** 0.42** 0.66**
地上部干重SDW -0.54** 0.44** 0.63** 0.56** 0.78** 0.83**
地下部鲜重RFW 0.56** -0.47** -0.27** 0.09 -0.13* 0.01 -0.032
地下部干重RDW 0.70** -0.60** -0.47** -0.01 -0.32** -0.25** -0.26** 0.82**
鲜重根冠比RSFW 0.81** -0.66** -0.71** -0.34** -0.69** -0.63** -0.75** 0.60** 0.82**
干重根冠比RSDW 0.73** -0.65** -0.57** -0.17** -0.49** -0.53** -0.48** 0.83** 0.82** 0.86**
苗失水率SWLR 0.19** 0.01 -0.17** -0.26** -0.28** 0.19** -0.38** 0.10 0.07 0.30** 0.001
根失水率RWLR -0.05 0.07 0.22** 0.12 0.20** 0.39** 0.27** 0.55** 0.03 -0.11 0.26** 0.17**

Table 4

Principal component feature vector and contribution rate of each comprehensive index"

指标
Index
因子载荷Factor loading
F1 F2 F3 F4 F5
最大根长MRL 0.59 0.03 -0.24 0.00 -0.24
胚芽鞘长CL 0.42 0.33 -0.20 0.72 0.01
第一叶长FLL 0.43 0.67 0.03 -0.38 0.21
第一叶宽FLW -0.15 0.27 0.66 0.36 0.38
第一叶面积FLA 0.24 0.71 0.46 -0.08 0.41
地上部鲜重SFW 0.29 0.67 -0.51 0.23 -0.17
地上部干重SDW 0.11 0.61 0.46 0.14 -0.58
地下部鲜重RFW 0.89 -0.12 -0.05 0.29 -0.12
地下部干重RDW 0.76 -0.16 0.30 -0.15 -0.15
鲜重根冠比RSFW 0.62 -0.57 -0.07 -0.22 0.29
干重根冠比RSDW 0.67 -0.42 0.42 0.06 0.03
苗失水率SWLR 0.08 0.25 -0.85 0.19 0.30
根失水率RWLR 0.55 0.01 -0.11 0.57 0.22
特征值Eigenvalue 3.39 2.56 2.22 1.13 1.04
贡献率Contribution (%) 26.07 19.72 17.04 8.70 8.03
累计贡献率Cumulative contribution (%) 26.07 45.78 62.83 71.52 79.56
因子权重Factor weight 0.33 0.25 0.21 0.11 0.10

Fig. 2

Cluster map of different drought resistance of 244 wheat varieties (lines) Ⅰ: High resistant group; Ⅱ: Resistant group; Ⅲ: Medium resistance group; Ⅳ: Sensitive group; Ⅴ: High sensitive group"

Fig. 3

Analysis on difference of drought resistance coefficient of 13 indexes of different drought resistance grade materials Different letters indicate that the same index has significant difference in wheat materials of different drought resistance grades (P<0.05)"

Table 5

Correlation analysis between D value of comprehensive drought resistance coefficient and drought resistance coefficient at seedling stage"

指标
Index
最大根长
MRL
胚芽鞘长
CL
第一叶长
FLL
第一叶宽
FLW
第一叶
面积
FLA
地上部
鲜重
SFW
地上部
干重
SDW
地下部
鲜重
RFW
地下部
干重
RDW
鲜重
根冠比
RSFW
干重
根冠比
RSDW
地上部
失水率
SWLR
地下部
失水率
RWLR
D 0.219** 0.239** 0.417** 0.458** 0.414** 0.077 0.410** 0.512** 0.487** 0.145* 0.573** -0.281** 0.346**

Table 6

Correlation analysis between D value of comprehensive drought resistance coefficient and agronomic characters in field"

环境
Environment
指标
Index
旗叶长
FL
株高
PH
穗长
SL
小穗数
SN
穗粒数
GN
千粒重
TKW
籽粒长
GL
籽粒宽
GW
杨凌YL 最大根长MRL -0.25** -0.02 -0.03 -.16* -0.07 0.13* -0.29** 0.14*
胚芽鞘长CL 0.59** 0.53** 0.42** 0.39** -0.01 -0.28** 0.33** -0.35**
第一叶长FLL 0.50** 0.26** 0.27** 0.34** 0.13 -0.19** 0.36** -0.26**
第一叶宽FLW -0.11 -0.32** -0.10 -0.08 0.22** 0.17** 0.04 0.22**
第一叶面积FLA 0.31** 0.03 0.14* 0.23** 0.24** -0.04 0.32** -0.04
地上部鲜重SFW 0.13* -0.13* -0.03 0.16* 0.26** 0.18** 0.43** 0.19**
地上部干重SDW 0.06 -0.17* -0.04 0.15* 0.30** 0.28** 0.45** 0.26**
地下部鲜重RFW -0.18** -0.10 -0.07 -0.10 0.01 0.27** -0.06 0.30**
地下部干重RDW -0.29** -0.14* -0.09 -0.15* -0.00 0.24** -0.17** 0.26**
鲜重根冠比RSFW -0.26** -0.04 -0.06 -0.19** -0.14* 0.04 -0.37** 0.07
干重根冠比RSDW -0.25** -0.02 -0.03 -0.19** -0.17* 0.10 -0.32** 0.13*
苗失水率SWLR 0.17** -0.01 -0.02 0.10 0.07 -0.06 0.23** -0.02
根失水率RWLR 0.05 0.01 -0.06 0.01 -0.01 0.08 0.15* 0.06
定西DX 最大根长MRL -0.22** -0.25** 0.15* -0.15* 0.26** 0.02 -0.42** 0.13*
胚芽鞘长CL 0.34** 0.64** 0.17** 0.20** -0.17** 0.16* 0.50** -0.15*
第一叶长FLL 0.34** 0.37** 0.00 0.20** -0.06 0.09 0.34** -0.11
第一叶宽FLW 0.23** -0.03 -0.10 0.20** 0.15* 0.23** 0.10 0.29**
第一叶面积FLA 0.38** 0.26** -0.03 0.26** 0.04 0.21** 0.31** 0.10
地上部鲜重SFW 0.25** 0.17* -0.05 0.07 -0.12 0.24** 0.34** 0.10
地上部干重SDW 0.32** 0.11 -0.15* 0.11 -0.08 0.28** 0.38** 0.20**
地下部鲜重RFW -0.15* -0.40** 0.02 -0.09 0.24** 0.22** -0.28** 0.38**
地下部干重RDW -0.17** -0.41** 0.09 -0.15* 0.24** 0.17** -0.28** 0.31**
鲜重根冠比RSFW -0.30** -0.35** 0.15* -0.17** 0.19** -0.02 -0.42** 0.12
干重根冠比RSDW -0.26** -0.43** 0.06 -0.13 0.24** 0.07 -0.41** 0.26**
苗失水率SWLR -0.15* 0.07 0.17** -0.10 -0.04 -0.08 -0.13* -0.16*
根失水率RWLR -0.04 -0.16* -0.04 0.02 0.04 0.11 -0.02 0.18**
[1]
TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264.
[2]
BUDAK H, KANTAR M, KURTOGLU K Y. Drought tolerance in modern and wild wheat. The Scientific World Journal, 2013, 2013: 548246.
[3]
DARYANTO S, WANG L X, JACINTHE P A. Global synthesis of drought effects on maize and wheat production. PLoS ONE, 2016, 11(5): e0156362.
[4]
赵广才. 中国小麦种植区划研究(一). 麦类作物学报, 2010, 30(5): 886-895.
ZHAO G C. Study on Chinese wheat planting regionalization(Ⅰ). Journal of Triticeae Crops, 2010, 30(5): 886-895. (in Chinese)
[5]
POUR-ABOUGHADAREH A, ETMINAN A, ABDELRAHMAN M, SIDDIQUE K H M, TRAN L S P. Assessment of biochemical and physiological parameters of durum wheat genotypes at the seedling stage during polyethylene glycol-induced water stress. Plant Growth Regulation, 2020, 92(1): 81-93.

doi: 10.1007/s10725-020-00621-4
[6]
马玉慧, 张小虎, 马小乐, 司二静, 孟亚雄, 姚立蓉, 王化俊, 汪军成, 李葆春. 干旱胁迫下春小麦品种(系)萌发期抗旱性鉴定与评价. 分子植物育种, 2022, 20(19): 6459-6473.
MA Y H, ZHANG X H, MA X L, SI E J, MENG Y X, YAO L R, WANG H J, WANG J C, LI B C. Identification and evaluation of drought resistance of spring wheat varieties(lines) at germination under drought stress. Molecular Plant Breeding, 2022, 20(19): 6459-6473. (in Chinese)
[7]
李龙, 毛新国, 王景一, 李超男, 柳玉平, 景蕊莲. 小麦抗旱性研究进展与展望. 干旱地区农业研究, 2023, 41(3): 11-20.
LI L, MAO X G, WANG J Y, LI C N, LIU Y P, JING R L. Progress and prospect of wheat research on drought resistance. Agricultural Research in the Arid Areas, 2023, 41(3): 11-20. (in Chinese)
[8]
胡雯媚, 王思宇, 樊高琼, 刘运军, 郑文, 王强生, 马宏亮. 西南麦区小麦品种苗期抗旱性鉴定及其指标筛选. 麦类作物学报, 2016, 36(2): 182-189.
HU W M, WANG S Y, FAN G Q, LIU Y J, ZHENG W, WANG Q S, MA H L. Analysis on the drought resistantance and screening of drought resistance appraisal indexes of wheat cultivars in seedling stage in southwest area. Journal of Triticeae Crops, 2016, 36(2): 182-189. (in Chinese)
[9]
REBETZKE G J, RICHARDS R A, FETTELL N A, LONG M, CONDON A G, FORRESTER R I, BOTWRIGHT T L. Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Research, 2007, 100(1): 10-23.

doi: 10.1016/j.fcr.2006.05.001
[10]
宁东贤, 王小璐, 赵玉坤, 杨秀丽, 马岗, 杨丽萍, 李楠. 旱地小麦不同播深条件下胚芽鞘长度与产量的关联性. 山西农业科学, 2018, 46(2): 203-206.
NING D X, WANG X L, ZHAO Y K, YANG X L, MA G, YANG L P, LI N. Study on the correlation between the coleoptile length and yield under different sowing depth conditions in dryland wheat. Journal of Shanxi Agricultural Sciences, 2018, 46(2): 203-206. (in Chinese)
[11]
MOHAN A, SCHILLINGER W F, GILL K S. Wheat seedling emergence from deep planting depths and its relationship with coleoptile length. PLoS ONE, 2013, 8(9): e73314.
[12]
杨倩, 袁飞敏, 王海庆, 陈志国, 刘德梅. 西北旱地农家小麦品种抗旱生理机制探究. 分子植物育种, 2018, 16(18): 6105-6111.
YANG Q, YUAN F M, WANG H Q, CHEN Z G, LIU D M. Preliminary study on physiological mechanism of drought resistance of wheat varieties in northwest dryland. Molecular Plant Breeding, 2018, 16(18): 6105-6111. (in Chinese)
[13]
李梦达, 李向东, 牛洪斌, 杨习文, 靳海洋, 贺德先. 小麦品种抗旱性与深根性和深层根系活性的关系. 麦类作物学报, 2017, 37(5): 666-672.
LI M D, LI X D, NIU H B, YANG X W, JIN H Y, HE D X. Relationship between drought resistance, deep rooting characteristics and vigor of roots within deep-soil-layer of different wheat cultivars. Journal of Triticeae Crops, 2017, 37(5): 666-672. (in Chinese)
[14]
LIU R X, WU WU F K, YI X, LIN Y, WANG Z Q, LIU S H, DENG M, MA J, WEI Y M, ZHENG Y L, LIU Y X. Quantitative trait loci analysis for root traits in synthetic hexaploid wheat under drought stress conditions. Journal of Integrative Agriculture, 2020, 19(8): 1947-1960.

doi: 10.1016/S2095-3119(19)62825-X
[15]
侯俊峰, 黄鑫, 侯阁阁, 王晨阳, 谢迎新, 郭天财, 王永华, 马冬云. 非结构性碳水化合物积累与小麦植株抗旱性及产量的关系. 西北农业学报, 2017, 26(11): 1590-1597.
HOU J F, HUANG X, HOU G G, WANG C Y, XIE Y X, GUO T C, WANG Y H, MA D Y. Relationship between non-structural carbohydrate accumulation and drought resistance and grain yield of wheat. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(11): 1590-1597. (in Chinese)
[16]
张卫星, 朱德峰, 林贤青, 张玉屏, 陈惠哲, 朱智伟. 干旱胁迫对不同穗型超级稻品种产量及穗部性状的影响. 干旱地区农业研究, 2010, 28(1): 255-260.
ZHANG W X, ZHU D F, LIN X Q, ZHANG Y P, CHEN H Z, ZHU Z W. Effects of drought stress on yield and ear traits of different panicle super rice cultivars. Agricultural Research in the Arid Areas, 2010, 28(1): 255-260. (in Chinese)
[17]
孙楠楠, 周全, 职蕾, 乔朋放, 牟丽明, 倪胜利, DAUREN Serikbay, 李兴茂, 胡银岗, 陈亮. 240份小麦苗期抗旱性鉴定及抗旱指标与重要农艺性状的相关性分析. 西北农业学报, 2022, 31(2): 147-156.
SUN N N, ZHOU Q, ZHI L, QIAO P F, MU L M, NI S L, Serikbay D, LI X M, HU Y G, CHEN L. Identification of drought resistance at seedling stage and correlation analysis between drought resistance indexes and important agronomic characters of 240 wheat materials. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(2): 147-156. (in Chinese)
[18]
杜欣欣, 张红, 吴允朋, 秦思思, 苏荣存, 耿建芬. 小麦重组自交系群体苗期抗旱性综合评价. 水土保持通报, 2016, 36(4): 286-290, 297.
DU X X, ZHANG H, WU Y P, QIN S S, SU R C, GENG J F. Comprehensive evaluation of drought tolerance at seedling stage for wheat recombinant inbred lines. Bulletin of Soil and Water Conservation, 2016, 36(4): 286-290, 297. (in Chinese)
[19]
关周博, 王士强, 陈亮, 唐娜, 胡银岗. 模拟干旱胁迫下冬小麦胚芽鞘长度变化及与抗旱性的关系研究. 干旱地区农业研究, 2009, 27(4): 125-130.
GUAN Z B, WANG S Q, CHEN L, TANG N, HU Y G. Variation of coleoptile length in winter wheat varieties under PEG simulated drought stress and its association with their drought tolerance. Agricultural Research in the Arid Areas, 2009, 27(4): 125-130. (in Chinese)
[20]
白旭瑞. 小麦苗期抗旱性鉴定及抗旱品种筛选[D]. 保定: 河北农业大学, 2021.
BAI X R. Identification of drought resistance of wheat at seedling stage and selection of drought resistant varieties[D]. Baoding: Hebei Agricultural University, 2021. (in Chinese)
[21]
景蕊莲, 胡荣海, 朱志华, 昌小平. 冬小麦不同基因型幼苗形态性状遗传力和抗旱性的研究. 西北植物学报, 1997, 17(2): 152-157.
JING R L, HU R H, ZHU Z H, CHANG X P. A study on heritabilities of seedling morphological traits and drought resistance in winter wheat cultivars of different genotype. Acta Botanica Boreali- Occidentalia Sinica, 1997, 17(2): 152-157. (in Chinese)
[22]
孙海丽, 王文佳, 刘梦兰, 丁位华, 梁静. 小麦抗旱鉴定指标的研究现状与进展. 河南科技学院学报(自然科学版), 2020, 48(4): 1-7.
SUN H L, WANG W J, LIU M L, DING W H, LIANG J. The research status and progress on identification indicators of wheat drought resistance. Journal of Henan Institute of Science and Technology (Natural Science Edition), 2020, 48(4): 1-7. (in Chinese)
[23]
霍治军. 不同抗旱类型冬小麦根系特征及其与产量的关系研究. 江西农业学报, 2015, 27(7): 22-24.
HUO Z J. Study on root system characteristic and its relationship with yield of winter wheat varieties with different types of resistance to drought. Acta Agriculturae Jiangxi, 2015, 27(7): 22-24. (in Chinese)
[24]
曲可佳, 时晓磊, 张恒, 王兴州, 耿洪伟, 丁孙磊, 张金波, 严勇亮. PEG处理下引进国外春小麦品种苗期抗旱性评价. 新疆农业科学, 2023, 60(6): 1363-1371.

doi: 10.6048/j.issn.1001-4330.2023.06.008
QU K J, SHI X L, ZHANG H, WANG X Z, GENG H W, DING S L, ZHANG J B, YAN Y L. Evaluation of drought resistance of introduced spring wheat under PEG treatment. Xinjiang Agricultural Sciences, 2023, 60(6): 1363-1371. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2023.06.008
[25]
韩开明, 张永平, 关文雯, 李元清. 抗旱节水春小麦品种鉴选指标比较研究. 麦类作物学报, 2011, 31(5): 927-934.
HAN K M, ZHANG Y P, GUAN W W, LI Y Q. A comparative study on selection index for drought resistance and water saving varieties of spring wheat. Journal of Triticeae Crops, 2011, 31(5): 927-934. (in Chinese)
[26]
景蕊莲. 作物抗旱研究的现状与思考. 干旱地区农业研究, 1999, 17(2): 79-85.
JING R L. Current situation and reflection on crop drought resistance research. Agricultural Research in Arid Areas, 1999, 17(2): 79-85. (in Chinese)
[27]
李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44(7): 988-999.

doi: 10.3724/SP.J.1006.2018.00988
LI L, MAO X G, WANG J Y, CHANG X P, LIU Y P, JING R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44(7): 988-999. (in Chinese)

doi: 10.3724/SP.J.1006.2018.00988
[28]
黎冬华, 刘文萍, 张艳欣, 王林海, 危文亮, 高媛, 丁霞, 王蕾, 张秀荣. 芝麻耐旱性的鉴定方法及关联分析. 作物学报, 2013, 39(8): 1425-1433.
LI D H, LIU W P, ZHANG Y X, WANG L H, WEI W L, GAO Y, DING X, WANG L, ZHANG X R. Identification method and correlation analysis of drought resistance in sesame seeds. Crop Journal, 2013, 39(8): 1425-1433. (in Chinese)
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[3] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[4] NI ShuHui, SHI DongMei, PAN LiDong, YE Qing, WU JunHao. Response of Cultivated-Layer Water-Holding and Drought Resistance Performance and Productivity to Erosion Degree in Purple Soil Sloping Farmland [J]. Scientia Agricultura Sinica, 2024, 57(7): 1350-1362.
[5] WEI NaiCui, TAO JinBo, YUAN MingYang, ZHANG Yu, KAI MengXiang, QIAO Ling, WU BangBang, HAO YuQiong, ZHENG XingWei, WANG JuanLing, ZHAO JiaJia, ZHENG Jun. Seedling Characterization and Genetic Analysis of Low Phosphorus Tolerance in Shanxi Varieties [J]. Scientia Agricultura Sinica, 2024, 57(5): 831-845.
[6] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
[7] WANG RongRong, CHEN TianPeng, YIN HaoJie, JIANG GuiYing. Response and Drip Irrigation Re-Watering Compensation Effect of Spring Wheat Roots to Drought Stress with Different Drought Tolerance Varieties [J]. Scientia Agricultura Sinica, 2023, 56(24): 4826-4841.
[8] LUO ZhengYing, HU Xin, LIU XinLong, WU CaiWen, WU ZhuanDi, LIU JiaYong, ZENG QianChun. Application of Trehalose Enhances Drought Resistance in Sugarcane Seedlings and Promotes Plant Growth [J]. Scientia Agricultura Sinica, 2023, 56(21): 4208-4218.
[9] LI Yan, TAO KeYu, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, HE GuanHua, SONG YanChun, SHI YunSu, LI Yu, WANG TianYu, ZOU HuaWen, LIU XuYang. Function of Maize ZCN7 in Regulating Drought Resistance at Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(16): 3051-3061.
[10] CHEN GuiPing, CHENG Hui, FAN Hong, FAN ZhiLong, HU FaLong, YIN Wen. Study on Adaptability of Spring Wheat Yield to Water and Nitrogen Reduction Under Wide-Width Uniform Sowing and Conventional Strip Sowing in Oasis Irrigated Regions [J]. Scientia Agricultura Sinica, 2023, 56(13): 2461-2473.
[11] CUI WeiNan, NIE ZhiGang, LI Guang, WANG Jun. Optimization of Dryland Wheat Grain Growth Model Parameters Based on an Improved Shuffled Frog Leaping Algorithm [J]. Scientia Agricultura Sinica, 2023, 56(12): 2274-2287.
[12] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[13] BiJiao MA, ZhiWen GOU, Wen YIN, AiZhong YU, ZhiLong FAN, FaLong HU, Cai ZHAO, Qiang CHAI. Effects of Multiple Cropping Green Manure After Wheat Harvest and Nitrogen Application Levels on Wheat Photosynthetic Performance and Yield in Arid Irrigated Areas [J]. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515.
[14] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[15] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!